From: Rudolf Polzer Date: Fri, 3 Sep 2010 11:44:01 +0000 (+0200) Subject: dp.win64 build dependencies beginning (lacks SDL still) X-Git-Tag: xonotic-v0.1.0preview~125^2~47 X-Git-Url: https://git.rm.cloudns.org/?a=commitdiff_plain;h=9991fcb647a9e2abf0183e117a04ed8bac5391db;p=xonotic%2Fxonotic.git dp.win64 build dependencies beginning (lacks SDL still) --- diff --git a/misc/builddeps/dp.win64/bin/libgmp-10.dll b/misc/builddeps/dp.win64/bin/libgmp-10.dll new file mode 100755 index 00000000..c8679dd7 Binary files /dev/null and b/misc/builddeps/dp.win64/bin/libgmp-10.dll differ diff --git a/misc/builddeps/dp.win64/include/d3dtypes.h b/misc/builddeps/dp.win64/include/d3dtypes.h new file mode 100644 index 00000000..e2e4a1a0 --- /dev/null +++ b/misc/builddeps/dp.win64/include/d3dtypes.h @@ -0,0 +1,1698 @@ +/*==========================================================================; + * + * Copyright (C) 1995-1998 Microsoft Corporation. All Rights Reserved. + * + * File: d3dtypes.h + * Content: Direct3D types include file + * + ***************************************************************************/ + +#ifndef _D3DTYPES_H_ +#define _D3DTYPES_H_ + +#include + +#include +#include + +#ifndef DIRECT3D_VERSION +#define DIRECT3D_VERSION 0x0600 +#endif + +#pragma pack(4) + + +/* D3DVALUE is the fundamental Direct3D fractional data type */ + +#define D3DVALP(val, prec) ((float)(val)) +#define D3DVAL(val) ((float)(val)) +typedef float D3DVALUE, *LPD3DVALUE; +#define D3DDivide(a, b) (float)((double) (a) / (double) (b)) +#define D3DMultiply(a, b) ((a) * (b)) + +typedef LONG D3DFIXED; + +#ifndef RGB_MAKE +/* + * Format of CI colors is + * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + * | alpha | color index | fraction | + * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + */ +#define CI_GETALPHA(ci) ((ci) >> 24) +#define CI_GETINDEX(ci) (((ci) >> 8) & 0xffff) +#define CI_GETFRACTION(ci) ((ci) & 0xff) +#define CI_ROUNDINDEX(ci) CI_GETINDEX((ci) + 0x80) +#define CI_MASKALPHA(ci) ((ci) & 0xffffff) +#define CI_MAKE(a, i, f) (((a) << 24) | ((i) << 8) | (f)) + +/* + * Format of RGBA colors is + * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + * | alpha | red | green | blue | + * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + */ +#define RGBA_GETALPHA(rgb) ((rgb) >> 24) +#define RGBA_GETRED(rgb) (((rgb) >> 16) & 0xff) +#define RGBA_GETGREEN(rgb) (((rgb) >> 8) & 0xff) +#define RGBA_GETBLUE(rgb) ((rgb) & 0xff) +#define RGBA_MAKE(r, g, b, a) ((D3DCOLOR) (((a) << 24) | ((r) << 16) | ((g) << 8) | (b))) + +/* D3DRGB and D3DRGBA may be used as initialisers for D3DCOLORs + * The float values must be in the range 0..1 + */ +#define D3DRGB(r, g, b) \ + (0xff000000L | ( ((long)((r) * 255)) << 16) | (((long)((g) * 255)) << 8) | (long)((b) * 255)) +#define D3DRGBA(r, g, b, a) \ + ( (((long)((a) * 255)) << 24) | (((long)((r) * 255)) << 16) \ + | (((long)((g) * 255)) << 8) | (long)((b) * 255) \ + ) + +/* + * Format of RGB colors is + * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + * | ignored | red | green | blue | + * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + */ +#define RGB_GETRED(rgb) (((rgb) >> 16) & 0xff) +#define RGB_GETGREEN(rgb) (((rgb) >> 8) & 0xff) +#define RGB_GETBLUE(rgb) ((rgb) & 0xff) +#define RGBA_SETALPHA(rgba, x) (((x) << 24) | ((rgba) & 0x00ffffff)) +#define RGB_MAKE(r, g, b) ((D3DCOLOR) (((r) << 16) | ((g) << 8) | (b))) +#define RGBA_TORGB(rgba) ((D3DCOLOR) ((rgba) & 0xffffff)) +#define RGB_TORGBA(rgb) ((D3DCOLOR) ((rgb) | 0xff000000)) + +#endif + +/* + * Flags for Enumerate functions + */ + +/* + * Stop the enumeration + */ +#define D3DENUMRET_CANCEL DDENUMRET_CANCEL + +/* + * Continue the enumeration + */ +#define D3DENUMRET_OK DDENUMRET_OK + +typedef HRESULT (CALLBACK* LPD3DVALIDATECALLBACK)(LPVOID lpUserArg, DWORD dwOffset); +typedef HRESULT (CALLBACK* LPD3DENUMTEXTUREFORMATSCALLBACK)(LPDDSURFACEDESC lpDdsd, LPVOID lpContext); +typedef HRESULT (CALLBACK* LPD3DENUMPIXELFORMATSCALLBACK)(LPDDPIXELFORMAT lpDDPixFmt, LPVOID lpContext); + +typedef DWORD D3DCOLOR, *LPD3DCOLOR; + +typedef DWORD D3DMATERIALHANDLE, *LPD3DMATERIALHANDLE; +typedef DWORD D3DTEXTUREHANDLE, *LPD3DTEXTUREHANDLE; +typedef DWORD D3DMATRIXHANDLE, *LPD3DMATRIXHANDLE; + +typedef struct _D3DCOLORVALUE { + union { + D3DVALUE r; + D3DVALUE dvR; +#if defined(NONAMELESSUNION) + } u1; +#else + }; +#endif + union { + D3DVALUE g; + D3DVALUE dvG; +#if defined(NONAMELESSUNION) + } u2; +#else + }; +#endif + union { + D3DVALUE b; + D3DVALUE dvB; +#if defined(NONAMELESSUNION) + } u3; +#else + }; +#endif + union { + D3DVALUE a; + D3DVALUE dvA; +#if defined(NONAMELESSUNION) + } u4; +#else + }; +#endif +} D3DCOLORVALUE, *LPD3DCOLORVALUE; + +typedef struct _D3DRECT { + union { + LONG x1; + LONG lX1; +#if defined(NONAMELESSUNION) + } u1; +#else + }; +#endif + union { + LONG y1; + LONG lY1; +#if defined(NONAMELESSUNION) + } u2; +#else + }; +#endif + union { + LONG x2; + LONG lX2; +#if defined(NONAMELESSUNION) + } u3; +#else + }; +#endif + union { + LONG y2; + LONG lY2; +#if defined(NONAMELESSUNION) + } u4; +#else + }; +#endif +} D3DRECT, *LPD3DRECT; + +typedef struct _D3DVECTOR { + union { + D3DVALUE x; + D3DVALUE dvX; +#if defined(NONAMELESSUNION) + } u1; +#else + }; +#endif + union { + D3DVALUE y; + D3DVALUE dvY; +#if defined(NONAMELESSUNION) + } u2; +#else + }; +#endif + union { + D3DVALUE z; + D3DVALUE dvZ; +#if defined(NONAMELESSUNION) + } u3; +#else + }; +#endif +#if (defined __cplusplus) && (defined D3D_OVERLOADS) + +public: + + // ===================================== + // Constructors + // ===================================== + + _D3DVECTOR() { } + _D3DVECTOR(D3DVALUE f); + _D3DVECTOR(D3DVALUE _x, D3DVALUE _y, D3DVALUE _z); + _D3DVECTOR(const D3DVALUE f[3]); + + // ===================================== + // Access grants + // ===================================== + + const D3DVALUE&operator[](int i) const; + D3DVALUE&operator[](int i); + + // ===================================== + // Assignment operators + // ===================================== + + _D3DVECTOR& operator += (const _D3DVECTOR& v); + _D3DVECTOR& operator -= (const _D3DVECTOR& v); + _D3DVECTOR& operator *= (const _D3DVECTOR& v); + _D3DVECTOR& operator /= (const _D3DVECTOR& v); + _D3DVECTOR& operator *= (D3DVALUE s); + _D3DVECTOR& operator /= (D3DVALUE s); + + // ===================================== + // Unary operators + // ===================================== + + friend _D3DVECTOR operator + (const _D3DVECTOR& v); + friend _D3DVECTOR operator - (const _D3DVECTOR& v); + + + // ===================================== + // Binary operators + // ===================================== + + // Addition and subtraction + friend _D3DVECTOR operator + (const _D3DVECTOR& v1, const _D3DVECTOR& v2); + friend _D3DVECTOR operator - (const _D3DVECTOR& v1, const _D3DVECTOR& v2); + // Scalar multiplication and division + friend _D3DVECTOR operator * (const _D3DVECTOR& v, D3DVALUE s); + friend _D3DVECTOR operator * (D3DVALUE s, const _D3DVECTOR& v); + friend _D3DVECTOR operator / (const _D3DVECTOR& v, D3DVALUE s); + // Memberwise multiplication and division + friend _D3DVECTOR operator * (const _D3DVECTOR& v1, const _D3DVECTOR& v2); + friend _D3DVECTOR operator / (const _D3DVECTOR& v1, const _D3DVECTOR& v2); + + // Vector dominance + friend int operator < (const _D3DVECTOR& v1, const _D3DVECTOR& v2); + friend int operator <= (const _D3DVECTOR& v1, const _D3DVECTOR& v2); + + // Bitwise equality + friend int operator == (const _D3DVECTOR& v1, const _D3DVECTOR& v2); + + // Length-related functions + friend D3DVALUE SquareMagnitude (const _D3DVECTOR& v); + friend D3DVALUE Magnitude (const _D3DVECTOR& v); + + // Returns vector with same direction and unit length + friend _D3DVECTOR Normalize (const _D3DVECTOR& v); + + // Return min/max component of the input vector + friend D3DVALUE Min (const _D3DVECTOR& v); + friend D3DVALUE Max (const _D3DVECTOR& v); + + // Return memberwise min/max of input vectors + friend _D3DVECTOR Minimize (const _D3DVECTOR& v1, const _D3DVECTOR& v2); + friend _D3DVECTOR Maximize (const _D3DVECTOR& v1, const _D3DVECTOR& v2); + + // Dot and cross product + friend D3DVALUE DotProduct (const _D3DVECTOR& v1, const _D3DVECTOR& v2); + friend _D3DVECTOR CrossProduct (const _D3DVECTOR& v1, const _D3DVECTOR& v2); + +#endif +} D3DVECTOR, *LPD3DVECTOR; + +/* + * Vertex data types supported in an ExecuteBuffer. + */ + +/* + * Homogeneous vertices + */ + +typedef struct _D3DHVERTEX { + DWORD dwFlags; /* Homogeneous clipping flags */ + union { + D3DVALUE hx; + D3DVALUE dvHX; +#if defined(NONAMELESSUNION) + } u1; +#else + }; +#endif + union { + D3DVALUE hy; + D3DVALUE dvHY; +#if defined(NONAMELESSUNION) + } u2; +#else + }; +#endif + union { + D3DVALUE hz; + D3DVALUE dvHZ; +#if defined(NONAMELESSUNION) + } u3; +#else + }; +#endif +} D3DHVERTEX, *LPD3DHVERTEX; + +/* + * Transformed/lit vertices + */ +typedef struct _D3DTLVERTEX { + union { + D3DVALUE sx; /* Screen coordinates */ + D3DVALUE dvSX; +#if defined(NONAMELESSUNION) + } u1; +#else + }; +#endif + union { + D3DVALUE sy; + D3DVALUE dvSY; +#if defined(NONAMELESSUNION) + } u2; +#else + }; +#endif + union { + D3DVALUE sz; + D3DVALUE dvSZ; +#if defined(NONAMELESSUNION) + } u3; +#else + }; +#endif + union { + D3DVALUE rhw; /* Reciprocal of homogeneous w */ + D3DVALUE dvRHW; +#if defined(NONAMELESSUNION) + } u4; +#else + }; +#endif + union { + D3DCOLOR color; /* Vertex color */ + D3DCOLOR dcColor; +#if defined(NONAMELESSUNION) + } u5; +#else + }; +#endif + union { + D3DCOLOR specular; /* Specular component of vertex */ + D3DCOLOR dcSpecular; +#if defined(NONAMELESSUNION) + } u6; +#else + }; +#endif + union { + D3DVALUE tu; /* Texture coordinates */ + D3DVALUE dvTU; +#if defined(NONAMELESSUNION) + } u7; +#else + }; +#endif + union { + D3DVALUE tv; + D3DVALUE dvTV; +#if defined(NONAMELESSUNION) + } u8; +#else + }; +#endif +#if (defined __cplusplus) && (defined D3D_OVERLOADS) + _D3DTLVERTEX() { } + _D3DTLVERTEX(const D3DVECTOR& v, float _rhw, + D3DCOLOR _color, D3DCOLOR _specular, + float _tu, float _tv) + { sx = v.x; sy = v.y; sz = v.z; rhw = _rhw; + color = _color; specular = _specular; + tu = _tu; tv = _tv; + } +#endif +} D3DTLVERTEX, *LPD3DTLVERTEX; + +/* + * Untransformed/lit vertices + */ +typedef struct _D3DLVERTEX { + union { + D3DVALUE x; /* Homogeneous coordinates */ + D3DVALUE dvX; +#if defined(NONAMELESSUNION) + } u1; +#else + }; +#endif + union { + D3DVALUE y; + D3DVALUE dvY; +#if defined(NONAMELESSUNION) + } u2; +#else + }; +#endif + union { + D3DVALUE z; + D3DVALUE dvZ; +#if defined(NONAMELESSUNION) + } u3; +#else + }; +#endif + DWORD dwReserved; + union { + D3DCOLOR color; /* Vertex color */ + D3DCOLOR dcColor; +#if defined(NONAMELESSUNION) + } u4; +#else + }; +#endif + union { + D3DCOLOR specular; /* Specular component of vertex */ + D3DCOLOR dcSpecular; +#if defined(NONAMELESSUNION) + } u5; +#else + }; +#endif + union { + D3DVALUE tu; /* Texture coordinates */ + D3DVALUE dvTU; +#if defined(NONAMELESSUNION) + } u6; +#else + }; +#endif + union { + D3DVALUE tv; + D3DVALUE dvTV; +#if defined(NONAMELESSUNION) + } u7; +#else + }; +#endif +#if (defined __cplusplus) && (defined D3D_OVERLOADS) + _D3DLVERTEX() { } + _D3DLVERTEX(const D3DVECTOR& v, + D3DCOLOR _color, D3DCOLOR _specular, + float _tu, float _tv) + { x = v.x; y = v.y; z = v.z; dwReserved = 0; + color = _color; specular = _specular; + tu = _tu; tv = _tv; + } +#endif +} D3DLVERTEX, *LPD3DLVERTEX; + +/* + * Untransformed/unlit vertices + */ + +typedef struct _D3DVERTEX { + union { + D3DVALUE x; /* Homogeneous coordinates */ + D3DVALUE dvX; +#if defined(NONAMELESSUNION) + } u1; +#else + }; +#endif + union { + D3DVALUE y; + D3DVALUE dvY; +#if defined(NONAMELESSUNION) + } u2; +#else + }; +#endif + union { + D3DVALUE z; + D3DVALUE dvZ; +#if defined(NONAMELESSUNION) + } u3; +#else + }; +#endif + union { + D3DVALUE nx; /* Normal */ + D3DVALUE dvNX; +#if defined(NONAMELESSUNION) + } u4; +#else + }; +#endif + union { + D3DVALUE ny; + D3DVALUE dvNY; +#if defined(NONAMELESSUNION) + } u5; +#else + }; +#endif + union { + D3DVALUE nz; + D3DVALUE dvNZ; +#if defined(NONAMELESSUNION) + } u6; +#else + }; +#endif + union { + D3DVALUE tu; /* Texture coordinates */ + D3DVALUE dvTU; +#if defined(NONAMELESSUNION) + } u7; +#else + }; +#endif + union { + D3DVALUE tv; + D3DVALUE dvTV; +#if defined(NONAMELESSUNION) + } u8; +#else + }; +#endif +#if (defined __cplusplus) && (defined D3D_OVERLOADS) + _D3DVERTEX() { } + _D3DVERTEX(const D3DVECTOR& v, const D3DVECTOR& n, float _tu, float _tv) + { x = v.x; y = v.y; z = v.z; + nx = n.x; ny = n.y; nz = n.z; + tu = _tu; tv = _tv; + } +#endif +} D3DVERTEX, *LPD3DVERTEX; + + +/* + * Matrix, viewport, and tranformation structures and definitions. + */ + +typedef struct _D3DMATRIX { +#if (defined __cplusplus) && (defined D3D_OVERLOADS) + union { + struct { +#endif + + D3DVALUE _11, _12, _13, _14; + D3DVALUE _21, _22, _23, _24; + D3DVALUE _31, _32, _33, _34; + D3DVALUE _41, _42, _43, _44; + +#if (defined __cplusplus) && (defined D3D_OVERLOADS) +#if defined(NONAMELESSUNION) + } u1; +#else + }; +#endif + D3DVALUE m[4][4]; + }; + _D3DMATRIX() { } + _D3DMATRIX( D3DVALUE _m00, D3DVALUE _m01, D3DVALUE _m02, D3DVALUE _m03, + D3DVALUE _m10, D3DVALUE _m11, D3DVALUE _m12, D3DVALUE _m13, + D3DVALUE _m20, D3DVALUE _m21, D3DVALUE _m22, D3DVALUE _m23, + D3DVALUE _m30, D3DVALUE _m31, D3DVALUE _m32, D3DVALUE _m33 + ) + { + m[0][0] = _m00; m[0][1] = _m01; m[0][2] = _m02; m[0][3] = _m03; + m[1][0] = _m10; m[1][1] = _m11; m[1][2] = _m12; m[1][3] = _m13; + m[2][0] = _m20; m[2][1] = _m21; m[2][2] = _m22; m[2][3] = _m23; + m[3][0] = _m30; m[3][1] = _m31; m[3][2] = _m32; m[3][3] = _m33; + } + + D3DVALUE& operator()(int iRow, int iColumn) { return m[iRow][iColumn]; } + const D3DVALUE& operator()(int iRow, int