From: Ant Zucaro Date: Sun, 23 Apr 2017 15:40:19 +0000 (-0400) Subject: Apply the ping factor to Elo adjustment values. X-Git-Url: https://git.rm.cloudns.org/?a=commitdiff_plain;h=fb65fcd76ae81cfcac4b7cd306b55362639ff2be;p=xonotic%2Fxonstat.git Apply the ping factor to Elo adjustment values. --- diff --git a/xonstat/elo.py b/xonstat/elo.py index 192817b..aefe9e0 100644 --- a/xonstat/elo.py +++ b/xonstat/elo.py @@ -10,13 +10,13 @@ log = logging.getLogger(__name__) class EloParms: def __init__(self, global_K=15, initial=100, floor=100, logdistancefactor=math.log(10)/float(400), maxlogdistance=math.log(10), - latencyfactor=0.2): + latency_trend_factor=0.2): self.global_K = global_K self.initial = initial self.floor = floor self.logdistancefactor = logdistancefactor self.maxlogdistance = maxlogdistance - self.latencyfactor = latencyfactor + self.latency_trend_factor = latency_trend_factor class KReduction: @@ -179,7 +179,8 @@ class EloProcessor: def pingfactor(self, pi, pj): """ Calculate the ping differences between the two players, but only if both have them. """ if pi is None or pj is None or pi < 0 or pj < 0: - return None + # default to a draw + return 0.5 else: return float(pi)/(pi+pj) @@ -195,10 +196,12 @@ class EloProcessor: pids = self.wip.keys() for i in xrange(0, len(pids)): ei = self.wip[pids[i]].elo + pi = self.wip[pids[i]].pgstat.avg_latency for j in xrange(i+1, len(pids)): ej = self.wip[pids[j]].elo si = self.wip[pids[i]].score_per_second sj = self.wip[pids[j]].score_per_second + pj = self.wip[pids[j]].pgstat.avg_latency # normalize scores ofs = min(0, si, sj) @@ -215,19 +218,50 @@ class EloProcessor: (float(ei.elo) - float(ej.elo)) * ep.logdistancefactor)) scorefactor_elo = 1 / (1 + math.exp(-elodiff)) + # raw ping ratios + ping_ratio_i = self.pingfactor(pi, pj) + ping_ratio_j = self.pingfactor(pj, pi) + + if ping_ratio_i > 0.5: + if scorefactor_real > 0.5: + log.debug("player i has the ping disadvantage and won") + pingfactor_i = 1 + ping_ratio_i * ep.latency_trend_factor + pingfactor_j = 1 + ping_ratio_j * ep.latency_trend_factor + else: + log.debug("player i has the ping disadvantage and lost") + pingfactor_i = 1 - ping_ratio_i * ep.latency_trend_factor + pingfactor_j = 1 - ping_ratio_j * ep.latency_trend_factor + + elif ping_ratio_i < 0.5: + if scorefactor_real > 0.5: + log.debug("player j has the ping disadvantage and lost") + pingfactor_i = 1 - ping_ratio_i * ep.latency_trend_factor + pingfactor_j = 1 - ping_ratio_j * ep.latency_trend_factor + else: + log.debug("player j has the ping disadvantage and won") + pingfactor_i = 1 + ping_ratio_i * ep.latency_trend_factor + pingfactor_j = 1 + ping_ratio_j * ep.latency_trend_factor + else: + log.debug("the pings are equal") + pingfactor_i = pingfactor_j = 1 + # initial adjustment values, which we may modify with additional rules - adjustmenti = scorefactor_real - scorefactor_elo - adjustmentj = scorefactor_elo - scorefactor_real + adjustmenti = (scorefactor_real - scorefactor_elo) * pingfactor_i + adjustmentj = (scorefactor_elo - scorefactor_real) * pingfactor_j # DEBUG - # log.debug("(New) Player i: {0}".format(ei.player_id)) - # log.debug("(New) Player i's K: {0}".format(self.wip[pids[i]].k)) - # log.debug("(New) Player j: {0}".format(ej.player_id)) - # log.debug("(New) Player j's K: {0}".format(self.wip[pids[j]].k)) - # log.debug("(New) Scorefactor real: {0}".format(scorefactor_real)) - # log.debug("(New) Scorefactor elo: {0}".format(scorefactor_elo)) - # log.debug("(New) adjustment i: {0}".format(adjustmenti)) - # log.debug("(New) adjustment j: {0}".format(adjustmentj)) + log.debug("(New) Player i: {0}".format(ei.player_id)) + log.debug("(New) Player i's K: {0}".format(self.wip[pids[i]].k)) + log.debug("(New) Player i's pingfactor: {0}".format(pingfactor_i)) + log.debug("(New) Player j: {0}".format(ej.player_id)) + log.debug("(New) Player j's K: {0}".format(self.wip[pids[j]].k)) + log.debug("(New) Player j's pingfactor: {0}".format(pingfactor_j)) + log.debug("(New) Scorefactor real: {0}".format(scorefactor_real)) + log.debug("(New) Scorefactor elo: {0}".format(scorefactor_elo)) + log.debug("(New) adjustment i: {0}".format(scorefactor_real - scorefactor_elo)) + log.debug("(New) adjustment j: {0}".format(scorefactor_elo - scorefactor_real)) + log.debug("(New) adjustment i with ping: {0}".format(adjustmenti)) + log.debug("(New) adjustment j with ping: {0}\n".format(adjustmentj)) if scorefactor_elo > 0.5: # player i is expected to win @@ -257,6 +291,9 @@ class EloProcessor: new_elo = max(float(w.elo.elo) + w.adjustment * w.k * ep.global_K / float(len(pids) - 1), ep.floor) w.elo_delta = new_elo - old_elo + log.debug("{}'s Old Elo: {} New Elo: {} Delta {}" + .format(pid, old_elo, new_elo, w.elo_delta)) + w.elo.elo = new_elo w.elo.games += 1 w.elo.update_dt = datetime.datetime.utcnow()