From: divverent Date: Sun, 22 Mar 2009 19:51:44 +0000 (+0000) Subject: change names of functions, and add comments. X-Git-Tag: xonotic-v0.1.0preview~1786 X-Git-Url: https://git.rm.cloudns.org/?a=commitdiff_plain;h=b2987354f10ef5e5f495b9b9b36849749bcebec0;p=xonotic%2Fdarkplaces.git change names of functions, and add comments. The code is mathematically correct now, I added a proof of the missing link: quadratic spline area = exactly 2/3 * area of the control points triangle! The actual subdivisions stayed invariant, just the names of the functions make more sense now. git-svn-id: svn://svn.icculus.org/twilight/trunk/darkplaces@8821 d7cf8633-e32d-0410-b094-e92efae38249 --- diff --git a/curves.c b/curves.c index ea18cf47..ad5bb63f 100644 --- a/curves.c +++ b/curves.c @@ -156,7 +156,7 @@ static int Q3PatchTesselation(float largestsquared2xcurvearea, float tolerance) // maps [4..8[ to 4 } -float Squared2xCurveArea(const float *a, const float *control, const float *b, int components) +float Squared3xCurveArea(const float *a, const float *control, const float *b, int components) { #if 0 // mimicing the old behaviour with the new code... @@ -178,6 +178,13 @@ float Squared2xCurveArea(const float *a, const float *control, const float *b, i // but as this is hard to calculate, let's calculate an upper bound of it: // the area of the triangle a->control->b->a. // + // one can prove that the area of a quadratic spline = 2/3 * the area of + // the triangle of its control points! + // to do it, first prove it for the spline through (0,0), (1,1), (2,0) + // (which is a parabola) and then note that moving the control point + // left/right is just shearing and keeps the area of both the spline and + // the triangle invariant. + // // why are we going for the spline area anyway? // we know that: // @@ -186,6 +193,8 @@ float Squared2xCurveArea(const float *a, const float *control, const float *b, i // // also, on circle-like or parabola-like curves, you easily get that the // double amount of line approximation segments reduces the error to its quarter + // (also, easy to prove for splines by doing it for one specific one, and using + // affine transforms to get all other splines) // // so... // @@ -214,7 +223,8 @@ float Squared2xCurveArea(const float *a, const float *control, const float *b, i bb += xb * xb; } // area is 0.5 * sqrt(aa*bb - ab*ab) - // 2x area is sqrt(aa*bb - ab*ab) + // 2x TRIANGLE area is sqrt(aa*bb - ab*ab) + // 3x CURVE area is sqrt(aa*bb - ab*ab) return aa * bb - ab * ab; #endif } @@ -231,7 +241,7 @@ int Q3PatchTesselationOnX(int patchwidth, int patchheight, int components, const for (x = 0;x < patchwidth-1;x += 2) { patch = in + ((y * patchwidth) + x) * components; - squared2xcurvearea = Squared2xCurveArea(&patch[0], &patch[components], &patch[2*components], components); + squared2xcurvearea = Squared3xCurveArea(&patch[0], &patch[components], &patch[2*components], components); if (largestsquared2xcurvearea < squared2xcurvearea) largestsquared2xcurvearea = squared2xcurvearea; } @@ -251,7 +261,7 @@ int Q3PatchTesselationOnY(int patchwidth, int patchheight, int components, const for (x = 0;x < patchwidth;x++) { patch = in + ((y * patchwidth) + x) * components; - squared2xcurvearea = Squared2xCurveArea(&patch[0], &patch[patchwidth*components], &patch[2*patchwidth*components], components); + squared2xcurvearea = Squared3xCurveArea(&patch[0], &patch[patchwidth*components], &patch[2*patchwidth*components], components); if (largestsquared2xcurvearea < squared2xcurvearea) largestsquared2xcurvearea = squared2xcurvearea; }