iColumn) const { return m[iRow][iColumn]; } + friend _D3DMATRIX operator* (const _D3DMATRIX&, const _D3DMATRIX&); +#endif +} D3DMATRIX, *LPD3DMATRIX; + +#if (defined __cplusplus) && (defined D3D_OVERLOADS) +#include "d3dvec.inl" +#endif + +typedef struct _D3DVIEWPORT { + DWORD dwSize; + DWORD dwX; + DWORD dwY; /* Top left */ + DWORD dwWidth; + DWORD dwHeight; /* Dimensions */ + D3DVALUE dvScaleX; /* Scale homogeneous to screen */ + D3DVALUE dvScaleY; /* Scale homogeneous to screen */ + D3DVALUE dvMaxX; /* Min/max homogeneous x coord */ + D3DVALUE dvMaxY; /* Min/max homogeneous y coord */ + D3DVALUE dvMinZ; + D3DVALUE dvMaxZ; /* Min/max homogeneous z coord */ +} D3DVIEWPORT, *LPD3DVIEWPORT; + +typedef struct _D3DVIEWPORT2 { + DWORD dwSize; + DWORD dwX; + DWORD dwY; /* Viewport Top left */ + DWORD dwWidth; + DWORD dwHeight; /* Viewport Dimensions */ + D3DVALUE dvClipX; /* Top left of clip volume */ + D3DVALUE dvClipY; + D3DVALUE dvClipWidth; /* Clip Volume Dimensions */ + D3DVALUE dvClipHeight; + D3DVALUE dvMinZ; /* Min/max of clip Volume */ + D3DVALUE dvMaxZ; +} D3DVIEWPORT2, *LPD3DVIEWPORT2; + +/* + * Values for clip fields. + */ +#define D3DCLIP_LEFT 0x00000001L +#define D3DCLIP_RIGHT 0x00000002L +#define D3DCLIP_TOP 0x00000004L +#define D3DCLIP_BOTTOM 0x00000008L +#define D3DCLIP_FRONT 0x00000010L +#define D3DCLIP_BACK 0x00000020L +#define D3DCLIP_GEN0 0x00000040L +#define D3DCLIP_GEN1 0x00000080L +#define D3DCLIP_GEN2 0x00000100L +#define D3DCLIP_GEN3 0x00000200L +#define D3DCLIP_GEN4 0x00000400L +#define D3DCLIP_GEN5 0x00000800L + +/* + * Values for d3d status. + */ +#define D3DSTATUS_CLIPUNIONLEFT D3DCLIP_LEFT +#define D3DSTATUS_CLIPUNIONRIGHT D3DCLIP_RIGHT +#define D3DSTATUS_CLIPUNIONTOP D3DCLIP_TOP +#define D3DSTATUS_CLIPUNIONBOTTOM D3DCLIP_BOTTOM +#define D3DSTATUS_CLIPUNIONFRONT D3DCLIP_FRONT +#define D3DSTATUS_CLIPUNIONBACK D3DCLIP_BACK +#define D3DSTATUS_CLIPUNIONGEN0 D3DCLIP_GEN0 +#define D3DSTATUS_CLIPUNIONGEN1 D3DCLIP_GEN1 +#define D3DSTATUS_CLIPUNIONGEN2 D3DCLIP_GEN2 +#define D3DSTATUS_CLIPUNIONGEN3 D3DCLIP_GEN3 +#define D3DSTATUS_CLIPUNIONGEN4 D3DCLIP_GEN4 +#define D3DSTATUS_CLIPUNIONGEN5 D3DCLIP_GEN5 + +#define D3DSTATUS_CLIPINTERSECTIONLEFT 0x00001000L +#define D3DSTATUS_CLIPINTERSECTIONRIGHT 0x00002000L +#define D3DSTATUS_CLIPINTERSECTIONTOP 0x00004000L +#define D3DSTATUS_CLIPINTERSECTIONBOTTOM 0x00008000L +#define D3DSTATUS_CLIPINTERSECTIONFRONT 0x00010000L +#define D3DSTATUS_CLIPINTERSECTIONBACK 0x00020000L +#define D3DSTATUS_CLIPINTERSECTIONGEN0 0x00040000L +#define D3DSTATUS_CLIPINTERSECTIONGEN1 0x00080000L +#define D3DSTATUS_CLIPINTERSECTIONGEN2 0x00100000L +#define D3DSTATUS_CLIPINTERSECTIONGEN3 0x00200000L +#define D3DSTATUS_CLIPINTERSECTIONGEN4 0x00400000L +#define D3DSTATUS_CLIPINTERSECTIONGEN5 0x00800000L +#define D3DSTATUS_ZNOTVISIBLE 0x01000000L +/* Do not use 0x80000000 for any status flags in future as it is reserved */ + +#define D3DSTATUS_CLIPUNIONALL ( \ + D3DSTATUS_CLIPUNIONLEFT | \ + D3DSTATUS_CLIPUNIONRIGHT | \ + D3DSTATUS_CLIPUNIONTOP | \ + D3DSTATUS_CLIPUNIONBOTTOM | \ + D3DSTATUS_CLIPUNIONFRONT | \ + D3DSTATUS_CLIPUNIONBACK | \ + D3DSTATUS_CLIPUNIONGEN0 | \ + D3DSTATUS_CLIPUNIONGEN1 | \ + D3DSTATUS_CLIPUNIONGEN2 | \ + D3DSTATUS_CLIPUNIONGEN3 | \ + D3DSTATUS_CLIPUNIONGEN4 | \ + D3DSTATUS_CLIPUNIONGEN5 \ + ) + +#define D3DSTATUS_CLIPINTERSECTIONALL ( \ + D3DSTATUS_CLIPINTERSECTIONLEFT | \ + D3DSTATUS_CLIPINTERSECTIONRIGHT | \ + D3DSTATUS_CLIPINTERSECTIONTOP | \ + D3DSTATUS_CLIPINTERSECTIONBOTTOM | \ + D3DSTATUS_CLIPINTERSECTIONFRONT | \ + D3DSTATUS_CLIPINTERSECTIONBACK | \ + D3DSTATUS_CLIPINTERSECTIONGEN0 | \ + D3DSTATUS_CLIPINTERSECTIONGEN1 | \ + D3DSTATUS_CLIPINTERSECTIONGEN2 | \ + D3DSTATUS_CLIPINTERSECTIONGEN3 | \ + D3DSTATUS_CLIPINTERSECTIONGEN4 | \ + D3DSTATUS_CLIPINTERSECTIONGEN5 \ + ) + +#define D3DSTATUS_DEFAULT ( \ + D3DSTATUS_CLIPINTERSECTIONALL | \ + D3DSTATUS_ZNOTVISIBLE) + + +/* + * Options for direct transform calls + */ +#define D3DTRANSFORM_CLIPPED 0x00000001l +#define D3DTRANSFORM_UNCLIPPED 0x00000002l + +typedef struct _D3DTRANSFORMDATA { + DWORD dwSize; + LPVOID lpIn; /* Input vertices */ + DWORD dwInSize; /* Stride of input vertices */ + LPVOID lpOut; /* Output vertices */ + DWORD dwOutSize; /* Stride of output vertices */ + LPD3DHVERTEX lpHOut; /* Output homogeneous vertices */ + DWORD dwClip; /* Clipping hint */ + DWORD dwClipIntersection; + DWORD dwClipUnion; /* Union of all clip flags */ + D3DRECT drExtent; /* Extent of transformed vertices */ +} D3DTRANSFORMDATA, *LPD3DTRANSFORMDATA; + +/* + * Structure defining position and direction properties for lighting. + */ +typedef struct _D3DLIGHTINGELEMENT { + D3DVECTOR dvPosition; /* Lightable point in model space */ + D3DVECTOR dvNormal; /* Normalised unit vector */ +} D3DLIGHTINGELEMENT, *LPD3DLIGHTINGELEMENT; + +/* + * Structure defining material properties for lighting. + */ +typedef struct _D3DMATERIAL { + DWORD dwSize; + union { + D3DCOLORVALUE diffuse; /* Diffuse color RGBA */ + D3DCOLORVALUE dcvDiffuse; +#if defined(NONAMELESSUNION) + } u1; +#else + }; +#endif + union { + D3DCOLORVALUE ambient; /* Ambient color RGB */ + D3DCOLORVALUE dcvAmbient; +#if defined(NONAMELESSUNION) + } u2; +#else + }; +#endif + union { + D3DCOLORVALUE specular; /* Specular 'shininess' */ + D3DCOLORVALUE dcvSpecular; +#if defined(NONAMELESSUNION) + } u3; +#else + }; +#endif + union { + D3DCOLORVALUE emissive; /* Emissive color RGB */ + D3DCOLORVALUE dcvEmissive; +#if defined(NONAMELESSUNION) + } u4; +#else + }; +#endif + union { + D3DVALUE power; /* Sharpness if specular highlight */ + D3DVALUE dvPower; +#if defined(NONAMELESSUNION) + } u5; +#else + }; +#endif + D3DTEXTUREHANDLE hTexture; /* Handle to texture map */ + DWORD dwRampSize; +} D3DMATERIAL, *LPD3DMATERIAL; + +typedef enum _D3DLIGHTTYPE { + D3DLIGHT_POINT = 1, + D3DLIGHT_SPOT = 2, + D3DLIGHT_DIRECTIONAL = 3, + D3DLIGHT_PARALLELPOINT = 4, +#if(DIRECT3D_VERSION < 0x0500) // For backward compatible headers + D3DLIGHT_GLSPOT = 5, +#endif + D3DLIGHT_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DLIGHTTYPE; + +/* + * Structure defining a light source and its properties. + */ +typedef struct _D3DLIGHT { + DWORD dwSize; + D3DLIGHTTYPE dltType; /* Type of light source */ + D3DCOLORVALUE dcvColor; /* Color of light */ + D3DVECTOR dvPosition; /* Position in world space */ + D3DVECTOR dvDirection; /* Direction in world space */ + D3DVALUE dvRange; /* Cutoff range */ + D3DVALUE dvFalloff; /* Falloff */ + D3DVALUE dvAttenuation0; /* Constant attenuation */ + D3DVALUE dvAttenuation1; /* Linear attenuation */ + D3DVALUE dvAttenuation2; /* Quadratic attenuation */ + D3DVALUE dvTheta; /* Inner angle of spotlight cone */ + D3DVALUE dvPhi; /* Outer angle of spotlight cone */ +} D3DLIGHT, *LPD3DLIGHT; + +/* + * Structure defining a light source and its properties. + */ + +/* flags bits */ +#define D3DLIGHT_ACTIVE 0x00000001 +#define D3DLIGHT_NO_SPECULAR 0x00000002 + +/* maximum valid light range */ +#define D3DLIGHT_RANGE_MAX ((float)sqrt(FLT_MAX)) + +typedef struct _D3DLIGHT2 { + DWORD dwSize; + D3DLIGHTTYPE dltType; /* Type of light source */ + D3DCOLORVALUE dcvColor; /* Color of light */ + D3DVECTOR dvPosition; /* Position in world space */ + D3DVECTOR dvDirection; /* Direction in world space */ + D3DVALUE dvRange; /* Cutoff range */ + D3DVALUE dvFalloff; /* Falloff */ + D3DVALUE dvAttenuation0; /* Constant attenuation */ + D3DVALUE dvAttenuation1; /* Linear attenuation */ + D3DVALUE dvAttenuation2; /* Quadratic attenuation */ + D3DVALUE dvTheta; /* Inner angle of spotlight cone */ + D3DVALUE dvPhi; /* Outer angle of spotlight cone */ + DWORD dwFlags; +} D3DLIGHT2, *LPD3DLIGHT2; + +typedef struct _D3DLIGHTDATA { + DWORD dwSize; + LPD3DLIGHTINGELEMENT lpIn; /* Input positions and normals */ + DWORD dwInSize; /* Stride of input elements */ + LPD3DTLVERTEX lpOut; /* Output colors */ + DWORD dwOutSize; /* Stride of output colors */ +} D3DLIGHTDATA, *LPD3DLIGHTDATA; + +/* + * Before DX5, these values were in an enum called + * D3DCOLORMODEL. This was not correct, since they are + * bit flags. A driver can surface either or both flags + * in the dcmColorModel member of D3DDEVICEDESC. + */ +#define D3DCOLOR_MONO 1 +#define D3DCOLOR_RGB 2 + +typedef DWORD D3DCOLORMODEL; + +/* + * Options for clearing + */ +#define D3DCLEAR_TARGET 0x00000001l /* Clear target surface */ +#define D3DCLEAR_ZBUFFER 0x00000002l /* Clear target z buffer */ +#define D3DCLEAR_STENCIL 0x00000004l /* Clear stencil planes */ + +/* + * Execute buffers are allocated via Direct3D. These buffers may then + * be filled by the application with instructions to execute along with + * vertex data. + */ + +/* + * Supported op codes for execute instructions. + */ +typedef enum _D3DOPCODE { + D3DOP_POINT = 1, + D3DOP_LINE = 2, + D3DOP_TRIANGLE = 3, + D3DOP_MATRIXLOAD = 4, + D3DOP_MATRIXMULTIPLY = 5, + D3DOP_STATETRANSFORM = 6, + D3DOP_STATELIGHT = 7, + D3DOP_STATERENDER = 8, + D3DOP_PROCESSVERTICES = 9, + D3DOP_TEXTURELOAD = 10, + D3DOP_EXIT = 11, + D3DOP_BRANCHFORWARD = 12, + D3DOP_SPAN = 13, + D3DOP_SETSTATUS = 14, + D3DOP_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DOPCODE; + +typedef struct _D3DINSTRUCTION { + BYTE bOpcode; /* Instruction opcode */ + BYTE bSize; /* Size of each instruction data unit */ + WORD wCount; /* Count of instruction data units to follow */ +} D3DINSTRUCTION, *LPD3DINSTRUCTION; + +/* + * Structure for texture loads + */ +typedef struct _D3DTEXTURELOAD { + D3DTEXTUREHANDLE hDestTexture; + D3DTEXTUREHANDLE hSrcTexture; +} D3DTEXTURELOAD, *LPD3DTEXTURELOAD; + +/* + * Structure for picking + */ +typedef struct _D3DPICKRECORD { + BYTE bOpcode; + BYTE bPad; + DWORD dwOffset; + D3DVALUE dvZ; +} D3DPICKRECORD, *LPD3DPICKRECORD; + +/* + * The following defines the rendering states which can be set in the + * execute buffer. + */ + +typedef enum _D3DSHADEMODE { + D3DSHADE_FLAT = 1, + D3DSHADE_GOURAUD = 2, + D3DSHADE_PHONG = 3, + D3DSHADE_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DSHADEMODE; + +typedef enum _D3DFILLMODE { + D3DFILL_POINT = 1, + D3DFILL_WIREFRAME = 2, + D3DFILL_SOLID = 3, + D3DFILL_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DFILLMODE; + +typedef struct _D3DLINEPATTERN { + WORD wRepeatFactor; + WORD wLinePattern; +} D3DLINEPATTERN; + +typedef enum _D3DTEXTUREFILTER { + D3DFILTER_NEAREST = 1, + D3DFILTER_LINEAR = 2, + D3DFILTER_MIPNEAREST = 3, + D3DFILTER_MIPLINEAR = 4, + D3DFILTER_LINEARMIPNEAREST = 5, + D3DFILTER_LINEARMIPLINEAR = 6, + D3DFILTER_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DTEXTUREFILTER; + +typedef enum _D3DBLEND { + D3DBLEND_ZERO = 1, + D3DBLEND_ONE = 2, + D3DBLEND_SRCCOLOR = 3, + D3DBLEND_INVSRCCOLOR = 4, + D3DBLEND_SRCALPHA = 5, + D3DBLEND_INVSRCALPHA = 6, + D3DBLEND_DESTALPHA = 7, + D3DBLEND_INVDESTALPHA = 8, + D3DBLEND_DESTCOLOR = 9, + D3DBLEND_INVDESTCOLOR = 10, + D3DBLEND_SRCALPHASAT = 11, + D3DBLEND_BOTHSRCALPHA = 12, + D3DBLEND_BOTHINVSRCALPHA = 13, + D3DBLEND_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DBLEND; + +typedef enum _D3DTEXTUREBLEND { + D3DTBLEND_DECAL = 1, + D3DTBLEND_MODULATE = 2, + D3DTBLEND_DECALALPHA = 3, + D3DTBLEND_MODULATEALPHA = 4, + D3DTBLEND_DECALMASK = 5, + D3DTBLEND_MODULATEMASK = 6, + D3DTBLEND_COPY = 7, + D3DTBLEND_ADD = 8, + D3DTBLEND_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DTEXTUREBLEND; + +typedef enum _D3DTEXTUREADDRESS { + D3DTADDRESS_WRAP = 1, + D3DTADDRESS_MIRROR = 2, + D3DTADDRESS_CLAMP = 3, + D3DTADDRESS_BORDER = 4, + D3DTADDRESS_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DTEXTUREADDRESS; + +typedef enum _D3DCULL { + D3DCULL_NONE = 1, + D3DCULL_CW = 2, + D3DCULL_CCW = 3, + D3DCULL_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DCULL; + +typedef enum _D3DCMPFUNC { + D3DCMP_NEVER = 1, + D3DCMP_LESS = 2, + D3DCMP_EQUAL = 3, + D3DCMP_LESSEQUAL = 4, + D3DCMP_GREATER = 5, + D3DCMP_NOTEQUAL = 6, + D3DCMP_GREATEREQUAL = 7, + D3DCMP_ALWAYS = 8, + D3DCMP_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DCMPFUNC; + +typedef enum _D3DSTENCILOP { + D3DSTENCILOP_KEEP = 1, + D3DSTENCILOP_ZERO = 2, + D3DSTENCILOP_REPLACE = 3, + D3DSTENCILOP_INCRSAT = 4, + D3DSTENCILOP_DECRSAT = 5, + D3DSTENCILOP_INVERT = 6, + D3DSTENCILOP_INCR = 7, + D3DSTENCILOP_DECR = 8, + D3DSTENCILOP_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DSTENCILOP; + +typedef enum _D3DFOGMODE { + D3DFOG_NONE = 0, + D3DFOG_EXP = 1, + D3DFOG_EXP2 = 2, + D3DFOG_LINEAR = 3, + D3DFOG_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DFOGMODE; + +typedef enum _D3DZBUFFERTYPE { + D3DZB_FALSE = 0, + D3DZB_TRUE = 1, // Z buffering + D3DZB_USEW = 2, // W buffering + D3DZB_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DZBUFFERTYPE; + +typedef enum _D3DANTIALIASMODE { + D3DANTIALIAS_NONE = 0, + D3DANTIALIAS_SORTDEPENDENT = 1, + D3DANTIALIAS_SORTINDEPENDENT = 2, + D3DANTIALIAS_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DANTIALIASMODE; + +// Vertex types supported by Direct3D +typedef enum _D3DVERTEXTYPE { + D3DVT_VERTEX = 1, + D3DVT_LVERTEX = 2, + D3DVT_TLVERTEX = 3, + D3DVT_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DVERTEXTYPE; + +// Primitives supported by draw-primitive API +typedef enum _D3DPRIMITIVETYPE { + D3DPT_POINTLIST = 1, + D3DPT_LINELIST = 2, + D3DPT_LINESTRIP = 3, + D3DPT_TRIANGLELIST = 4, + D3DPT_TRIANGLESTRIP = 5, + D3DPT_TRIANGLEFAN = 6, + D3DPT_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DPRIMITIVETYPE; + +/* + * Amount to add to a state to generate the override for that state. + */ +#define D3DSTATE_OVERRIDE_BIAS 256 + +/* + * A state which sets the override flag for the specified state type. + */ +#define D3DSTATE_OVERRIDE(type) (D3DRENDERSTATETYPE)(((DWORD) (type) + D3DSTATE_OVERRIDE_BIAS)) + +typedef enum _D3DTRANSFORMSTATETYPE { + D3DTRANSFORMSTATE_WORLD = 1, + D3DTRANSFORMSTATE_VIEW = 2, + D3DTRANSFORMSTATE_PROJECTION = 3, + D3DTRANSFORMSTATE_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DTRANSFORMSTATETYPE; + +typedef enum _D3DLIGHTSTATETYPE { + D3DLIGHTSTATE_MATERIAL = 1, + D3DLIGHTSTATE_AMBIENT = 2, + D3DLIGHTSTATE_COLORMODEL = 3, + D3DLIGHTSTATE_FOGMODE = 4, + D3DLIGHTSTATE_FOGSTART = 5, + D3DLIGHTSTATE_FOGEND = 6, + D3DLIGHTSTATE_FOGDENSITY = 7, + D3DLIGHTSTATE_COLORVERTEX = 8, + D3DLIGHTSTATE_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DLIGHTSTATETYPE; + +typedef enum _D3DRENDERSTATETYPE { + D3DRENDERSTATE_TEXTUREHANDLE = 1, /* Texture handle for legacy interfaces (Texture,Texture2) */ + D3DRENDERSTATE_ANTIALIAS = 2, /* D3DANTIALIASMODE */ + D3DRENDERSTATE_TEXTUREADDRESS = 3, /* D3DTEXTUREADDRESS */ + D3DRENDERSTATE_TEXTUREPERSPECTIVE = 4, /* TRUE for perspective correction */ + D3DRENDERSTATE_WRAPU = 5, /* TRUE for wrapping in u */ + D3DRENDERSTATE_WRAPV = 6, /* TRUE for wrapping in v */ + D3DRENDERSTATE_ZENABLE = 7, /* D3DZBUFFERTYPE (or TRUE/FALSE for legacy) */ + D3DRENDERSTATE_FILLMODE = 8, /* D3DFILL_MODE */ + D3DRENDERSTATE_SHADEMODE = 9, /* D3DSHADEMODE */ + D3DRENDERSTATE_LINEPATTERN = 10, /* D3DLINEPATTERN */ + D3DRENDERSTATE_MONOENABLE = 11, /* TRUE to enable mono rasterization */ + D3DRENDERSTATE_ROP2 = 12, /* ROP2 */ + D3DRENDERSTATE_PLANEMASK = 13, /* DWORD physical plane mask */ + D3DRENDERSTATE_ZWRITEENABLE = 14, /* TRUE to enable z writes */ + D3DRENDERSTATE_ALPHATESTENABLE = 15, /* TRUE to enable alpha tests */ + D3DRENDERSTATE_LASTPIXEL = 16, /* TRUE for last-pixel on lines */ + D3DRENDERSTATE_TEXTUREMAG = 17, /* D3DTEXTUREFILTER */ + D3DRENDERSTATE_TEXTUREMIN = 18, /* D3DTEXTUREFILTER */ + D3DRENDERSTATE_SRCBLEND = 19, /* D3DBLEND */ + D3DRENDERSTATE_DESTBLEND = 20, /* D3DBLEND */ + D3DRENDERSTATE_TEXTUREMAPBLEND = 21, /* D3DTEXTUREBLEND */ + D3DRENDERSTATE_CULLMODE = 22, /* D3DCULL */ + D3DRENDERSTATE_ZFUNC = 23, /* D3DCMPFUNC */ + D3DRENDERSTATE_ALPHAREF = 24, /* D3DFIXED */ + D3DRENDERSTATE_ALPHAFUNC = 25, /* D3DCMPFUNC */ + D3DRENDERSTATE_DITHERENABLE = 26, /* TRUE to enable dithering */ + D3DRENDERSTATE_ALPHABLENDENABLE = 27, /* TRUE to enable alpha blending */ + D3DRENDERSTATE_FOGENABLE = 28, /* TRUE to enable fog */ + D3DRENDERSTATE_SPECULARENABLE = 29, /* TRUE to enable specular */ + D3DRENDERSTATE_ZVISIBLE = 30, /* TRUE to enable z checking */ + D3DRENDERSTATE_SUBPIXEL = 31, /* TRUE to enable subpixel correction */ + D3DRENDERSTATE_SUBPIXELX = 32, /* TRUE to enable correction in X only */ + D3DRENDERSTATE_STIPPLEDALPHA = 33, /* TRUE to enable stippled alpha */ + D3DRENDERSTATE_FOGCOLOR = 34, /* D3DCOLOR */ + D3DRENDERSTATE_FOGTABLEMODE = 35, /* D3DFOGMODE */ + D3DRENDERSTATE_FOGTABLESTART = 36, /* Fog table start */ + D3DRENDERSTATE_FOGTABLEEND = 37, /* Fog table end */ + D3DRENDERSTATE_FOGTABLEDENSITY = 38, /* Fog table density */ + D3DRENDERSTATE_STIPPLEENABLE = 39, /* TRUE to enable stippling */ + D3DRENDERSTATE_EDGEANTIALIAS = 40, /* TRUE to enable edge antialiasing */ + D3DRENDERSTATE_COLORKEYENABLE = 41, /* TRUE to enable source colorkeyed textures */ + D3DRENDERSTATE_BORDERCOLOR = 43, /* Border color for texturing w/border */ + D3DRENDERSTATE_TEXTUREADDRESSU = 44, /* Texture addressing mode for U coordinate */ + D3DRENDERSTATE_TEXTUREADDRESSV = 45, /* Texture addressing mode for V coordinate */ + D3DRENDERSTATE_MIPMAPLODBIAS = 46, /* D3DVALUE Mipmap LOD bias */ + D3DRENDERSTATE_ZBIAS = 47, /* LONG Z bias */ + D3DRENDERSTATE_RANGEFOGENABLE = 48, /* Enables range-based fog */ + D3DRENDERSTATE_ANISOTROPY = 49, /* Max. anisotropy. 1 = no anisotropy */ + D3DRENDERSTATE_FLUSHBATCH = 50, /* Explicit flush for DP batching (DX5 Only) */ + D3DRENDERSTATE_TRANSLUCENTSORTINDEPENDENT=51, /* BOOL enable sort-independent transparency */ + D3DRENDERSTATE_STENCILENABLE = 52, /* BOOL enable/disable stenciling */ + D3DRENDERSTATE_STENCILFAIL = 53, /* D3DSTENCILOP to do if stencil test fails */ + D3DRENDERSTATE_STENCILZFAIL = 54, /* D3DSTENCILOP to do if stencil test passes and Z test fails */ + D3DRENDERSTATE_STENCILPASS = 55, /* D3DSTENCILOP to do if both stencil and Z tests pass */ + D3DRENDERSTATE_STENCILFUNC = 56, /* D3DCMPFUNC fn. Stencil Test passes if ((ref & mask) stencilfn (stencil & mask)) is true */ + D3DRENDERSTATE_STENCILREF = 57, /* Reference value used in stencil test */ + D3DRENDERSTATE_STENCILMASK = 58, /* Mask value used in stencil test */ + D3DRENDERSTATE_STENCILWRITEMASK = 59, /* Write mask applied to values written to stencil buffer */ + D3DRENDERSTATE_TEXTUREFACTOR = 60, /* D3DCOLOR used for multi-texture blend */ + D3DRENDERSTATE_STIPPLEPATTERN00 = 64, /* Stipple pattern 01... */ + D3DRENDERSTATE_STIPPLEPATTERN01 = 65, + D3DRENDERSTATE_STIPPLEPATTERN02 = 66, + D3DRENDERSTATE_STIPPLEPATTERN03 = 67, + D3DRENDERSTATE_STIPPLEPATTERN04 = 68, + D3DRENDERSTATE_STIPPLEPATTERN05 = 69, + D3DRENDERSTATE_STIPPLEPATTERN06 = 70, + D3DRENDERSTATE_STIPPLEPATTERN07 = 71, + D3DRENDERSTATE_STIPPLEPATTERN08 = 72, + D3DRENDERSTATE_STIPPLEPATTERN09 = 73, + D3DRENDERSTATE_STIPPLEPATTERN10 = 74, + D3DRENDERSTATE_STIPPLEPATTERN11 = 75, + D3DRENDERSTATE_STIPPLEPATTERN12 = 76, + D3DRENDERSTATE_STIPPLEPATTERN13 = 77, + D3DRENDERSTATE_STIPPLEPATTERN14 = 78, + D3DRENDERSTATE_STIPPLEPATTERN15 = 79, + D3DRENDERSTATE_STIPPLEPATTERN16 = 80, + D3DRENDERSTATE_STIPPLEPATTERN17 = 81, + D3DRENDERSTATE_STIPPLEPATTERN18 = 82, + D3DRENDERSTATE_STIPPLEPATTERN19 = 83, + D3DRENDERSTATE_STIPPLEPATTERN20 = 84, + D3DRENDERSTATE_STIPPLEPATTERN21 = 85, + D3DRENDERSTATE_STIPPLEPATTERN22 = 86, + D3DRENDERSTATE_STIPPLEPATTERN23 = 87, + D3DRENDERSTATE_STIPPLEPATTERN24 = 88, + D3DRENDERSTATE_STIPPLEPATTERN25 = 89, + D3DRENDERSTATE_STIPPLEPATTERN26 = 90, + D3DRENDERSTATE_STIPPLEPATTERN27 = 91, + D3DRENDERSTATE_STIPPLEPATTERN28 = 92, + D3DRENDERSTATE_STIPPLEPATTERN29 = 93, + D3DRENDERSTATE_STIPPLEPATTERN30 = 94, + D3DRENDERSTATE_STIPPLEPATTERN31 = 95, + + /* + * 128 values [128, 255] are reserved for texture coordinate wrap flags. + * These are constructed with the D3DWRAP_U and D3DWRAP_V macros. Using + * a flags word preserves forward compatibility with texture coordinates + * that are >2D. + */ + D3DRENDERSTATE_WRAP0 = 128, /* wrap for 1st texture coord. set */ + D3DRENDERSTATE_WRAP1 = 129, /* wrap for 2nd texture coord. set */ + D3DRENDERSTATE_WRAP2 = 130, /* wrap for 3rd texture coord. set */ + D3DRENDERSTATE_WRAP3 = 131, /* wrap for 4th texture coord. set */ + D3DRENDERSTATE_WRAP4 = 132, /* wrap for 5th texture coord. set */ + D3DRENDERSTATE_WRAP5 = 133, /* wrap for 6th texture coord. set */ + D3DRENDERSTATE_WRAP6 = 134, /* wrap for 7th texture coord. set */ + D3DRENDERSTATE_WRAP7 = 135, /* wrap for 8th texture coord. set */ + D3DRENDERSTATE_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DRENDERSTATETYPE; + +// For back-compatibility with legacy compilations +#define D3DRENDERSTATE_BLENDENABLE D3DRENDERSTATE_ALPHABLENDENABLE + + +// Bias to apply to the texture coordinate set to apply a wrap to. +#define D3DRENDERSTATE_WRAPBIAS 128UL + +/* Flags to construct the WRAP render states */ +#define D3DWRAP_U 0x00000001L +#define D3DWRAP_V 0x00000002L + + +#define D3DRENDERSTATE_STIPPLEPATTERN(y) (D3DRENDERSTATE_STIPPLEPATTERN00 + (y)) + +typedef struct _D3DSTATE { + union { + D3DTRANSFORMSTATETYPE dtstTransformStateType; + D3DLIGHTSTATETYPE dlstLightStateType; + D3DRENDERSTATETYPE drstRenderStateType; +#if defined(NONAMELESSUNION) + } u1; +#else + }; +#endif + union { + DWORD dwArg[1]; + D3DVALUE dvArg[1]; +#if defined(NONAMELESSUNION) + } u2; +#else + }; +#endif +} D3DSTATE, *LPD3DSTATE; + +/* + * Operation used to load matrices + * hDstMat = hSrcMat + */ +typedef struct _D3DMATRIXLOAD { + D3DMATRIXHANDLE hDestMatrix; /* Destination matrix */ + D3DMATRIXHANDLE hSrcMatrix; /* Source matrix */ +} D3DMATRIXLOAD, *LPD3DMATRIXLOAD; + +/* + * Operation used to multiply matrices + * hDstMat = hSrcMat1 * hSrcMat2 + */ +typedef struct _D3DMATRIXMULTIPLY { + D3DMATRIXHANDLE hDestMatrix; /* Destination matrix */ + D3DMATRIXHANDLE hSrcMatrix1; /* First source matrix */ + D3DMATRIXHANDLE hSrcMatrix2; /* Second source matrix */ +} D3DMATRIXMULTIPLY, *LPD3DMATRIXMULTIPLY; + +/* + * Operation used to transform and light vertices. + */ +typedef struct _D3DPROCESSVERTICES { + DWORD dwFlags; /* Do we transform or light or just copy? */ + WORD wStart; /* Index to first vertex in source */ + WORD wDest; /* Index to first vertex in local buffer */ + DWORD dwCount; /* Number of vertices to be processed */ + DWORD dwReserved; /* Must be zero */ +} D3DPROCESSVERTICES, *LPD3DPROCESSVERTICES; + +#define D3DPROCESSVERTICES_TRANSFORMLIGHT 0x00000000L +#define D3DPROCESSVERTICES_TRANSFORM 0x00000001L +#define D3DPROCESSVERTICES_COPY 0x00000002L +#define D3DPROCESSVERTICES_OPMASK 0x00000007L + +#define D3DPROCESSVERTICES_UPDATEEXTENTS 0x00000008L +#define D3DPROCESSVERTICES_NOCOLOR 0x00000010L + + + + +/* + * State enumerants for per-stage texture processing. + */ +typedef enum _D3DTEXTURESTAGESTATETYPE +{ + D3DTSS_COLOROP = 1, /* D3DTEXTUREOP - per-stage blending controls for color channels */ + D3DTSS_COLORARG1 = 2, /* D3DTA_* (texture arg) */ + D3DTSS_COLORARG2 = 3, /* D3DTA_* (texture arg) */ + D3DTSS_ALPHAOP = 4, /* D3DTEXTUREOP - per-stage blending controls for alpha channel */ + D3DTSS_ALPHAARG1 = 5, /* D3DTA_* (texture arg) */ + D3DTSS_ALPHAARG2 = 6, /* D3DTA_* (texture arg) */ + D3DTSS_BUMPENVMAT00 = 7, /* D3DVALUE (bump mapping matrix) */ + D3DTSS_BUMPENVMAT01 = 8, /* D3DVALUE (bump mapping matrix) */ + D3DTSS_BUMPENVMAT10 = 9, /* D3DVALUE (bump mapping matrix) */ + D3DTSS_BUMPENVMAT11 = 10, /* D3DVALUE (bump mapping matrix) */ + D3DTSS_TEXCOORDINDEX = 11, /* identifies which set of texture coordinates index this texture */ + D3DTSS_ADDRESS = 12, /* D3DTEXTUREADDRESS for both coordinates */ + D3DTSS_ADDRESSU = 13, /* D3DTEXTUREADDRESS for U coordinate */ + D3DTSS_ADDRESSV = 14, /* D3DTEXTUREADDRESS for V coordinate */ + D3DTSS_BORDERCOLOR = 15, /* D3DCOLOR */ + D3DTSS_MAGFILTER = 16, /* D3DTEXTUREMAGFILTER filter to use for magnification */ + D3DTSS_MINFILTER = 17, /* D3DTEXTUREMINFILTER filter to use for minification */ + D3DTSS_MIPFILTER = 18, /* D3DTEXTUREMIPFILTER filter to use between mipmaps during minification */ + D3DTSS_MIPMAPLODBIAS = 19, /* D3DVALUE Mipmap LOD bias */ + D3DTSS_MAXMIPLEVEL = 20, /* DWORD 0..(n-1) LOD index of largest map to use (0 == largest) */ + D3DTSS_MAXANISOTROPY = 21, /* DWORD maximum anisotropy */ + D3DTSS_BUMPENVLSCALE = 22, /* D3DVALUE scale for bump map luminance */ + D3DTSS_BUMPENVLOFFSET = 23, /* D3DVALUE offset for bump map luminance */ + D3DTSS_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ +} D3DTEXTURESTAGESTATETYPE; + +/* + * Enumerations for COLOROP and ALPHAOP texture blending operations set in + * texture processing stage controls in D3DRENDERSTATE. + */ +typedef enum _D3DTEXTUREOP +{ +// Control + D3DTOP_DISABLE = 1, // disables stage + D3DTOP_SELECTARG1 = 2, // the default + D3DTOP_SELECTARG2 = 3, + +// Modulate + D3DTOP_MODULATE = 4, // multiply args together + D3DTOP_MODULATE2X = 5, // multiply and 1 bit + D3DTOP_MODULATE4X = 6, // multiply and 2 bits + +// Add + D3DTOP_ADD = 7, // add arguments together + D3DTOP_ADDSIGNED = 8, // add with -0.5 bias + D3DTOP_ADDSIGNED2X = 9, // as above but left 1 bit + D3DTOP_SUBTRACT = 10, // Arg1 - Arg2, with no saturation + D3DTOP_ADDSMOOTH = 11, // add 2 args, subtract product + // Arg1 + Arg2 - Arg1*Arg2 + // = Arg1 + (1-Arg1)*Arg2 + +// Linear alpha blend: Arg1*(Alpha) + Arg2*(1-Alpha) + D3DTOP_BLENDDIFFUSEALPHA = 12, // iterated alpha + D3DTOP_BLENDTEXTUREALPHA = 13, // texture alpha + D3DTOP_BLENDFACTORALPHA = 14, // alpha from D3DRENDERSTATE_TEXTUREFACTOR + // Linear alpha blend with pre-multiplied arg1 input: Arg1 + Arg2*(1-Alpha) + D3DTOP_BLENDTEXTUREALPHAPM = 15, // texture alpha + D3DTOP_BLENDCURRENTALPHA = 16, // by alpha of current color + +// Specular mapping + D3DTOP_PREMODULATE = 17, // modulate with next texture before use + D3DTOP_MODULATEALPHA_ADDCOLOR = 18, // Arg1.RGB + Arg1.A*Arg2.RGB + // COLOROP only + D3DTOP_MODULATECOLOR_ADDALPHA = 19, // Arg1.RGB*Arg2.RGB + Arg1.A + // COLOROP only + D3DTOP_MODULATEINVALPHA_ADDCOLOR = 20, // (1-Arg1.A)*Arg2.RGB + Arg1.RGB + // COLOROP only + D3DTOP_MODULATEINVCOLOR_ADDALPHA = 21, // (1-Arg1.RGB)*Arg2.RGB + Arg1.A + // COLOROP only + +// Bump mapping + D3DTOP_BUMPENVMAP = 22, // per pixel env map perturbation + D3DTOP_BUMPENVMAPLUMINANCE = 23, // with luminance channel + // This can do either diffuse or specular bump mapping with correct input. + // Performs the function (Arg1.R*Arg2.R + Arg1.G*Arg2.G + Arg1.B*Arg2.B) + // where each component has been scaled and offset to make it signed. + // The result is replicated into all four (including alpha) channels. + // This is a valid COLOROP only. + D3DTOP_DOTPRODUCT3 = 24, + + D3DTOP_FORCE_DWORD = 0x7fffffff, +} D3DTEXTUREOP; + +/* + * Values for COLORARG1,2 and ALPHAARG1,2 texture blending operations + * set in texture processing stage controls in D3DRENDERSTATE. + */ +#define D3DTA_SELECTMASK 0x0000000f // mask for arg selector +#define D3DTA_DIFFUSE 0x00000000 // select diffuse color +#define D3DTA_CURRENT 0x00000001 // select result of previous stage +#define D3DTA_TEXTURE 0x00000002 // select texture color +#define D3DTA_TFACTOR 0x00000003 // select RENDERSTATE_TEXTUREFACTOR + +#define D3DTA_COMPLEMENT 0x00000010 // take 1.0 - x +#define D3DTA_ALPHAREPLICATE 0x00000020 // replicate alpha to color components + +/* + * IDirect3DTexture2 State Filter Types + */ +typedef enum _D3DTEXTUREMAGFILTER +{ + D3DTFG_POINT = 1, // nearest + D3DTFG_LINEAR = 2, // linear interpolation + D3DTFG_FLATCUBIC = 3, // cubic + D3DTFG_GAUSSIANCUBIC = 4, // different cubic kernel + D3DTFG_ANISOTROPIC = 5, // + D3DTFG_FORCE_DWORD = 0x7fffffff, // force 