From fa155f8a42a95111099b8c97a6617cb81317ea6c Mon Sep 17 00:00:00 2001 From: Dale Weiler Date: Mon, 24 Dec 2012 01:43:27 +0000 Subject: [PATCH] Added my awesome MT1997 PRNG, and use it instead of stdio's rand()/srand() .. which are implementation specific .. and simply unsafe (for example one of the compilers at work simply has it's standard library implementation of rand() return 0 always (which is perfectly conformant)). --- ftepp.c | 14 ++--- gmqcc.h | 3 + main.c | 3 + util.c | 171 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 4 files changed, 184 insertions(+), 7 deletions(-) diff --git a/ftepp.c b/ftepp.c index e1ee582..ab51bd9 100644 --- a/ftepp.c +++ b/ftepp.c @@ -77,8 +77,8 @@ typedef struct { * Implement the predef subsystem now. We can do this safely with the * help of lexer contexts. */ -static int ftepp_predef_countval = 0; -static int ftepp_predef_randval = 0; +static uint32_t ftepp_predef_countval = 0; +static uint32_t ftepp_predef_randval = 0; /* __LINE__ */ char *ftepp_predef_line(lex_file *context) { @@ -98,7 +98,7 @@ char *ftepp_predef_file(lex_file *context) { /* __COUNTER_LAST__ */ char *ftepp_predef_counterlast(lex_file *context) { char *value = (char*)mem_a(128); - sprintf(value, "%d", ftepp_predef_countval); + sprintf(value, "%u", ftepp_predef_countval); (void)context; return value; @@ -107,7 +107,7 @@ char *ftepp_predef_counterlast(lex_file *context) { char *ftepp_predef_counter(lex_file *context) { char *value = (char*)mem_a(128); ftepp_predef_countval ++; - sprintf(value, "%d", ftepp_predef_countval); + sprintf(value, "%u", ftepp_predef_countval); (void)context; return value; @@ -115,8 +115,8 @@ char *ftepp_predef_counter(lex_file *context) { /* __RANDOM__ */ char *ftepp_predef_random(lex_file *context) { char *value = (char*)mem_a(128); - ftepp_predef_randval = rand() % 0xFFFF; /* short int */ - sprintf(value, "%d", ftepp_predef_randval); + ftepp_predef_randval = (util_rand() % 0xFF) + 1; + sprintf(value, "%u", ftepp_predef_randval); (void)context; return value; @@ -124,7 +124,7 @@ char *ftepp_predef_random(lex_file *context) { /* __RANDOM_LAST__ */ char *ftepp_predef_randomlast(lex_file *context) { char *value = (char*)mem_a(128); - sprintf(value, "%d", ftepp_predef_randval); + sprintf(value, "%u", ftepp_predef_randval); (void)context; return value; diff --git a/gmqcc.h b/gmqcc.h index 9e8af45..65161c2 100644 --- a/gmqcc.h +++ b/gmqcc.h @@ -260,6 +260,9 @@ size_t util_strtononcmd (const char *, char *, size_t); uint16_t util_crc16(uint16_t crc, const char *data, size_t len); +void util_seed(uint32_t); +uint32_t util_rand(); + #ifdef NOTRACK # define mem_a(x) malloc (x) # define mem_d(x) free ((void*)x) diff --git a/main.c b/main.c index aa1e3a0..a52e704 100644 --- a/main.c +++ b/main.c @@ -23,6 +23,7 @@ */ #include "gmqcc.h" #include "lexer.h" +#include /* TODO: cleanup this whole file .. it's a fuckign mess */ @@ -505,6 +506,8 @@ int main(int argc, char **argv) { con_init (); opts_init("progs.dat", COMPILER_GMQCC, (1024 << 3)); + util_seed(time(0)); + if (!options_parse(argc, argv)) { return usage(); } diff --git a/util.c b/util.c index f4dbfc4..26803c8 100644 --- a/util.c +++ b/util.c @@ -538,3 +538,174 @@ void util_htdel(hash_table_t *ht) { mem_d(ht->table); mem_d(ht); } + +/* + * Implementation of the Mersenne twister PRNG (pseudo random numer + * generator). Implementation of MT19937. Has a period of 2^19937-1 + * which is a Mersenne Prime (hence the name). + * + * Implemented from specification and original paper: + * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf + * + * This code is placed in the public domain by me personally + * (Dale Weiler, a.k.a graphitemaster). + */ + +#define MT_SIZE 624 +#define MT_PERIOD 