32-bit size enum +} D3DTEXTUREMAGFILTER; + +typedef enum _D3DTEXTUREMINFILTER +{ + D3DTFN_POINT = 1, // nearest + D3DTFN_LINEAR = 2, // linear interpolation + D3DTFN_ANISOTROPIC = 3, // + D3DTFN_FORCE_DWORD = 0x7fffffff, // force 32-bit size enum +} D3DTEXTUREMINFILTER; + +typedef enum _D3DTEXTUREMIPFILTER +{ + D3DTFP_NONE = 1, // mipmapping disabled (use MAG filter) + D3DTFP_POINT = 2, // nearest + D3DTFP_LINEAR = 3, // linear interpolation + D3DTFP_FORCE_DWORD = 0x7fffffff, // force 32-bit size enum +} D3DTEXTUREMIPFILTER; + + +/* + * Triangle flags + */ + +/* + * Tri strip and fan flags. + * START loads all three vertices + * EVEN and ODD load just v3 with even or odd culling + * START_FLAT contains a count from 0 to 29 that allows the + * whole strip or fan to be culled in one hit. + * e.g. for a quad len = 1 + */ +#define D3DTRIFLAG_START 0x00000000L +#define D3DTRIFLAG_STARTFLAT(len) (len) /* 0 < len < 30 */ +#define D3DTRIFLAG_ODD 0x0000001eL +#define D3DTRIFLAG_EVEN 0x0000001fL + +/* + * Triangle edge flags + * enable edges for wireframe or antialiasing + */ +#define D3DTRIFLAG_EDGEENABLE1 0x00000100L /* v0-v1 edge */ +#define D3DTRIFLAG_EDGEENABLE2 0x00000200L /* v1-v2 edge */ +#define D3DTRIFLAG_EDGEENABLE3 0x00000400L /* v2-v0 edge */ +#define D3DTRIFLAG_EDGEENABLETRIANGLE \ + (D3DTRIFLAG_EDGEENABLE1 | D3DTRIFLAG_EDGEENABLE2 | D3DTRIFLAG_EDGEENABLE3) + +/* + * Primitive structures and related defines. Vertex offsets are to types + * D3DVERTEX, D3DLVERTEX, or D3DTLVERTEX. + */ + +/* + * Triangle list primitive structure + */ +typedef struct _D3DTRIANGLE { + union { + WORD v1; /* Vertex indices */ + WORD wV1; +#if defined(NONAMELESSUNION) + } u1; +#else + }; +#endif + union { + WORD v2; + WORD wV2; +#if defined(NONAMELESSUNION) + } u2; +#else + }; +#endif + union { + WORD v3; + WORD wV3; +#if defined(NONAMELESSUNION) + } u3; +#else + }; +#endif + WORD wFlags; /* Edge (and other) flags */ +} D3DTRIANGLE, *LPD3DTRIANGLE; + +/* + * Line list structure. + * The instruction count defines the number of line segments. + */ +typedef struct _D3DLINE { + union { + WORD v1; /* Vertex indices */ + WORD wV1; +#if defined(NONAMELESSUNION) + } u1; +#else + }; +#endif + union { + WORD v2; + WORD wV2; +#if defined(NONAMELESSUNION) + } u2; +#else + }; +#endif +} D3DLINE, *LPD3DLINE; + +/* + * Span structure + * Spans join a list of points with the same y value. + * If the y value changes, a new span is started. + */ +typedef struct _D3DSPAN { + WORD wCount; /* Number of spans */ + WORD wFirst; /* Index to first vertex */ +} D3DSPAN, *LPD3DSPAN; + +/* + * Point structure + */ +typedef struct _D3DPOINT { + WORD wCount; /* number of points */ + WORD wFirst; /* index to first vertex */ +} D3DPOINT, *LPD3DPOINT; + + +/* + * Forward branch structure. + * Mask is logically anded with the driver status mask + * if the result equals 'value', the branch is taken. + */ +typedef struct _D3DBRANCH { + DWORD dwMask; /* Bitmask against D3D status */ + DWORD dwValue; + BOOL bNegate; /* TRUE to negate comparison */ + DWORD dwOffset; /* How far to branch forward (0 for exit)*/ +} D3DBRANCH, *LPD3DBRANCH; + +/* + * Status used for set status instruction. + * The D3D status is initialised on device creation + * and is modified by all execute calls. + */ +typedef struct _D3DSTATUS { + DWORD dwFlags; /* Do we set extents or status */ + DWORD dwStatus; /* D3D status */ + D3DRECT drExtent; +} D3DSTATUS, *LPD3DSTATUS; + +#define D3DSETSTATUS_STATUS 0x00000001L +#define D3DSETSTATUS_EXTENTS 0x00000002L +#define D3DSETSTATUS_ALL (D3DSETSTATUS_STATUS | D3DSETSTATUS_EXTENTS) + +typedef struct _D3DCLIPSTATUS { + DWORD dwFlags; /* Do we set 2d extents, 3D extents or status */ + DWORD dwStatus; /* Clip status */ + float minx, maxx; /* X extents */ + float miny, maxy; /* Y extents */ + float minz, maxz; /* Z extents */ +} D3DCLIPSTATUS, *LPD3DCLIPSTATUS; + +#define D3DCLIPSTATUS_STATUS 0x00000001L +#define D3DCLIPSTATUS_EXTENTS2 0x00000002L +#define D3DCLIPSTATUS_EXTENTS3 0x00000004L + +/* + * Statistics structure + */ +typedef struct _D3DSTATS { + DWORD dwSize; + DWORD dwTrianglesDrawn; + DWORD dwLinesDrawn; + DWORD dwPointsDrawn; + DWORD dwSpansDrawn; + DWORD dwVerticesProcessed; +} D3DSTATS, *LPD3DSTATS; + +/* + * Execute options. + * When calling using D3DEXECUTE_UNCLIPPED all the primitives + * inside the buffer must be contained within the viewport. + */ +#define D3DEXECUTE_CLIPPED 0x00000001l +#define D3DEXECUTE_UNCLIPPED 0x00000002l + +typedef struct _D3DEXECUTEDATA { + DWORD dwSize; + DWORD dwVertexOffset; + DWORD dwVertexCount; + DWORD dwInstructionOffset; + DWORD dwInstructionLength; + DWORD dwHVertexOffset; + D3DSTATUS dsStatus; /* Status after execute */ +} D3DEXECUTEDATA, *LPD3DEXECUTEDATA; + +/* + * Palette flags. + * This are or'ed with the peFlags in the PALETTEENTRYs passed to DirectDraw. + */ +#define D3DPAL_FREE 0x00 /* Renderer may use this entry freely */ +#define D3DPAL_READONLY 0x40 /* Renderer may not set this entry */ +#define D3DPAL_RESERVED 0x80 /* Renderer may not use this entry */ + + + +typedef struct _D3DVERTEXBUFFERDESC { + DWORD dwSize; + DWORD dwCaps; + DWORD dwFVF; + DWORD dwNumVertices; +} D3DVERTEXBUFFERDESC, *LPD3DVERTEXBUFFERDESC; + +/* These correspond to DDSCAPS_* flags */ +#define D3DVBCAPS_SYSTEMMEMORY 0x00000800l +#define D3DVBCAPS_WRITEONLY 0x00010000l +#define D3DVBCAPS_OPTIMIZED 0x80000000l + +/* Vertex Operations for ProcessVertices */ +#define D3DVOP_LIGHT (1 << 10) +#define D3DVOP_TRANSFORM (1 << 0) +#define D3DVOP_CLIP (1 << 2) +#define D3DVOP_EXTENTS (1 << 3) + +//------------------------------------------------------------------- + +// Flexible vertex format bits +// +#define D3DFVF_RESERVED0 0x001 +#define D3DFVF_POSITION_MASK 0x00E +#define D3DFVF_XYZ 0x002 +#define D3DFVF_XYZRHW 0x004 +#define D3DFVF_NORMAL 0x010 +#define D3DFVF_RESERVED1 0x020 +#define D3DFVF_DIFFUSE 0x040 +#define D3DFVF_SPECULAR 0x080 + +#define D3DFVF_TEXCOUNT_MASK 0xf00 +#define D3DFVF_TEXCOUNT_SHIFT 8 +#define D3DFVF_TEX0 0x000 +#define D3DFVF_TEX1 0x100 +#define D3DFVF_TEX2 0x200 +#define D3DFVF_TEX3 0x300 +#define D3DFVF_TEX4 0x400 +#define D3DFVF_TEX5 0x500 +#define D3DFVF_TEX6 0x600 +#define D3DFVF_TEX7 0x700 +#define D3DFVF_TEX8 0x800 + +#define D3DFVF_RESERVED2 0xf000 // 4 reserved bits + +#define D3DFVF_VERTEX ( D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1 ) +#define D3DFVF_LVERTEX ( D3DFVF_XYZ | D3DFVF_RESERVED1 | D3DFVF_DIFFUSE | \ + D3DFVF_SPECULAR | D3DFVF_TEX1 ) +#define D3DFVF_TLVERTEX ( D3DFVF_XYZRHW | D3DFVF_DIFFUSE | D3DFVF_SPECULAR | \ + D3DFVF_TEX1 ) + +typedef struct _D3DDP_PTRSTRIDE +{ + LPVOID lpvData; + DWORD dwStride; +} D3DDP_PTRSTRIDE; + +#define D3DDP_MAXTEXCOORD 8 + +typedef struct _D3DDRAWPRIMITIVESTRIDEDDATA +{ + D3DDP_PTRSTRIDE position; + D3DDP_PTRSTRIDE normal; + D3DDP_PTRSTRIDE diffuse; + D3DDP_PTRSTRIDE specular; + D3DDP_PTRSTRIDE textureCoords[D3DDP_MAXTEXCOORD]; +} D3DDRAWPRIMITIVESTRIDEDDATA, *LPD3DDRAWPRIMITIVESTRIDEDDATA; +//--------------------------------------------------------------------- +// ComputeSphereVisibility return values +// +#define D3DVIS_INSIDE_FRUSTUM 0 +#define D3DVIS_INTERSECT_FRUSTUM 1 +#define D3DVIS_OUTSIDE_FRUSTUM 2 +#define D3DVIS_INSIDE_LEFT 0 +#define D3DVIS_INTERSECT_LEFT (1 << 2) +#define D3DVIS_OUTSIDE_LEFT (2 << 2) +#define D3DVIS_INSIDE_RIGHT 0 +#define D3DVIS_INTERSECT_RIGHT (1 << 4) +#define D3DVIS_OUTSIDE_RIGHT (2 << 4) +#define D3DVIS_INSIDE_TOP 0 +#define D3DVIS_INTERSECT_TOP (1 << 6) +#define D3DVIS_OUTSIDE_TOP (2 << 6) +#define D3DVIS_INSIDE_BOTTOM 0 +#define D3DVIS_INTERSECT_BOTTOM (1 << 8) +#define D3DVIS_OUTSIDE_BOTTOM (2 << 8) +#define D3DVIS_INSIDE_NEAR 0 +#define D3DVIS_INTERSECT_NEAR (1 << 10) +#define D3DVIS_OUTSIDE_NEAR (2 << 10) +#define D3DVIS_INSIDE_FAR 0 +#define D3DVIS_INTERSECT_FAR (1 << 12) +#define D3DVIS_OUTSIDE_FAR (2 << 12) + +#define D3DVIS_MASK_FRUSTUM (3 << 0) +#define D3DVIS_MASK_LEFT (3 << 2) +#define D3DVIS_MASK_RIGHT (3 << 4) +#define D3DVIS_MASK_TOP (3 << 6) +#define D3DVIS_MASK_BOTTOM (3 << 8) +#define D3DVIS_MASK_NEAR (3 << 10) +#define D3DVIS_MASK_FAR (3 << 12) + + +#pragma pack() +#endif /* _D3DTYPES_H_ */ + diff --git a/misc/builddeps/dp.win64/include/ddraw.h b/misc/builddeps/dp.win64/include/ddraw.h new file mode 100644 index 00000000..feaec698 --- /dev/null +++ b/misc/builddeps/dp.win64/include/ddraw.h @@ -0,0 +1,4844 @@ +/*==========================================================================; + * + * Copyright (C) 1994-1997 Microsoft Corporation. All Rights Reserved. + * + * File: ddraw.h + * Content: DirectDraw include file + * + ***************************************************************************/ + +#ifndef __DDRAW_INCLUDED__ +#define __DDRAW_INCLUDED__ + +/* + * If you wish an application built against the newest version of DirectDraw + * to run against an older DirectDraw run time then define DIRECTDRAW_VERSION + * to be the earlies version of DirectDraw you wish to run against. For, + * example if you wish an application to run against a DX 3 runtime define + * DIRECTDRAW_VERSION to be 0x0300. + */ +#ifndef DIRECTDRAW_VERSION +#define DIRECTDRAW_VERSION 0x0600 +#endif /* DIRECTDRAW_VERSION */ + +#if defined( _WIN32 ) && !defined( _NO_COM ) +#define COM_NO_WINDOWS_H +#include +#else +#define IUnknown void +#if !defined( NT_BUILD_ENVIRONMENT ) && !defined(WINNT) + #define CO_E_NOTINITIALIZED 0x800401F0L +#endif +#endif + +#define _FACDD 0x876 +#define MAKE_DDHRESULT( code ) MAKE_HRESULT( 1, _FACDD, code ) + +#ifdef __cplusplus +extern "C" { +#endif + +// +// For compilers that don't support nameless unions, do a +// +// #define NONAMELESSUNION +// +// before #include +// +#ifndef DUMMYUNIONNAMEN +#if defined(__cplusplus) || !defined(NONAMELESSUNION) +#define DUMMYUNIONNAMEN(n) +#else +#define DUMMYUNIONNAMEN(n) u##n +#endif +#endif + +#ifndef MAKEFOURCC + #define MAKEFOURCC(ch0, ch1, ch2, ch3) \ + ((DWORD)(BYTE)(ch0) | ((DWORD)(BYTE)(ch1) << 8) | \ + ((DWORD)(BYTE)(ch2) << 16) | ((DWORD)(BYTE)(ch3) << 24 )) +#endif //defined(MAKEFOURCC) + +/* + * FOURCC codes for DX compressed-texture pixel formats + */ +#define FOURCC_DXT1 (MAKEFOURCC('D','X','T','1')) +#define FOURCC_DXT2 (MAKEFOURCC('D','X','T','2')) +#define FOURCC_DXT3 (MAKEFOURCC('D','X','T','3')) +#define FOURCC_DXT4 (MAKEFOURCC('D','X','T','4')) +#define FOURCC_DXT5 (MAKEFOURCC('D','X','T','5')) + +/* + * GUIDS used by DirectDraw objects + */ +#if defined( _WIN32 ) && !defined( _NO_COM ) + +DEFINE_GUID( CLSID_DirectDraw, 0xD7B70EE0,0x4340,0x11CF,0xB0,0x63,0x00,0x20,0xAF,0xC2,0xCD,0x35 ); +DEFINE_GUID( CLSID_DirectDrawClipper, 0x593817A0,0x7DB3,0x11CF,0xA2,0xDE,0x00,0xAA,0x00,0xb9,0x33,0x56 ); +DEFINE_GUID( IID_IDirectDraw, 0x6C14DB80,0xA733,0x11CE,0xA5,0x21,0x00,0x20,0xAF,0x0B,0xE5,0x60 ); +DEFINE_GUID( IID_IDirectDraw2, 0xB3A6F3E0,0x2B43,0x11CF,0xA2,0xDE,0x00,0xAA,0x00,0xB9,0x33,0x56 ); +DEFINE_GUID( IID_IDirectDraw4, 0x9c59509a,0x39bd,0x11d1,0x8c,0x4a,0x00,0xc0,0x4f,0xd9,0x30,0xc5 ); +DEFINE_GUID( IID_IDirectDrawSurface, 0x6C14DB81,0xA733,0x11CE,0xA5,0x21,0x00,0x20,0xAF,0x0B,0xE5,0x60 ); +DEFINE_GUID( IID_IDirectDrawSurface2, 0x57805885,0x6eec,0x11cf,0x94,0x41,0xa8,0x23,0x03,0xc1,0x0e,0x27 ); +DEFINE_GUID( IID_IDirectDrawSurface3, 0xDA044E00,0x69B2,0x11D0,0xA1,0xD5,0x00,0xAA,0x00,0xB8,0xDF,0xBB ); +DEFINE_GUID( IID_IDirectDrawSurface4, 0x0B2B8630,0xAD35,0x11D0,0x8E,0xA6,0x00,0x60,0x97,0x97,0xEA,0x5B ); + +DEFINE_GUID( IID_IDirectDrawPalette, 0x6C14DB84,0xA733,0x11CE,0xA5,0x21,0x00,0x20,0xAF,0x0B,0xE5,0x60 ); +DEFINE_GUID( IID_IDirectDrawClipper, 0x6C14DB85,0xA733,0x11CE,0xA5,0x21,0x00,0x20,0xAF,0x0B,0xE5,0x60 ); +DEFINE_GUID( IID_IDirectDrawColorControl, 0x4B9F0EE0,0x0D7E,0x11D0,0x9B,0x06,0x00,0xA0,0xC9,0x03,0xA3,0xB8 ); +DEFINE_GUID( IID_IDirectDrawGammaControl, 0x69C11C3E,0xB46B,0x11D1,0xAD,0x7A,0x00,0xC0,0x4F,0xC2,0x9B,0x4E ); + +#endif + +/*============================================================================ + * + * DirectDraw Structures + * + * Various structures used to invoke DirectDraw. + * + *==========================================================================*/ + +struct IDirectDraw; +struct IDirectDrawSurface; +struct IDirectDrawPalette; +struct IDirectDrawClipper; + +typedef struct IDirectDraw FAR *LPDIRECTDRAW; +typedef struct IDirectDraw2 FAR *LPDIRECTDRAW2; +typedef struct IDirectDraw4 FAR *LPDIRECTDRAW4; +typedef struct IDirectDrawSurface FAR *LPDIRECTDRAWSURFACE; +typedef struct IDirectDrawSurface2 FAR *LPDIRECTDRAWSURFACE2; +typedef struct IDirectDrawSurface3 FAR *LPDIRECTDRAWSURFACE3; +typedef struct IDirectDrawSurface4 FAR *LPDIRECTDRAWSURFACE4; + +typedef struct IDirectDrawPalette FAR *LPDIRECTDRAWPALETTE; +typedef struct IDirectDrawClipper FAR *LPDIRECTDRAWCLIPPER; +typedef struct IDirectDrawColorControl FAR *LPDIRECTDRAWCOLORCONTROL; +typedef struct IDirectDrawGammaControl FAR *LPDIRECTDRAWGAMMACONTROL; + +typedef struct _DDFXROP FAR *LPDDFXROP; +typedef struct _DDSURFACEDESC FAR *LPDDSURFACEDESC; +typedef struct _DDSURFACEDESC2 FAR *LPDDSURFACEDESC2; +typedef struct _DDCOLORCONTROL FAR *LPDDCOLORCONTROL; + +/* + * API's + */ +#if (defined (WIN32) || defined( _WIN32 ) ) && !defined( _NO_COM ) +//#if defined( _WIN32 ) && !defined( _NO_ENUM ) + typedef BOOL (FAR PASCAL * LPDDENUMCALLBACKA)(GUID FAR *, LPSTR, LPSTR, LPVOID); + typedef BOOL (FAR PASCAL * LPDDENUMCALLBACKW)(GUID FAR *, LPWSTR, LPWSTR, LPVOID); + extern HRESULT WINAPI DirectDrawEnumerateW( LPDDENUMCALLBACKW lpCallback, LPVOID lpContext ); + extern HRESULT WINAPI DirectDrawEnumerateA( LPDDENUMCALLBACKA lpCallback, LPVOID lpContext ); + /* + * Protect against old SDKs + */ + #ifndef SM_CMONITORS + #define HMONITOR HANDLE + #endif + typedef BOOL (FAR PASCAL * LPDDENUMCALLBACKEXA)(GUID FAR *, LPSTR, LPSTR, LPVOID, HMONITOR); + typedef BOOL (FAR PASCAL * LPDDENUMCALLBACKEXW)(GUID FAR *, LPWSTR, LPWSTR, LPVOID, HMONITOR); + extern HRESULT WINAPI DirectDrawEnumerateExW( LPDDENUMCALLBACKEXW lpCallback, LPVOID lpContext, DWORD dwFlags); + extern HRESULT WINAPI DirectDrawEnumerateExA( LPDDENUMCALLBACKEXA lpCallback, LPVOID lpContext, DWORD dwFlags); + typedef HRESULT (WINAPI * LPDIRECTDRAWENUMERATEEXA)( LPDDENUMCALLBACKEXA lpCallback, LPVOID lpContext, DWORD dwFlags); + typedef HRESULT (WINAPI * LPDIRECTDRAWENUMERATEEXW)( LPDDENUMCALLBACKEXW lpCallback, LPVOID lpContext, DWORD dwFlags); + + #ifdef UNICODE + typedef LPDDENUMCALLBACKW LPDDENUMCALLBACK; + #define DirectDrawEnumerate DirectDrawEnumerateW + typedef LPDDENUMCALLBACKEXW LPDDENUMCALLBACKEX; + typedef LPDIRECTDRAWENUMERATEEXW LPDIRECTDRAWENUMERATEEX; + #define DirectDrawEnumerateEx DirectDrawEnumerateExW + #else + typedef LPDDENUMCALLBACKA LPDDENUMCALLBACK; + #define DirectDrawEnumerate DirectDrawEnumerateA + typedef LPDDENUMCALLBACKEXA LPDDENUMCALLBACKEX; + typedef LPDIRECTDRAWENUMERATEEXA LPDIRECTDRAWENUMERATEEX; + #define DirectDrawEnumerateEx DirectDrawEnumerateExA + #endif + extern HRESULT WINAPI DirectDrawCreate( GUID FAR *lpGUID, LPDIRECTDRAW FAR *lplpDD, IUnknown FAR *pUnkOuter ); + extern HRESULT WINAPI DirectDrawCreateClipper( DWORD dwFlags, LPDIRECTDRAWCLIPPER FAR *lplpDDClipper, IUnknown FAR *pUnkOuter ); +#endif +/* + * Flags for DirectDrawEnumerateEx + * DirectDrawEnumerateEx supercedes DirectDrawEnumerate. You must use GetProcAddress to + * obtain a function pointer (of type LPDIRECTDRAWENUMERATEEX) to DirectDrawEnumerateEx. + * By default, only the primary display device is enumerated. + * DirectDrawEnumerate is equivalent to DirectDrawEnumerate(,,DDENUM_NONDISPLAYDEVICES) + */ + +/* + * This flag causes enumeration of any GDI display devices which are part of + * the Windows Desktop + */ +#define DDENUM_ATTACHEDSECONDARYDEVICES 0x00000001L + +/* + * This flag causes enumeration of any GDI display devices which are not + * part of the Windows Desktop + */ +#define DDENUM_DETACHEDSECONDARYDEVICES 0x00000002L + +/* + * This flag causes enumeration of non-display devices + */ +#define DDENUM_NONDISPLAYDEVICES 0x00000004L + + +#define REGSTR_KEY_DDHW_DESCRIPTION "Description" +#define REGSTR_KEY_DDHW_DRIVERNAME "DriverName" +#define REGSTR_PATH_DDHW "Hardware\\DirectDrawDrivers" + +#define DDCREATE_HARDWAREONLY 0x00000001l +#define DDCREATE_EMULATIONONLY 0x00000002l + +#if defined(WINNT) || !defined(WIN32) +typedef long HRESULT; +#endif + +//#ifndef WINNT +typedef HRESULT (FAR PASCAL * LPDDENUMMODESCALLBACK)(LPDDSURFACEDESC, LPVOID); +typedef HRESULT (FAR PASCAL * LPDDENUMMODESCALLBACK2)(LPDDSURFACEDESC2, LPVOID); +typedef HRESULT (FAR PASCAL * LPDDENUMSURFACESCALLBACK)(LPDIRECTDRAWSURFACE, LPDDSURFACEDESC, LPVOID); +typedef HRESULT (FAR PASCAL * LPDDENUMSURFACESCALLBACK2)(LPDIRECTDRAWSURFACE4, LPDDSURFACEDESC2, LPVOID); +//#endif + +/* + * Generic pixel format with 8-bit RGB and alpha components + */ +typedef struct _DDRGBA +{ + BYTE red; + BYTE green; + BYTE blue; + BYTE alpha; +} DDRGBA; + +typedef DDRGBA FAR *LPDDRGBA; + +/* + * DDCOLORKEY + */ +typedef struct _DDCOLORKEY +{ + DWORD dwColorSpaceLowValue; // low boundary of color space that is to + // be treated as Color Key, inclusive + DWORD dwColorSpaceHighValue; // high boundary of color space that is + // to be treated as Color Key, inclusive +} DDCOLORKEY; + +typedef DDCOLORKEY FAR* LPDDCOLORKEY; + +/* + * DDBLTFX + * Used to pass override information to the DIRECTDRAWSURFACE callback Blt. + */ +typedef struct _DDBLTFX +{ + DWORD dwSize; // size of structure + DWORD dwDDFX; // FX operations + DWORD dwROP; // Win32 raster operations + DWORD dwDDROP; // Raster operations new for DirectDraw + DWORD dwRotationAngle; // Rotation angle for blt + DWORD dwZBufferOpCode; // ZBuffer compares + DWORD dwZBufferLow; // Low limit of Z buffer + DWORD dwZBufferHigh; // High limit of Z buffer + DWORD dwZBufferBaseDest; // Destination base value + DWORD dwZDestConstBitDepth; // Bit depth used to specify Z constant for destination + union + { + DWORD dwZDestConst; // Constant to use as Z buffer for dest + LPDIRECTDRAWSURFACE lpDDSZBufferDest; // Surface to use as Z buffer for dest + } DUMMYUNIONNAMEN(1); + DWORD dwZSrcConstBitDepth; // Bit depth used to specify Z constant for source + union + { + DWORD dwZSrcConst; // Constant to use as Z buffer for src + LPDIRECTDRAWSURFACE lpDDSZBufferSrc; // Surface to use as Z buffer for src + } DUMMYUNIONNAMEN(2); + DWORD dwAlphaEdgeBlendBitDepth; // Bit depth used to specify constant for alpha edge blend + DWORD dwAlphaEdgeBlend; // Alpha for edge blending + DWORD dwReserved; + DWORD dwAlphaDestConstBitDepth; // Bit depth used to specify alpha constant for destination + union + { + DWORD dwAlphaDestConst; // Constant to use as Alpha Channel + LPDIRECTDRAWSURFACE lpDDSAlphaDest; // Surface to use as Alpha Channel + } DUMMYUNIONNAMEN(3); + DWORD dwAlphaSrcConstBitDepth; // Bit depth used to specify alpha constant for source + union + { + DWORD dwAlphaSrcConst; // Constant to use as Alpha Channel + LPDIRECTDRAWSURFACE lpDDSAlphaSrc; // Surface to use as Alpha Channel + } DUMMYUNIONNAMEN(4); + union + { + DWORD dwFillColor; // color in RGB or Palettized + DWORD dwFillDepth; // depth value for z-buffer + DWORD dwFillPixel; // pixel value for RGBA or RGBZ + LPDIRECTDRAWSURFACE lpDDSPattern; // Surface to use as pattern + } DUMMYUNIONNAMEN(5); + DDCOLORKEY ddckDestColorkey; // DestColorkey override + DDCOLORKEY ddckSrcColorkey; // SrcColorkey override +} DDBLTFX; + +typedef DDBLTFX FAR* LPDDBLTFX; + + +/* + * DDSCAPS + */ +typedef struct _DDSCAPS +{ + DWORD dwCaps; // capabilities of surface wanted +} DDSCAPS; + +typedef DDSCAPS FAR* LPDDSCAPS; + + +/* + * DDOSCAPS + */ +typedef struct _DDOSCAPS +{ + DWORD dwCaps; // capabilities of surface wanted +} DDOSCAPS; + +typedef DDOSCAPS FAR* LPDDOSCAPS; + +/* + * This structure is used internally by DirectDraw. + */ +typedef struct _DDSCAPSEX +{ + DWORD dwCaps2; + DWORD dwCaps3; + DWORD dwCaps4; +} DDSCAPSEX, FAR * LPDDSCAPSEX; + +/* + * DDSCAPS2 + */ +typedef struct _DDSCAPS2 +{ + DWORD dwCaps; // capabilities of surface wanted + DWORD dwCaps2; + DWORD dwCaps3; + DWORD dwCaps4; +} DDSCAPS2; + +typedef DDSCAPS2 FAR* LPDDSCAPS2; + +/* + * DDCAPS + */ +#define DD_ROP_SPACE (256/32) // space required to store ROP array + +/* + * This structure is the DDCAPS structure as it was in version 2 and 3 of Direct X. + * It is present for back compatability. + */ +typedef struct _DDCAPS_DX3 +{ + DWORD dwSize; // size of the DDDRIVERCAPS structure + DWORD dwCaps; // driver specific capabilities + DWORD dwCaps2; // more driver specific capabilites + DWORD dwCKeyCaps; // color key capabilities of the surface + DWORD dwFXCaps; // driver specific stretching and effects capabilites + DWORD dwFXAlphaCaps; // alpha driver specific capabilities + DWORD dwPalCaps; // palette capabilities + DWORD dwSVCaps; // stereo vision capabilities + DWORD dwAlphaBltConstBitDepths; // DDBD_2,4,8 + DWORD dwAlphaBltPixelBitDepths; // DDBD_1,2,4,8 + DWORD dwAlphaBltSurfaceBitDepths; // DDBD_1,2,4,8 + DWORD dwAlphaOverlayConstBitDepths; // DDBD_2,4,8 + DWORD dwAlphaOverlayPixelBitDepths; // DDBD_1,2,4,8 + DWORD dwAlphaOverlaySurfaceBitDepths; // DDBD_1,2,4,8 + DWORD dwZBufferBitDepths; // DDBD_8,16,24,32 + DWORD dwVidMemTotal; // total amount of video memory + DWORD dwVidMemFree; // amount of free video memory + DWORD dwMaxVisibleOverlays; // maximum number of visible overlays + DWORD dwCurrVisibleOverlays; // current number of visible overlays + DWORD dwNumFourCCCodes; // number of four cc codes + DWORD dwAlignBoundarySrc; // source rectangle alignment + DWORD dwAlignSizeSrc; // source rectangle byte size + DWORD dwAlignBoundaryDest; // dest rectangle alignment + DWORD dwAlignSizeDest; // dest rectangle byte size + DWORD dwAlignStrideAlign; // stride alignment + DWORD dwRops[DD_ROP_SPACE]; // ROPS supported + DDSCAPS ddsCaps; // DDSCAPS structure has all the general capabilities + DWORD dwMinOverlayStretch; // minimum overlay stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 + DWORD dwMaxOverlayStretch; // maximum overlay stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 + DWORD dwMinLiveVideoStretch; // minimum live video stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 + DWORD dwMaxLiveVideoStretch; // maximum live video stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 + DWORD dwMinHwCodecStretch; // minimum hardware codec stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 + DWORD dwMaxHwCodecStretch; // maximum hardware codec stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 + DWORD dwReserved1; // reserved + DWORD dwReserved2; // reserved + DWORD dwReserved3; // reserved + DWORD dwSVBCaps; // driver specific capabilities for System->Vmem blts + DWORD dwSVBCKeyCaps; // driver color key capabilities for System->Vmem blts + DWORD dwSVBFXCaps; // driver FX capabilities for System->Vmem blts + DWORD dwSVBRops[DD_ROP_SPACE];// ROPS supported for System->Vmem blts + DWORD dwVSBCaps; // driver specific capabilities for Vmem->System blts + DWORD dwVSBCKeyCaps; // driver color key capabilities for Vmem->System blts + DWORD dwVSBFXCaps; // driver FX capabilities for Vmem->System blts + DWORD dwVSBRops[DD_ROP_SPACE];// ROPS supported for Vmem->System blts + DWORD dwSSBCaps; // driver specific capabilities for System->System blts + DWORD dwSSBCKeyCaps; // driver color key capabilities for System->System blts + DWORD dwSSBFXCaps; // driver FX capabilities for System->System blts + DWORD dwSSBRops[DD_ROP_SPACE];// ROPS supported for System->System blts + DWORD dwReserved4; // reserved + DWORD dwReserved5; // reserved + DWORD dwReserved6; // reserved +} DDCAPS_DX3; +typedef DDCAPS_DX3 FAR* LPDDCAPS_DX3; + +/* + * This structure is the DDCAPS structure as it was in version 5 of Direct X. + * It is present for back compatability. + */ +typedef struct _DDCAPS_DX5 +{ +/* 0*/ DWORD dwSize; // size of the DDDRIVERCAPS structure +/* 4*/ DWORD dwCaps; // driver specific capabilities +/* 8*/ DWORD dwCaps2; // more driver specific capabilites +/* c*/ DWORD dwCKeyCaps; // color key capabilities of the surface +/* 10*/ DWORD dwFXCaps; // driver specific stretching and effects capabilites +/* 14*/ DWORD dwFXAlphaCaps; // alpha driver specific capabilities +/* 18*/ DWORD dwPalCaps; // palette capabilities +/* 1c*/ DWORD dwSVCaps; // stereo vision capabilities +/* 20*/ DWORD dwAlphaBltConstBitDepths; // DDBD_2,4,8 +/* 24*/ DWORD dwAlphaBltPixelBitDepths; // DDBD_1,2,4,8 +/* 28*/ DWORD dwAlphaBltSurfaceBitDepths; // DDBD_1,2,4,8 +/* 2c*/ DWORD dwAlphaOverlayConstBitDepths; // DDBD_2,4,8 +/* 30*/ DWORD dwAlphaOverlayPixelBitDepths; // DDBD_1,2,4,8 +/* 34*/ DWORD dwAlphaOverlaySurfaceBitDepths; // DDBD_1,2,4,8 +/* 38*/ DWORD dwZBufferBitDepths; // DDBD_8,16,24,32 +/* 3c*/ DWORD dwVidMemTotal; // total amount of video memory +/* 40*/ DWORD dwVidMemFree; // amount of free video memory +/* 44*/ DWORD dwMaxVisibleOverlays; // maximum number of visible overlays +/* 48*/ DWORD dwCurrVisibleOverlays; // current number of visible overlays +/* 4c*/ DWORD dwNumFourCCCodes; // number of four cc codes +/* 50*/ DWORD dwAlignBoundarySrc; // source rectangle alignment +/* 54*/ DWORD dwAlignSizeSrc; // source rectangle byte size +/* 58*/ DWORD dwAlignBoundaryDest; // dest rectangle alignment +/* 5c*/ DWORD dwAlignSizeDest; // dest rectangle byte size +/* 60*/ DWORD dwAlignStrideAlign; // stride alignment +/* 64*/ DWORD dwRops[DD_ROP_SPACE]; // ROPS supported +/* 84*/ DDSCAPS ddsCaps; // DDSCAPS structure has all the general capabilities +/* 88*/ DWORD dwMinOverlayStretch; // minimum overlay stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 +/* 8c*/ DWORD dwMaxOverlayStretch; // maximum overlay stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 +/* 90*/ DWORD dwMinLiveVideoStretch; // minimum live video stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 +/* 94*/ DWORD dwMaxLiveVideoStretch; // maximum live video stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 +/* 98*/ DWORD dwMinHwCodecStretch; // minimum hardware codec stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 +/* 9c*/ DWORD dwMaxHwCodecStretch; // maximum hardware codec stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 +/* a0*/ DWORD dwReserved1; // reserved +/* a4*/ DWORD dwReserved2; // reserved +/* a8*/ DWORD dwReserved3; // reserved +/* ac*/ DWORD dwSVBCaps; // driver specific capabilities for System->Vmem blts +/* b0*/ DWORD dwSVBCKeyCaps; // driver color key capabilities for System->Vmem blts +/* b4*/ DWORD dwSVBFXCaps; // driver FX capabilities for System->Vmem blts +/* b8*/ DWORD dwSVBRops[DD_ROP_SPACE];// ROPS supported for System->Vmem blts +/* d8*/ DWORD dwVSBCaps; // driver specific capabilities for Vmem->System blts +/* dc*/ DWORD dwVSBCKeyCaps; // driver color key capabilities for Vmem->System blts +/* e0*/ DWORD dwVSBFXCaps; // driver FX capabilities for Vmem->System blts +/* e4*/ DWORD dwVSBRops[DD_ROP_SPACE];// ROPS supported for Vmem->System blts +/*104*/ DWORD dwSSBCaps; // driver specific capabilities for System->System blts +/*108*/ DWORD dwSSBCKeyCaps; // driver color key capabilities for System->System blts +/*10c*/ DWORD dwSSBFXCaps; // driver FX capabilities for System->System blts +/*110*/ DWORD dwSSBRops[DD_ROP_SPACE];// ROPS supported for System->System blts +// Members added for DX5: +/*130*/ DWORD dwMaxVideoPorts; // maximum number of usable video ports +/*134*/ DWORD dwCurrVideoPorts; // current number of video ports used +/*138*/ DWORD dwSVBCaps2; // more driver specific capabilities for System->Vmem blts +/*13c*/ DWORD dwNLVBCaps; // driver specific capabilities for non-local->local vidmem blts +/*140*/ DWORD dwNLVBCaps2; // more driver specific