397 +#define MT_SPACE (MT_SIZE - MT_PERIOD) + +static uint32_t mt_state[MT_SIZE]; +static size_t mt_index = 0; + +static GMQCC_INLINE void mt_generate() { + /* + * The loop has been unrolled here: the original paper and implemenation + * Called for the following code: + * for (register unsigned i = 0; i < MT_SIZE; ++i) { + * register uint32_t load; + * load = (0x80000000 & mt_state[i]) // most significant 32nd bit + * load |= (0x7FFFFFFF & mt_state[(i + 1) % MT_SIZE]) // least significant 31nd bit + * + * mt_state[i] = mt_state[(i + MT_PERIOD) % MT_SIZE] ^ (load >> 1); + * + * if (load & 1) mt_state[i] ^= 0x9908B0DF; + * } + * + * This essentially is a waste: we have two modulus operations, and + * a branch that is executed every iteration from [0, MT_SIZE). + * + * Please see: http://www.quadibloc.com/crypto/co4814.htm for more + * information on how this clever trick works. + */ + static const uint32_t matrix[2] = { + 0x00000000, + 0x9908B0Df + }; + /* + * This register gives up a little more speed by instructing the compiler + * to force these into CPU registers (they're counters for indexing mt_state + * which we can force the compiler to generate prefetch instructions for) + */ + register uint32_t y; + register uint32_t i; + + /* + * Said loop has been unrolled for MT_SPACE (226 iterations), opposed + * to [0, MT_SIZE) (634 iterations). + */ + for (i = 0; i < MT_SPACE; ++i) { + y = (0x800000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1]; + + i ++; /* loop unroll */ + + y = (0x800000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1]; + } + + /* + * collapsing the walls unrolled (evenly dividing 396 [632-227 = 396 + * = 2*2*3*3*11]) + */ + i = MT_SPACE; + while (i < MT_SIZE - 1) { + /* + * We expand this 11 times .. manually, no macros are required + * here. This all fits in the CPU cache. + */ + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + } + + /* i = mt_state[623] */ + y = (0x80000000 & mt_state[MT_SIZE - 1]) | (0x7FFFFFFF & mt_state[MT_SIZE - 1]); + mt_state[MT_SIZE - 1] = mt_state[MT_PERIOD - 1] ^ (y >> 1) ^ matrix[y & 1]; +} + +void util_seed(uint32_t value) { + /* + * We seed the mt_state with a LCG (linear congruential generator) + * We're operating exactly on exactly m=32, so there is no need to + * use modulus. + * + * The multipler of choice is 0x6C07865, also knows as the Borosh- + * Niederreiter multipler used for modulus 2^32. More can be read + * about this in Knuth's TAOCP Volume 2, page 106. + * + * If you don't own TAOCP something is wrong with you :-) .. so I + * also provided a link to the original paper by Borosh and + * Niederreiter. It's called "Optional Multipliers for PRNG by The + * Linear Congruential Method" (1983). + * http://en.wikipedia.org/wiki/Linear_congruential_generator + * + * From said page, it says the following: + * "A common Mersenne twister implementation, interestingly enough + * used an LCG to generate seed data." + * + * Remarks: + * The data we're operating on is 32-bits for the mt_state array, so + * there is no masking required with 0xFFFFFFFF + */ + register size_t i; + + mt_state[0] = value; + for (i = 1; i < MT_SIZE; ++i) + mt_state[i] = 0x6C078965 * (mt_state[i - 1] ^ mt_state[i - 1] >> 30) + i; +} + +uint32_t util_rand() { + register uint32_t y; + + /* + * This is inlined with any sane compiler (I checked) + * for some reason though, SubC seems to be generating invalid + * code when it inlines this. + */ + if (!mt_index) + mt_generate(); + + y = mt_state[mt_index]; + + /* Standard tempering */ + y ^= y >> 11; /* +7 */ + y ^= y << 7 & 0x9D2C5680; /* +4 */ + y ^= y << 15 & 0xEFC60000; /* -4 */ + y ^= y >> 18; /* -7 */ + + if(++mt_index == MT_SIZE) + mt_index = 0; + + return y; +} -- 2.39.5