capabilities non-local->local vidmem blts +/*144*/ DWORD dwNLVBCKeyCaps; // driver color key capabilities for non-local->local vidmem blts +/*148*/ DWORD dwNLVBFXCaps; // driver FX capabilities for non-local->local blts +/*14c*/ DWORD dwNLVBRops[DD_ROP_SPACE]; // ROPS supported for non-local->local blts +} DDCAPS_DX5; +typedef DDCAPS_DX5 FAR* LPDDCAPS_DX5; + +typedef struct _DDCAPS_DX6 +{ +/* 0*/ DWORD dwSize; // size of the DDDRIVERCAPS structure +/* 4*/ DWORD dwCaps; // driver specific capabilities +/* 8*/ DWORD dwCaps2; // more driver specific capabilites +/* c*/ DWORD dwCKeyCaps; // color key capabilities of the surface +/* 10*/ DWORD dwFXCaps; // driver specific stretching and effects capabilites +/* 14*/ DWORD dwFXAlphaCaps; // alpha caps +/* 18*/ DWORD dwPalCaps; // palette capabilities +/* 1c*/ DWORD dwSVCaps; // stereo vision capabilities +/* 20*/ DWORD dwAlphaBltConstBitDepths; // DDBD_2,4,8 +/* 24*/ DWORD dwAlphaBltPixelBitDepths; // DDBD_1,2,4,8 +/* 28*/ DWORD dwAlphaBltSurfaceBitDepths; // DDBD_1,2,4,8 +/* 2c*/ DWORD dwAlphaOverlayConstBitDepths; // DDBD_2,4,8 +/* 30*/ DWORD dwAlphaOverlayPixelBitDepths; // DDBD_1,2,4,8 +/* 34*/ DWORD dwAlphaOverlaySurfaceBitDepths; // DDBD_1,2,4,8 +/* 38*/ DWORD dwZBufferBitDepths; // DDBD_8,16,24,32 +/* 3c*/ DWORD dwVidMemTotal; // total amount of video memory +/* 40*/ DWORD dwVidMemFree; // amount of free video memory +/* 44*/ DWORD dwMaxVisibleOverlays; // maximum number of visible overlays +/* 48*/ DWORD dwCurrVisibleOverlays; // current number of visible overlays +/* 4c*/ DWORD dwNumFourCCCodes; // number of four cc codes +/* 50*/ DWORD dwAlignBoundarySrc; // source rectangle alignment +/* 54*/ DWORD dwAlignSizeSrc; // source rectangle byte size +/* 58*/ DWORD dwAlignBoundaryDest; // dest rectangle alignment +/* 5c*/ DWORD dwAlignSizeDest; // dest rectangle byte size +/* 60*/ DWORD dwAlignStrideAlign; // stride alignment +/* 64*/ DWORD dwRops[DD_ROP_SPACE]; // ROPS supported +/* 84*/ DDSCAPS ddsOldCaps; // Was DDSCAPS ddsCaps. ddsCaps is of type DDSCAPS2 for DX6 +/* 88*/ DWORD dwMinOverlayStretch; // minimum overlay stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 +/* 8c*/ DWORD dwMaxOverlayStretch; // maximum overlay stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 +/* 90*/ DWORD dwMinLiveVideoStretch; // minimum live video stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 +/* 94*/ DWORD dwMaxLiveVideoStretch; // maximum live video stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 +/* 98*/ DWORD dwMinHwCodecStretch; // minimum hardware codec stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 +/* 9c*/ DWORD dwMaxHwCodecStretch; // maximum hardware codec stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3 +/* a0*/ DWORD dwReserved1; // reserved +/* a4*/ DWORD dwReserved2; // reserved +/* a8*/ DWORD dwReserved3; // reserved +/* ac*/ DWORD dwSVBCaps; // driver specific capabilities for System->Vmem blts +/* b0*/ DWORD dwSVBCKeyCaps; // driver color key capabilities for System->Vmem blts +/* b4*/ DWORD dwSVBFXCaps; // driver FX capabilities for System->Vmem blts +/* b8*/ DWORD dwSVBRops[DD_ROP_SPACE];// ROPS supported for System->Vmem blts +/* d8*/ DWORD dwVSBCaps; // driver specific capabilities for Vmem->System blts +/* dc*/ DWORD dwVSBCKeyCaps; // driver color key capabilities for Vmem->System blts +/* e0*/ DWORD dwVSBFXCaps; // driver FX capabilities for Vmem->System blts +/* e4*/ DWORD dwVSBRops[DD_ROP_SPACE];// ROPS supported for Vmem->System blts +/*104*/ DWORD dwSSBCaps; // driver specific capabilities for System->System blts +/*108*/ DWORD dwSSBCKeyCaps; // driver color key capabilities for System->System blts +/*10c*/ DWORD dwSSBFXCaps; // driver FX capabilities for System->System blts +/*110*/ DWORD dwSSBRops[DD_ROP_SPACE];// ROPS supported for System->System blts +/*130*/ DWORD dwMaxVideoPorts; // maximum number of usable video ports +/*134*/ DWORD dwCurrVideoPorts; // current number of video ports used +/*138*/ DWORD dwSVBCaps2; // more driver specific capabilities for System->Vmem blts +/*13c*/ DWORD dwNLVBCaps; // driver specific capabilities for non-local->local vidmem blts +/*140*/ DWORD dwNLVBCaps2; // more driver specific capabilities non-local->local vidmem blts +/*144*/ DWORD dwNLVBCKeyCaps; // driver color key capabilities for non-local->local vidmem blts +/*148*/ DWORD dwNLVBFXCaps; // driver FX capabilities for non-local->local blts +/*14c*/ DWORD dwNLVBRops[DD_ROP_SPACE]; // ROPS supported for non-local->local blts +// Members added for DX6 release +/*16c*/ DDSCAPS2 ddsCaps; // Surface Caps +} DDCAPS_DX6; +typedef DDCAPS_DX6 FAR* LPDDCAPS_DX6; + + +#if DIRECTDRAW_VERSION <= 0x300 + typedef DDCAPS_DX3 DDCAPS; +#elif DIRECTDRAW_VERSION <= 0x500 + typedef DDCAPS_DX5 DDCAPS; +#else + typedef DDCAPS_DX6 DDCAPS; +#endif + +typedef DDCAPS FAR* LPDDCAPS; + + + +/* + * DDPIXELFORMAT + */ +typedef struct _DDPIXELFORMAT +{ + DWORD dwSize; // size of structure + DWORD dwFlags; // pixel format flags + DWORD dwFourCC; // (FOURCC code) + union + { + DWORD dwRGBBitCount; // how many bits per pixel + DWORD dwYUVBitCount; // how many bits per pixel + DWORD dwZBufferBitDepth; // how many total bits/pixel in z buffer (including any stencil bits) + DWORD dwAlphaBitDepth; // how many bits for alpha channels + DWORD dwLuminanceBitCount; // how many bits per pixel + DWORD dwBumpBitCount; // how many bits per "buxel", total + } DUMMYUNIONNAMEN(1); + union + { + DWORD dwRBitMask; // mask for red bit + DWORD dwYBitMask; // mask for Y bits + DWORD dwStencilBitDepth; // how many stencil bits (note: dwZBufferBitDepth-dwStencilBitDepth is total Z-only bits) + DWORD dwLuminanceBitMask; // mask for luminance bits + DWORD dwBumpDuBitMask; // mask for bump map U delta bits + } DUMMYUNIONNAMEN(2); + union + { + DWORD dwGBitMask; // mask for green bits + DWORD dwUBitMask; // mask for U bits + DWORD dwZBitMask; // mask for Z bits + DWORD dwBumpDvBitMask; // mask for bump map V delta bits + } DUMMYUNIONNAMEN(3); + union + { + DWORD dwBBitMask; // mask for blue bits + DWORD dwVBitMask; // mask for V bits + DWORD dwStencilBitMask; // mask for stencil bits + DWORD dwBumpLuminanceBitMask; // mask for luminance in bump map + } DUMMYUNIONNAMEN(4); + union + { + DWORD dwRGBAlphaBitMask; // mask for alpha channel + DWORD dwYUVAlphaBitMask; // mask for alpha channel + DWORD dwLuminanceAlphaBitMask;// mask for alpha channel + DWORD dwRGBZBitMask; // mask for Z channel + DWORD dwYUVZBitMask; // mask for Z channel + } DUMMYUNIONNAMEN(5); +} DDPIXELFORMAT; + +typedef DDPIXELFORMAT FAR* LPDDPIXELFORMAT; + +/* + * DDOVERLAYFX + */ +typedef struct _DDOVERLAYFX +{ + DWORD dwSize; // size of structure + DWORD dwAlphaEdgeBlendBitDepth; // Bit depth used to specify constant for alpha edge blend + DWORD dwAlphaEdgeBlend; // Constant to use as alpha for edge blend + DWORD dwReserved; + DWORD dwAlphaDestConstBitDepth; // Bit depth used to specify alpha constant for destination + union + { + DWORD dwAlphaDestConst; // Constant to use as alpha channel for dest + LPDIRECTDRAWSURFACE lpDDSAlphaDest; // Surface to use as alpha channel for dest + } DUMMYUNIONNAMEN(1); + DWORD dwAlphaSrcConstBitDepth; // Bit depth used to specify alpha constant for source + union + { + DWORD dwAlphaSrcConst; // Constant to use as alpha channel for src + LPDIRECTDRAWSURFACE lpDDSAlphaSrc; // Surface to use as alpha channel for src + } DUMMYUNIONNAMEN(2); + DDCOLORKEY dckDestColorkey; // DestColorkey override + DDCOLORKEY dckSrcColorkey; // DestColorkey override + DWORD dwDDFX; // Overlay FX + DWORD dwFlags; // flags +} DDOVERLAYFX; + +typedef DDOVERLAYFX FAR *LPDDOVERLAYFX; + + +/* + * DDBLTBATCH: BltBatch entry structure + */ +typedef struct _DDBLTBATCH +{ + LPRECT lprDest; + LPDIRECTDRAWSURFACE lpDDSSrc; + LPRECT lprSrc; + DWORD dwFlags; + LPDDBLTFX lpDDBltFx; +} DDBLTBATCH; + +typedef DDBLTBATCH FAR * LPDDBLTBATCH; + + +/* + * DDGAMMARAMP + */ +typedef struct _DDGAMMARAMP +{ + WORD red[256]; + WORD green[256]; + WORD blue[256]; +} DDGAMMARAMP; +typedef DDGAMMARAMP FAR * LPDDGAMMARAMP; + +/* + * This is the structure within which DirectDraw returns data about the current graphics driver and chipset + */ + +#define MAX_DDDEVICEID_STRING 512 + +typedef struct tagDDDEVICEIDENTIFIER +{ + /* + * These elements are for presentation to the user only. They should not be used to identify particular + * drivers, since this is unreliable and many different strings may be associated with the same + * device, and the same driver from different vendors. + */ + char szDriver[MAX_DDDEVICEID_STRING]; + char szDescription[MAX_DDDEVICEID_STRING]; + + /* + * This element is the version of the DirectDraw/3D driver. It is legal to do <, > comparisons + * on the whole 64 bits. Caution should be exercised if you use this element to identify problematic + * drivers. It is recommended that guidDeviceIdentifier is used for this purpose. + * + * This version has the form: + * wProduct = HIWORD(liDriverVersion.HighPart) + * wVersion = LOWORD(liDriverVersion.HighPart) + * wSubVersion = HIWORD(liDriverVersion.LowPart) + * wBuild = LOWORD(liDriverVersion.LowPart) + */ +#ifdef _WIN32 + LARGE_INTEGER liDriverVersion; /* Defined for applications and other 32 bit components */ +#else + DWORD dwDriverVersionLowPart; /* Defined for 16 bit driver components */ + DWORD dwDriverVersionHighPart; +#endif + + + /* + * These elements can be used to identify particular chipsets. Use with extreme caution. + * dwVendorId Identifies the manufacturer. May be zero if unknown. + * dwDeviceId Identifies the type of chipset. May be zero if unknown. + * dwSubSysId Identifies the subsystem, typically this means the particular board. May be zero if unknown. + * dwRevision Identifies the revision level of the chipset. May be zero if unknown. + */ + DWORD dwVendorId; + DWORD dwDeviceId; + DWORD dwSubSysId; + DWORD dwRevision; + + /* + * This element can be used to check changes in driver/chipset. This GUID is a unique identifier for the + * driver/chipset pair. Use this element if you wish to track changes to the driver/chipset in order to + * reprofile the graphics subsystem. + * This element can also be used to identify particular problematic drivers. + */ + GUID guidDeviceIdentifier; +} DDDEVICEIDENTIFIER, * LPDDDEVICEIDENTIFIER; + +/* + * Flags for the IDirectDraw4::GetDeviceIdentifier method + */ + +/* + * This flag causes GetDeviceIdentifier to return information about the host (typically 2D) adapter in a system equipped + * with a stacked secondary 3D adapter. Such an adapter appears to the application as if it were part of the + * host adapter, but is typically physcially located on a separate card. The stacked secondary's information is + * returned when GetDeviceIdentifier's dwFlags field is zero, since this most accurately reflects the qualities + * of the DirectDraw object involved. + */ +#define DDGDI_GETHOSTIDENTIFIER 0x00000001L + + + +/* + * callbacks + */ +typedef DWORD (FAR PASCAL *LPCLIPPERCALLBACK)(LPDIRECTDRAWCLIPPER lpDDClipper, HWND hWnd, DWORD code, LPVOID lpContext ); +#ifdef STREAMING +typedef DWORD (FAR PASCAL *LPSURFACESTREAMINGCALLBACK)(DWORD); +#endif + + +/* + * INTERACES FOLLOW: + * IDirectDraw + * IDirectDrawClipper + * IDirectDrawPalette + * IDirectDrawSurface + */ + +/* + * IDirectDraw + */ +#if defined( _WIN32 ) && !defined( _NO_COM ) +#undef INTERFACE +#define INTERFACE IDirectDraw +DECLARE_INTERFACE_( IDirectDraw, IUnknown ) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID FAR * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + /*** IDirectDraw methods ***/ + STDMETHOD(Compact)(THIS) PURE; + STDMETHOD(CreateClipper)(THIS_ DWORD, LPDIRECTDRAWCLIPPER FAR*, IUnknown FAR * ) PURE; + STDMETHOD(CreatePalette)(THIS_ DWORD, LPPALETTEENTRY, LPDIRECTDRAWPALETTE FAR*, IUnknown FAR * ) PURE; + STDMETHOD(CreateSurface)(THIS_ LPDDSURFACEDESC, LPDIRECTDRAWSURFACE FAR *, IUnknown FAR *) PURE; + STDMETHOD(DuplicateSurface)( THIS_ LPDIRECTDRAWSURFACE, LPDIRECTDRAWSURFACE FAR * ) PURE; + STDMETHOD(EnumDisplayModes)( THIS_ DWORD, LPDDSURFACEDESC, LPVOID, LPDDENUMMODESCALLBACK ) PURE; + STDMETHOD(EnumSurfaces)(THIS_ DWORD, LPDDSURFACEDESC, LPVOID,LPDDENUMSURFACESCALLBACK ) PURE; + STDMETHOD(FlipToGDISurface)(THIS) PURE; + STDMETHOD(GetCaps)( THIS_ LPDDCAPS, LPDDCAPS) PURE; + STDMETHOD(GetDisplayMode)( THIS_ LPDDSURFACEDESC) PURE; + STDMETHOD(GetFourCCCodes)(THIS_ LPDWORD, LPDWORD ) PURE; + STDMETHOD(GetGDISurface)(THIS_ LPDIRECTDRAWSURFACE FAR *) PURE; + STDMETHOD(GetMonitorFrequency)(THIS_ LPDWORD) PURE; + STDMETHOD(GetScanLine)(THIS_ LPDWORD) PURE; + STDMETHOD(GetVerticalBlankStatus)(THIS_ LPBOOL ) PURE; + STDMETHOD(Initialize)(THIS_ GUID FAR *) PURE; + STDMETHOD(RestoreDisplayMode)(THIS) PURE; + STDMETHOD(SetCooperativeLevel)(THIS_ HWND, DWORD) PURE; + STDMETHOD(SetDisplayMode)(THIS_ DWORD, DWORD,DWORD) PURE; + STDMETHOD(WaitForVerticalBlank)(THIS_ DWORD, HANDLE ) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectDraw_QueryInterface(p, a, b) (p)->lpVtbl->QueryInterface(p, a, b) +#define IDirectDraw_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectDraw_Release(p) (p)->lpVtbl->Release(p) +#define IDirectDraw_Compact(p) (p)->lpVtbl->Compact(p) +#define IDirectDraw_CreateClipper(p, a, b, c) (p)->lpVtbl->CreateClipper(p, a, b, c) +#define IDirectDraw_CreatePalette(p, a, b, c, d) (p)->lpVtbl->CreatePalette(p, a, b, c, d) +#define IDirectDraw_CreateSurface(p, a, b, c) (p)->lpVtbl->CreateSurface(p, a, b, c) +#define IDirectDraw_DuplicateSurface(p, a, b) (p)->lpVtbl->DuplicateSurface(p, a, b) +#define IDirectDraw_EnumDisplayModes(p, a, b, c, d) (p)->lpVtbl->EnumDisplayModes(p, a, b, c, d) +#define IDirectDraw_EnumSurfaces(p, a, b, c, d) (p)->lpVtbl->EnumSurfaces(p, a, b, c, d) +#define IDirectDraw_FlipToGDISurface(p) (p)->lpVtbl->FlipToGDISurface(p) +#define IDirectDraw_GetCaps(p, a, b) (p)->lpVtbl->GetCaps(p, a, b) +#define IDirectDraw_GetDisplayMode(p, a) (p)->lpVtbl->GetDisplayMode(p, a) +#define IDirectDraw_GetFourCCCodes(p, a, b) (p)->lpVtbl->GetFourCCCodes(p, a, b) +#define IDirectDraw_GetGDISurface(p, a) (p)->lpVtbl->GetGDISurface(p, a) +#define IDirectDraw_GetMonitorFrequency(p, a) (p)->lpVtbl->GetMonitorFrequency(p, a) +#define IDirectDraw_GetScanLine(p, a) (p)->lpVtbl->GetScanLine(p, a) +#define IDirectDraw_GetVerticalBlankStatus(p, a) (p)->lpVtbl->GetVerticalBlankStatus(p, a) +#define IDirectDraw_Initialize(p, a) (p)->lpVtbl->Initialize(p, a) +#define IDirectDraw_RestoreDisplayMode(p) (p)->lpVtbl->RestoreDisplayMode(p) +#define IDirectDraw_SetCooperativeLevel(p, a, b) (p)->lpVtbl->SetCooperativeLevel(p, a, b) +#define IDirectDraw_SetDisplayMode(p, a, b, c) (p)->lpVtbl->SetDisplayMode(p, a, b, c) +#define IDirectDraw_WaitForVerticalBlank(p, a, b) (p)->lpVtbl->WaitForVerticalBlank(p, a, b) +#else +#define IDirectDraw_QueryInterface(p, a, b) (p)->QueryInterface(a, b) +#define IDirectDraw_AddRef(p) (p)->AddRef() +#define IDirectDraw_Release(p) (p)->Release() +#define IDirectDraw_Compact(p) (p)->Compact() +#define IDirectDraw_CreateClipper(p, a, b, c) (p)->CreateClipper(a, b, c) +#define IDirectDraw_CreatePalette(p, a, b, c, d) (p)->CreatePalette(a, b, c, d) +#define IDirectDraw_CreateSurface(p, a, b, c) (p)->CreateSurface(a, b, c) +#define IDirectDraw_DuplicateSurface(p, a, b) (p)->DuplicateSurface(a, b) +#define IDirectDraw_EnumDisplayModes(p, a, b, c, d) (p)->EnumDisplayModes(a, b, c, d) +#define IDirectDraw_EnumSurfaces(p, a, b, c, d) (p)->EnumSurfaces(a, b, c, d) +#define IDirectDraw_FlipToGDISurface(p) (p)->FlipToGDISurface() +#define IDirectDraw_GetCaps(p, a, b) (p)->GetCaps(a, b) +#define IDirectDraw_GetDisplayMode(p, a) (p)->GetDisplayMode(a) +#define IDirectDraw_GetFourCCCodes(p, a, b) (p)->GetFourCCCodes(a, b) +#define IDirectDraw_GetGDISurface(p, a) (p)->GetGDISurface(a) +#define IDirectDraw_GetMonitorFrequency(p, a) (p)->GetMonitorFrequency(a) +#define IDirectDraw_GetScanLine(p, a) (p)->GetScanLine(a) +#define IDirectDraw_GetVerticalBlankStatus(p, a) (p)->GetVerticalBlankStatus(a) +#define IDirectDraw_Initialize(p, a) (p)->Initialize(a) +#define IDirectDraw_RestoreDisplayMode(p) (p)->RestoreDisplayMode() +#define IDirectDraw_SetCooperativeLevel(p, a, b) (p)->SetCooperativeLevel(a, b) +#define IDirectDraw_SetDisplayMode(p, a, b, c) (p)->SetDisplayMode(a, b, c) +#define IDirectDraw_WaitForVerticalBlank(p, a, b) (p)->WaitForVerticalBlank(a, b) +#endif + +#endif + +#if defined( _WIN32 ) && !defined( _NO_COM ) +#undef INTERFACE +#define INTERFACE IDirectDraw2 +DECLARE_INTERFACE_( IDirectDraw2, IUnknown ) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID FAR * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + /*** IDirectDraw methods ***/ + STDMETHOD(Compact)(THIS) PURE; + STDMETHOD(CreateClipper)(THIS_ DWORD, LPDIRECTDRAWCLIPPER FAR*, IUnknown FAR * ) PURE; + STDMETHOD(CreatePalette)(THIS_ DWORD, LPPALETTEENTRY, LPDIRECTDRAWPALETTE FAR*, IUnknown FAR * ) PURE; + STDMETHOD(CreateSurface)(THIS_ LPDDSURFACEDESC, LPDIRECTDRAWSURFACE FAR *, IUnknown FAR *) PURE; + STDMETHOD(DuplicateSurface)( THIS_ LPDIRECTDRAWSURFACE, LPDIRECTDRAWSURFACE FAR * ) PURE; + STDMETHOD(EnumDisplayModes)( THIS_ DWORD, LPDDSURFACEDESC, LPVOID, LPDDENUMMODESCALLBACK ) PURE; + STDMETHOD(EnumSurfaces)(THIS_ DWORD, LPDDSURFACEDESC, LPVOID,LPDDENUMSURFACESCALLBACK ) PURE; + STDMETHOD(FlipToGDISurface)(THIS) PURE; + STDMETHOD(GetCaps)( THIS_ LPDDCAPS, LPDDCAPS) PURE; + STDMETHOD(GetDisplayMode)( THIS_ LPDDSURFACEDESC) PURE; + STDMETHOD(GetFourCCCodes)(THIS_ LPDWORD, LPDWORD ) PURE; + STDMETHOD(GetGDISurface)(THIS_ LPDIRECTDRAWSURFACE FAR *) PURE; + STDMETHOD(GetMonitorFrequency)(THIS_ LPDWORD) PURE; + STDMETHOD(GetScanLine)(THIS_ LPDWORD) PURE; + STDMETHOD(GetVerticalBlankStatus)(THIS_ LPBOOL ) PURE; + STDMETHOD(Initialize)(THIS_ GUID FAR *) PURE; + STDMETHOD(RestoreDisplayMode)(THIS) PURE; + STDMETHOD(SetCooperativeLevel)(THIS_ HWND, DWORD) PURE; + STDMETHOD(SetDisplayMode)(THIS_ DWORD, DWORD,DWORD, DWORD, DWORD) PURE; + STDMETHOD(WaitForVerticalBlank)(THIS_ DWORD, HANDLE ) PURE; + /*** Added in the v2 interface ***/ + STDMETHOD(GetAvailableVidMem)(THIS_ LPDDSCAPS, LPDWORD, LPDWORD) PURE; +}; +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectDraw2_QueryInterface(p, a, b) (p)->lpVtbl->QueryInterface(p, a, b) +#define IDirectDraw2_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectDraw2_Release(p) (p)->lpVtbl->Release(p) +#define IDirectDraw2_Compact(p) (p)->lpVtbl->Compact(p) +#define IDirectDraw2_CreateClipper(p, a, b, c) (p)->lpVtbl->CreateClipper(p, a, b, c) +#define IDirectDraw2_CreatePalette(p, a, b, c, d) (p)->lpVtbl->CreatePalette(p, a, b, c, d) +#define IDirectDraw2_CreateSurface(p, a, b, c) (p)->lpVtbl->CreateSurface(p, a, b, c) +#define IDirectDraw2_DuplicateSurface(p, a, b) (p)->lpVtbl->DuplicateSurface(p, a, b) +#define IDirectDraw2_EnumDisplayModes(p, a, b, c, d) (p)->lpVtbl->EnumDisplayModes(p, a, b, c, d) +#define IDirectDraw2_EnumSurfaces(p, a, b, c, d) (p)->lpVtbl->EnumSurfaces(p, a, b, c, d) +#define IDirectDraw2_FlipToGDISurface(p) (p)->lpVtbl->FlipToGDISurface(p) +#define IDirectDraw2_GetCaps(p, a, b) (p)->lpVtbl->GetCaps(p, a, b) +#define IDirectDraw2_GetDisplayMode(p, a) (p)->lpVtbl->GetDisplayMode(p, a) +#define IDirectDraw2_GetFourCCCodes(p, a, b) (p)->lpVtbl->GetFourCCCodes(p, a, b) +#define IDirectDraw2_GetGDISurface(p, a) (p)->lpVtbl->GetGDISurface(p, a) +#define IDirectDraw2_GetMonitorFrequency(p, a) (p)->lpVtbl->GetMonitorFrequency(p, a) +#define IDirectDraw2_GetScanLine(p, a) (p)->lpVtbl->GetScanLine(p, a) +#define IDirectDraw2_GetVerticalBlankStatus(p, a) (p)->lpVtbl->GetVerticalBlankStatus(p, a) +#define IDirectDraw2_Initialize(p, a) (p)->lpVtbl->Initialize(p, a) +#define IDirectDraw2_RestoreDisplayMode(p) (p)->lpVtbl->RestoreDisplayMode(p) +#define IDirectDraw2_SetCooperativeLevel(p, a, b) (p)->lpVtbl->SetCooperativeLevel(p, a, b) +#define IDirectDraw2_SetDisplayMode(p, a, b, c, d, e) (p)->lpVtbl->SetDisplayMode(p, a, b, c, d, e) +#define IDirectDraw2_WaitForVerticalBlank(p, a, b) (p)->lpVtbl->WaitForVerticalBlank(p, a, b) +#define IDirectDraw2_GetAvailableVidMem(p, a, b, c) (p)->lpVtbl->GetAvailableVidMem(p, a, b, c) +#else +#define IDirectDraw2_QueryInterface(p, a, b) (p)->QueryInterface(a, b) +#define IDirectDraw2_AddRef(p) (p)->AddRef() +#define IDirectDraw2_Release(p) (p)->Release() +#define IDirectDraw2_Compact(p) (p)->Compact() +#define IDirectDraw2_CreateClipper(p, a, b, c) (p)->CreateClipper(a, b, c) +#define IDirectDraw2_CreatePalette(p, a, b, c, d) (p)->CreatePalette(a, b, c, d) +#define IDirectDraw2_CreateSurface(p, a, b, c) (p)->CreateSurface(a, b, c) +#define IDirectDraw2_DuplicateSurface(p, a, b) (p)->DuplicateSurface(a, b) +#define IDirectDraw2_EnumDisplayModes(p, a, b, c, d) (p)->EnumDisplayModes(a, b, c, d) +#define IDirectDraw2_EnumSurfaces(p, a, b, c, d) (p)->EnumSurfaces(a, b, c, d) +#define IDirectDraw2_FlipToGDISurface(p) (p)->FlipToGDISurface() +#define IDirectDraw2_GetCaps(p, a, b) (p)->GetCaps(a, b) +#define IDirectDraw2_GetDisplayMode(p, a) (p)->GetDisplayMode(a) +#define IDirectDraw2_GetFourCCCodes(p, a, b) (p)->GetFourCCCodes(a, b) +#define IDirectDraw2_GetGDISurface(p, a) (p)->GetGDISurface(a) +#define IDirectDraw2_GetMonitorFrequency(p, a) (p)->GetMonitorFrequency(a) +#define IDirectDraw2_GetScanLine(p, a) (p)->GetScanLine(a) +#define IDirectDraw2_GetVerticalBlankStatus(p, a) (p)->GetVerticalBlankStatus(a) +#define IDirectDraw2_Initialize(p, a) (p)->Initialize(a) +#define IDirectDraw2_RestoreDisplayMode(p) (p)->RestoreDisplayMode() +#define IDirectDraw2_SetCooperativeLevel(p, a, b) (p)->SetCooperativeLevel(a, b) +#define IDirectDraw2_SetDisplayMode(p, a, b, c, d, e) (p)->SetDisplayMode(a, b, c, d, e) +#define IDirectDraw2_WaitForVerticalBlank(p, a, b) (p)->WaitForVerticalBlank(a, b) +#define IDirectDraw2_GetAvailableVidMem(p, a, b, c) (p)->GetAvailableVidMem(a, b, c) +#endif + +#endif + +#if defined( _WIN32 ) && !defined( _NO_COM ) +#undef INTERFACE +#define INTERFACE IDirectDraw4 +DECLARE_INTERFACE_( IDirectDraw4, IUnknown ) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID FAR * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + /*** IDirectDraw methods ***/ + STDMETHOD(Compact)(THIS) PURE; + STDMETHOD(CreateClipper)(THIS_ DWORD, LPDIRECTDRAWCLIPPER FAR*, IUnknown FAR * ) PURE; + STDMETHOD(CreatePalette)(THIS_ DWORD, LPPALETTEENTRY, LPDIRECTDRAWPALETTE FAR*, IUnknown FAR * ) PURE; + STDMETHOD(CreateSurface)(THIS_ LPDDSURFACEDESC2, LPDIRECTDRAWSURFACE4 FAR *, IUnknown FAR *) PURE; + STDMETHOD(DuplicateSurface)( THIS_ LPDIRECTDRAWSURFACE4, LPDIRECTDRAWSURFACE4 FAR * ) PURE; + STDMETHOD(EnumDisplayModes)( THIS_ DWORD, LPDDSURFACEDESC2, LPVOID, LPDDENUMMODESCALLBACK2 ) PURE; + STDMETHOD(EnumSurfaces)(THIS_ DWORD, LPDDSURFACEDESC2, LPVOID,LPDDENUMSURFACESCALLBACK2 ) PURE; + STDMETHOD(FlipToGDISurface)(THIS) PURE; + STDMETHOD(GetCaps)( THIS_ LPDDCAPS, LPDDCAPS) PURE; + STDMETHOD(GetDisplayMode)( THIS_ LPDDSURFACEDESC2) PURE; + STDMETHOD(GetFourCCCodes)(THIS_ LPDWORD, LPDWORD ) PURE; + STDMETHOD(GetGDISurface)(THIS_ LPDIRECTDRAWSURFACE4 FAR *) PURE; + STDMETHOD(GetMonitorFrequency)(THIS_ LPDWORD) PURE; + STDMETHOD(GetScanLine)(THIS_ LPDWORD) PURE; + STDMETHOD(GetVerticalBlankStatus)(THIS_ LPBOOL ) PURE; + STDMETHOD(Initialize)(THIS_ GUID FAR *) PURE; + STDMETHOD(RestoreDisplayMode)(THIS) PURE; + STDMETHOD(SetCooperativeLevel)(THIS_ HWND, DWORD) PURE; + STDMETHOD(SetDisplayMode)(THIS_ DWORD, DWORD,DWORD, DWORD, DWORD) PURE; + STDMETHOD(WaitForVerticalBlank)(THIS_ DWORD, HANDLE ) PURE; + /*** Added in the v2 interface ***/ + STDMETHOD(GetAvailableVidMem)(THIS_ LPDDSCAPS2, LPDWORD, LPDWORD) PURE; + /*** Added in the V4 Interface ***/ + STDMETHOD(GetSurfaceFromDC) (THIS_ HDC, LPDIRECTDRAWSURFACE4 *) PURE; + STDMETHOD(RestoreAllSurfaces)(THIS) PURE; + STDMETHOD(TestCooperativeLevel)(THIS) PURE; + STDMETHOD(GetDeviceIdentifier)(THIS_ LPDDDEVICEIDENTIFIER, DWORD ) PURE; +}; +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectDraw4_QueryInterface(p, a, b) (p)->lpVtbl->QueryInterface(p, a, b) +#define IDirectDraw4_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectDraw4_Release(p) (p)->lpVtbl->Release(p) +#define IDirectDraw4_Compact(p) (p)->lpVtbl->Compact(p) +#define IDirectDraw4_CreateClipper(p, a, b, c) (p)->lpVtbl->CreateClipper(p, a, b, c) +#define IDirectDraw4_CreatePalette(p, a, b, c, d) (p)->lpVtbl->CreatePalette(p, a, b, c, d) +#define IDirectDraw4_CreateSurface(p, a, b, c) (p)->lpVtbl->CreateSurface(p, a, b, c) +#define IDirectDraw4_DuplicateSurface(p, a, b) (p)->lpVtbl->DuplicateSurface(p, a, b) +#define IDirectDraw4_EnumDisplayModes(p, a, b, c, d) (p)->lpVtbl->EnumDisplayModes(p, a, b, c, d) +#define IDirectDraw4_EnumSurfaces(p, a, b, c, d) (p)->lpVtbl->EnumSurfaces(p, a, b, c, d) +#define IDirectDraw4_FlipToGDISurface(p) (p)->lpVtbl->FlipToGDISurface(p) +#define IDirectDraw4_GetCaps(p, a, b) (p)->lpVtbl->GetCaps(p, a, b) +#define IDirectDraw4_GetDisplayMode(p, a) (p)->lpVtbl->GetDisplayMode(p, a) +#define IDirectDraw4_GetFourCCCodes(p, a, b) (p)->lpVtbl->GetFourCCCodes(p, a, b) +#define IDirectDraw4_GetGDISurface(p, a) (p)->lpVtbl->GetGDISurface(p, a) +#define IDirectDraw4_GetMonitorFrequency(p, a) (p)->lpVtbl->GetMonitorFrequency(p, a) +#define IDirectDraw4_GetScanLine(p, a) (p)->lpVtbl->GetScanLine(p, a) +#define IDirectDraw4_GetVerticalBlankStatus(p, a) (p)->lpVtbl->GetVerticalBlankStatus(p, a) +#define IDirectDraw4_Initialize(p, a) (p)->lpVtbl->Initialize(p, a) +#define IDirectDraw4_RestoreDisplayMode(p) (p)->lpVtbl->RestoreDisplayMode(p) +#define IDirectDraw4_SetCooperativeLevel(p, a, b) (p)->lpVtbl->SetCooperativeLevel(p, a, b) +#define IDirectDraw4_SetDisplayMode(p, a, b, c, d, e) (p)->lpVtbl->SetDisplayMode(p, a, b, c, d, e) +#define IDirectDraw4_WaitForVerticalBlank(p, a, b) (p)->lpVtbl->WaitForVerticalBlank(p, a, b) +#define IDirectDraw4_GetAvailableVidMem(p, a, b, c) (p)->lpVtbl->GetAvailableVidMem(p, a, b, c) +#define IDirectDraw4_GetSurfaceFromDC(p, a, b) (p)->lpVtbl->GetSurfaceFromDC(p, a, b) +#define IDirectDraw4_RestoreAllSurfaces(p) (p)->lpVtbl->RestoreAllSurfaces(p) +#define IDirectDraw4_TestCooperativeLevel(p) (p)->lpVtbl->TestCooperativeLevel(p) +#define IDirectDraw4_GetDeviceIdentifier(p,a,b) (p)->lpVtbl->GetDeviceIdentifier(p,a,b) +#else +#define IDirectDraw4_QueryInterface(p, a, b) (p)->QueryInterface(a, b) +#define IDirectDraw4_AddRef(p) (p)->AddRef() +#define IDirectDraw4_Release(p) (p)->Release() +#define IDirectDraw4_Compact(p) (p)->Compact() +#define IDirectDraw4_CreateClipper(p, a, b, c) (p)->CreateClipper(a, b, c) +#define IDirectDraw4_CreatePalette(p, a, b, c, d) (p)->CreatePalette(a, b, c, d) +#define IDirectDraw4_CreateSurface(p, a, b, c) (p)->CreateSurface(a, b, c) +#define IDirectDraw4_DuplicateSurface(p, a, b) (p)->DuplicateSurface(a, b) +#define IDirectDraw4_EnumDisplayModes(p, a, b, c, d) (p)->EnumDisplayModes(a, b, c, d) +#define IDirectDraw4_EnumSurfaces(p, a, b, c, d) (p)->EnumSurfaces(a, b, c, d) +#define IDirectDraw4_FlipToGDISurface(p) (p)->FlipToGDISurface() +#define IDirectDraw4_GetCaps(p, a, b) (p)->GetCaps(a, b) +#define IDirectDraw4_GetDisplayMode(p, a) (p)->GetDisplayMode(a) +#define IDirectDraw4_GetFourCCCodes(p, a, b) (p)->GetFourCCCodes(a, b) +#define IDirectDraw4_GetGDISurface(p, a) (p)->GetGDISurface(a) +#define IDirectDraw4_GetMonitorFrequency(p, a) (p)->GetMonitorFrequency(a) +#define IDirectDraw4_GetScanLine(p, a) (p)->GetScanLine(a) +#define IDirectDraw4_GetVerticalBlankStatus(p, a) (p)->GetVerticalBlankStatus(a) +#define IDirectDraw4_Initialize(p, a) (p)->Initialize(a) +#define IDirectDraw4_RestoreDisplayMode(p) (p)->RestoreDisplayMode() +#define IDirectDraw4_SetCooperativeLevel(p, a, b) (p)->SetCooperativeLevel(a, b) +#define IDirectDraw4_SetDisplayMode(p, a, b, c, d, e) (p)->SetDisplayMode(a, b, c, d, e) +#define IDirectDraw4_WaitForVerticalBlank(p, a, b) (p)->WaitForVerticalBlank(a, b) +#define IDirectDraw4_GetAvailableVidMem(p, a, b, c) (p)->GetAvailableVidMem(a, b, c) +#define IDirectDraw4_GetSurfaceFromDC(p, a, b) (p)->GetSurfaceFromDC(a, b) +#define IDirectDraw4_RestoreAllSurfaces(p) (p)->RestoreAllSurfaces() +#define IDirectDraw4_TestCooperativeLevel(p) (p)->TestCooperativeLevel() +#define IDirectDraw4_GetDeviceIdentifier(p,a,b) (p)->GetDeviceIdentifier(a,b) +#endif + +#endif + + +/* + * IDirectDrawPalette + */ +#if defined( _WIN32 ) && !defined( _NO_COM ) +#undef INTERFACE +#define INTERFACE IDirectDrawPalette +DECLARE_INTERFACE_( IDirectDrawPalette, IUnknown ) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID FAR * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + /*** IDirectDrawPalette methods ***/ + STDMETHOD(GetCaps)(THIS_ LPDWORD) PURE; + STDMETHOD(GetEntries)(THIS_ DWORD,DWORD,DWORD,LPPALETTEENTRY) PURE; + STDMETHOD(Initialize)(THIS_ LPDIRECTDRAW, DWORD, LPPALETTEENTRY) PURE; + STDMETHOD(SetEntries)(THIS_ DWORD,DWORD,DWORD,LPPALETTEENTRY) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectDrawPalette_QueryInterface(p, a, b) (p)->lpVtbl->QueryInterface(p, a, b) +#define IDirectDrawPalette_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectDrawPalette_Release(p) (p)->lpVtbl->Release(p) +#define IDirectDrawPalette_GetCaps(p, a) (p)->lpVtbl->GetCaps(p, a) +#define IDirectDrawPalette_GetEntries(p, a, b, c, d) (p)->lpVtbl->GetEntries(p, a, b, c, d) +#define IDirectDrawPalette_Initialize(p, a, b, c) (p)->lpVtbl->Initialize(p, a, b, c) +#define IDirectDrawPalette_SetEntries(p, a, b, c, d) (p)->lpVtbl->SetEntries(p, a, b, c, d) +#else +#define IDirectDrawPalette_QueryInterface(p, a, b) (p)->QueryInterface(a, b) +#define IDirectDrawPalette_AddRef(p) (p)->AddRef() +#define IDirectDrawPalette_Release(p) (p)->Release() +#define IDirectDrawPalette_GetCaps(p, a) (p)->GetCaps(a) +#define IDirectDrawPalette_GetEntries(p, a, b, c, d) (p)->GetEntries(a, b, c, d) +#define IDirectDrawPalette_Initialize(p, a, b, c) (p)->Initialize(a, b, c) +#define IDirectDrawPalette_SetEntries(p, a, b, c, d) (p)->SetEntries(a, b, c, d) +#endif + +#endif + + + +/* + * IDirectDrawClipper + */ +#if defined( _WIN32 ) && !defined( _NO_COM ) +#undef INTERFACE +#define INTERFACE IDirectDrawClipper +DECLARE_INTERFACE_( IDirectDrawClipper, IUnknown ) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID FAR * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + /*** IDirectDrawClipper methods ***/ + STDMETHOD(GetClipList)(THIS_ LPRECT, LPRGNDATA, LPDWORD) PURE; + STDMETHOD(GetHWnd)(THIS_ HWND FAR *) PURE; + STDMETHOD(Initialize)(THIS_ LPDIRECTDRAW, DWORD) PURE; + STDMETHOD(IsClipListChanged)(THIS_ BOOL FAR *) PURE; + STDMETHOD(SetClipList)(THIS_ LPRGNDATA,DWORD) PURE; + STDMETHOD(SetHWnd)(THIS_ DWORD, HWND ) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectDrawClipper_QueryInterface(p, a, b) (p)->lpVtbl->QueryInterface(p, a, b) +#define IDirectDrawClipper_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectDrawClipper_Release(p) (p)->lpVtbl->Release(p) +#define IDirectDrawClipper_GetClipList(p, a, b, c) (p)->lpVtbl->GetClipList(p, a, b, c) +#define IDirectDrawClipper_GetHWnd(p, a) (p)->lpVtbl->GetHWnd(p, a) +#define IDirectDrawClipper_Initialize(p, a, b) (p)->lpVtbl->Initialize(p, a, b) +#define IDirectDrawClipper_IsClipListChanged(p, a) (p)->lpVtbl->IsClipListChanged(p, a) +#define IDirectDrawClipper_SetClipList(p, a, b) (p)->lpVtbl->SetClipList(p, a, b) +#define IDirectDrawClipper_SetHWnd(p, a, b) (p)->lpVtbl->SetHWnd(p, a, b) +#else +#define IDirectDrawClipper_QueryInterface(p, a, b) (p)->QueryInterface(a, b) +#define IDirectDrawClipper_AddRef(p) (p)->AddRef() +#define IDirectDrawClipper_Release(p) (p)->Release() +#define IDirectDrawClipper_GetClipList(p, a, b, c) (p)->GetClipList(a, b, c) +#define IDirectDrawClipper_GetHWnd(p, a) (p)->GetHWnd(a) +#define IDirectDrawClipper_Initialize(p, a, b) (p)->Initialize(a, b) +#define IDirectDrawClipper_IsClipListChanged(p, a) (p)->IsClipListChanged(a) +#define IDirectDrawClipper_SetClipList(p, a, b) (p)->SetClipList(a, b) +#define IDirectDrawClipper_SetHWnd(p, a, b) (p)->SetHWnd(a, b) +#endif + +#endif + +/* + * IDirectDrawSurface and related interfaces + */ +#if defined( _WIN32 ) && !defined( _NO_COM ) +#undef INTERFACE +#define INTERFACE IDirectDrawSurface +DECLARE_INTERFACE_( IDirectDrawSurface, IUnknown ) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID FAR * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + /*** IDirectDrawSurface methods ***/ + STDMETHOD(AddAttachedSurface)(THIS_ LPDIRECTDRAWSURFACE) PURE; + STDMETHOD(AddOverlayDirtyRect)(THIS_ LPRECT) PURE; + STDMETHOD(Blt)(THIS_ LPRECT,LPDIRECTDRAWSURFACE, LPRECT,DWORD, LPDDBLTFX) PURE; + STDMETHOD(BltBatch)(THIS_ LPDDBLTBATCH, DWORD, DWORD ) PURE; + STDMETHOD(BltFast)(THIS_ DWORD,DWORD,LPDIRECTDRAWSURFACE, LPRECT,DWORD) PURE; + STDMETHOD(DeleteAttachedSurface)(THIS_ DWORD,LPDIRECTDRAWSURFACE) PURE; + STDMETHOD(EnumAttachedSurfaces)(THIS_ LPVOID,LPDDENUMSURFACESCALLBACK) PURE; + STDMETHOD(EnumOverlayZOrders)(THIS_ DWORD,LPVOID,LPDDENUMSURFACESCALLBACK) PURE; + STDMETHOD(Flip)(THIS_ LPDIRECTDRAWSURFACE, DWORD) PURE; + STDMETHOD(GetAttachedSurface)(THIS_ LPDDSCAPS, LPDIRECTDRAWSURFACE FAR *) PURE; + STDMETHOD(GetBltStatus)(THIS_ DWORD) PURE; + STDMETHOD(GetCaps)(THIS_ LPDDSCAPS) PURE; + STDMETHOD(GetClipper)(THIS_ LPDIRECTDRAWCLIPPER FAR*) PURE; + STDMETHOD(GetColorKey)(THIS_ DWORD, LPDDCOLORKEY) PURE; + STDMETHOD(GetDC)(THIS_ HDC FAR *) PURE; + STDMETHOD(GetFlipStatus)(THIS_ DWORD) PURE; + STDMETHOD(GetOverlayPosition)(THIS_ LPLONG, LPLONG ) PURE; + STDMETHOD(GetPalette)(THIS_ LPDIRECTDRAWPALETTE FAR*) PURE; + STDMETHOD(GetPixelFormat)(THIS_ LPDDPIXELFORMAT) PURE; + STDMETHOD(GetSurfaceDesc)(THIS_ LPDDSURFACEDESC) PURE; + STDMETHOD(Initialize)(THIS_ LPDIRECTDRAW, LPDDSURFACEDESC) PURE; + STDMETHOD(IsLost)(THIS) PURE; + STDMETHOD(Lock)(THIS_ LPRECT,LPDDSURFACEDESC,DWORD,HANDLE) PURE; + STDMETHOD(ReleaseDC)(THIS_ HDC) PURE; + STDMETHOD(Restore)(THIS) PURE; + STDMETHOD(SetClipper)(THIS_ LPDIRECTDRAWCLIPPER) PURE; + STDMETHOD(SetColorKey)(THIS_ DWORD, LPDDCOLORKEY) PURE; + STDMETHOD(SetOverlayPosition)(THIS_ LONG, LONG ) PURE; + STDMETHOD(SetPalette)(THIS_ LPDIRECTDRAWPALETTE) PURE; + STDMETHOD(Unlock)(THIS_ LPVOID) PURE; + STDMETHOD(UpdateOverlay)(THIS_ LPRECT, LPDIRECTDRAWSURFACE,LPRECT,DWORD, LPDDOVERLAYFX) PURE; + STDMETHOD(UpdateOverlayDisplay)(THIS_ DWORD) PURE; + STDMETHOD(UpdateOverlayZOrder)(THIS_ DWORD, LPDIRECTDRAWSURFACE) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectDrawSurface_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectDrawSurface_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectDrawSurface_Release(p) (p)->lpVtbl->Release(p) +#define IDirectDrawSurface_AddAttachedSurface(p,a) (p)->lpVtbl->AddAttachedSurface(p,a) +#define IDirectDrawSurface_AddOverlayDirtyRect(p,a) (p)->lpVtbl->AddOverlayDirtyRect(p,a) +#define IDirectDrawSurface_Blt(p,a,b,c,d,e) (p)->lpVtbl->Blt(p,a,b,c,d,e) +#define IDirectDrawSurface_BltBatch(p,a,b,c) (p)->lpVtbl->BltBatch(p,a,b,c) +#define IDirectDrawSurface_BltFast(p,a,b,c,d,e) (p)->lpVtbl->BltFast(p,a,b,c,d,e) +#define IDirectDrawSurface_DeleteAttachedSurface(p,a,b) (p)->lpVtbl->DeleteAttachedSurface(p,a,b) +#define IDirectDrawSurface_EnumAttachedSurfaces(p,a,b) (p)->lpVtbl->EnumAttachedSurfaces(p,a,b) +#define IDirectDrawSurface_EnumOverlayZOrders(p,a,b,c) (p)->lpVtbl->EnumOverlayZOrders(p,a,b,c) +#define IDirectDrawSurface_Flip(p,a,b) (p)->lpVtbl->Flip(p,a,b) +#define IDirectDrawSurface_GetAttachedSurface(p,a,b) (p)->lpVtbl->GetAttachedSurface(p,a,b) +#define IDirectDrawSurface_GetBltStatus(p,a) (p)->lpVtbl->GetBltStatus(p,a) +#define IDirectDrawSurface_GetCaps(p,b) (p)->lpVtbl->GetCaps(p,b) +#define IDirectDrawSurface_GetClipper(p,a) (p)->lpVtbl->GetClipper(p,a) +#define IDirectDrawSurface_GetColorKey(p,a,b) (p)->lpVtbl->GetColorKey(p,a,b) +#define IDirectDrawSurface_GetDC(p,a) (p)->lpVtbl->GetDC(p,a) +#define IDirectDrawSurface_GetFlipStatus(p,a) (p)->lpVtbl->GetFlipStatus(p,a) +#define IDirectDrawSurface_GetOverlayPosition(p,a,b) (p)->lpVtbl->GetOverlayPosition(p,a,b) +#define IDirectDrawSurface_GetPalette(p,a) (p)->lpVtbl->GetPalette(p,a) +#define IDirectDrawSurface_GetPixelFormat(p,a) (p)->lpVtbl->GetPixelFormat(p,a) +#define IDirectDrawSurface_GetSurfaceDesc(p,a) (p)->lpVtbl->GetSurfaceDesc(p,a) +#define IDirectDrawSurface_Initialize(p,a,b) (p)->lpVtbl->Initialize(p,a,b) +#define IDirectDrawSurface_IsLost(p) (p)->lpVtbl->IsLost(p) +#define IDirectDrawSurface_Lock(p,a,b,c,d) (p)->lpVtbl->Lock(p,a,b,c,d) +#define IDirectDrawSurface_ReleaseDC(p,a) (p)->lpVtbl->ReleaseDC(p,a) +#define IDirectDrawSurface_Restore(p) (p)->lpVtbl->Restore(p) +#define IDirectDrawSurface_SetClipper(p,a) (p)->lpVtbl->SetClipper(p,a) +#define IDirectDrawSurface_SetColorKey(p,a,b) (p)->lpVtbl->SetColorKey(p,a,b) +#define IDirectDrawSurface_SetOverlayPosition(p,a,b) (p)->lpVtbl->SetOverlayPosition(p,a,b) +#define IDirectDrawSurface_SetPalette(p,a) (p)->lpVtbl->SetPalette(p,a) +#define IDirectDrawSurface_Unlock(p,b) (p)->lpVtbl->Unlock(p,b) +#define IDirectDrawSurface_UpdateOverlay(p,a,b,c,d,e) (p)->lpVtbl->UpdateOverlay(p,a,b,c,d,e) +#define IDirectDrawSurface_UpdateOverlayDisplay(p,a) (p)->lpVtbl->UpdateOverlayDisplay(p,a) +#define IDirectDrawSurface_UpdateOverlayZOrder(p,a,b) (p)->lpVtbl->UpdateOverlayZOrder(p,a,b) +#else +#define IDirectDrawSurface_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectDrawSurface_AddRef(p) (p)->AddRef() +#define IDirectDrawSurface_Release(p) (p)->Release() +#define IDirectDrawSurface_AddAttachedSurface(p,a) (p)->AddAttachedSurface(a) +#define IDirectDrawSurface_AddOverlayDirtyRect(p,a) (p)->AddOverlayDirtyRect(a) +#define IDirectDrawSurface_Blt(p,a,b,c,d,e) (p)->Blt(a,b,c,d,e) +#define IDirectDrawSurface_BltBatch(p,a,b,c) (p)->BltBatch(a,b,c) +#define IDirectDrawSurface_BltFast(p,a,b,c,d,e) (p)->BltFast(a,b,c,d,e) +#define IDirectDrawSurface_DeleteAttachedSurface(p,a,b) (p)->DeleteAttachedSurface(a,b) +#define IDirectDrawSurface_EnumAttachedSurfaces(p,a,b) (p)->EnumAttachedSurfaces(a,b) +#define IDirectDrawSurface_EnumOverlayZOrders(p,a,b,c) (p)->EnumOverlayZOrders(a,b,c) +#define IDirectDrawSurface_Flip(p,a,b) (p)->Flip(a,b) +#define IDirectDrawSurface_GetAttachedSurface(p,a,b) (p)->GetAttachedSurface(a,b) +#define IDirectDrawSurface_GetBltStatus(p,a) (p)->GetBltStatus(a) +#define IDirectDrawSurface_GetCaps(p,b) (p)->GetCaps(b) +#define IDirectDrawSurface_GetClipper(p,a) (p)->GetClipper(a) +#define IDirectDrawSurface_GetColorKey(p,a,b) (p)->GetColorKey(a,b) +#define IDirectDrawSurface_GetDC(p,a) (p)->GetDC(a) +#define IDirectDrawSurface_GetFlipStatus(p,a) (p)->GetFlipStatus(a) +#define IDirectDrawSurface_GetOverlayPosition(p,a,b) (p)->GetOverlayPosition(a,b) +#define IDirectDrawSurface_GetPalette(p,a) (p)->GetPalette(a) +#define IDirectDrawSurface_GetPixelFormat(p,a) (p)->GetPixelFormat(a) +#define IDirectDrawSurface_GetSurfaceDesc(p,a) (p)->GetSurfaceDesc(a) +#define IDirectDrawSurface_Initialize(p,a,b) (p)->Initialize(a,b) +#define IDirectDrawSurface_IsLost(p) (p)->IsLost() +#define IDirectDrawSurface_Lock(p,a,b,c,d) (p)->Lock(a,b,c,d) +#define IDirectDrawSurface_ReleaseDC(p,a) (p)->ReleaseDC(a) +#define IDirectDrawSurface_Restore(p) (p)->Restore() +#define IDirectDrawSurface_SetClipper(p,a) (p)->SetClipper(a) +#define IDirectDrawSurface_SetColorKey(p,a,b) (p)->SetColorKey(a,b) +#define IDirectDrawSurface_SetOverlayPosition(p,a,b) (p)->SetOverlayPosition(a,b) +#define IDirectDrawSurface_SetPalette(p,a) (p)->SetPalette(a) +#define IDirectDrawSurface_Unlock(p,b) (p)->Unlock(b) +#define IDirectDrawSurface_UpdateOverlay(p,a,b,c,d,e) (p)->UpdateOverlay(a,b,c,d,e) +#define IDirectDrawSurface_UpdateOverlayDisplay(p,a) (p)->UpdateOverlayDisplay(a) +#define IDirectDrawSurface_UpdateOverlayZOrder(p,a,b) (p)->UpdateOverlayZOrder(a,b) +#endif + +/* + * IDirectDrawSurface2 and related interfaces + */ +#undef INTERFACE +#define INTERFACE IDirectDrawSurface2 +DECLARE_INTERFACE_( IDirectDrawSurface2, IUnknown ) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID FAR * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + /*** IDirectDrawSurface methods ***/ + STDMETHOD(AddAttachedSurface)(THIS_ LPDIRECTDRAWSURFACE2) PURE; + STDMETHOD(AddOverlayDirtyRect)(THIS_ LPRECT) PURE; + STDMETHOD(Blt)(THIS_ LPRECT,LPDIRECTDRAWSURFACE2, LPRECT,DWORD, LPDDBLTFX) PURE; + STDMETHOD(BltBatch)(THIS_ LPDDBLTBATCH, DWORD, DWORD ) PURE; + STDMETHOD(BltFast)(THIS_ DWORD,DWORD,LPDIRECTDRAWSURFACE2, LPRECT,DWORD) PURE; + STDMETHOD(DeleteAttachedSurface)(THIS_ DWORD,LPDIRECTDRAWSURFACE2) PURE; + STDMETHOD(EnumAttachedSurfaces)(THIS_ LPVOID,LPDDENUMSURFACESCALLBACK) PURE; + STDMETHOD(EnumOverlayZOrders)(THIS_ DWORD,LPVOID,LPDDENUMSURFACESCALLBACK) PURE; + STDMETHOD(Flip)(THIS_ LPDIRECTDRAWSURFACE2, DWORD) PURE; + STDMETHOD(GetAttachedSurface)(THIS_ LPDDSCAPS, LPDIRECTDRAWSURFACE2 FAR *) PURE; + STDMETHOD(GetBltStatus)(THIS_ DWORD) PURE; + STDMETHOD(GetCaps)(THIS_ LPDDSCAPS) PURE; + STDMETHOD(GetClipper)(THIS_ LPDIRECTDRAWCLIPPER FAR*) PURE; + STDMETHOD(GetColorKey)(THIS_ DWORD, LPDDCOLORKEY) PURE; + STDMETHOD(GetDC)(THIS_ HDC FAR *) PURE; + STDMETHOD(GetFlipStatus)(THIS_ DWORD) PURE; + STDMETHOD(GetOverlayPosition)(THIS_ LPLONG, LPLONG ) PURE; + STDMETHOD(GetPalette)(THIS_ LPDIRECTDRAWPALETTE FAR*) PURE; + STDMETHOD(GetPixelFormat)(THIS_ LPDDPIXELFORMAT) PURE; + STDMETHOD(GetSurfaceDesc)(THIS_ LPDDSURFACEDESC) PURE; + STDMETHOD(Initialize)(THIS_ LPDIRECTDRAW, LPDDSURFACEDESC) PURE; + STDMETHOD(IsLost)(THIS) PURE; + STDMETHOD(Lock)(THIS_ LPRECT,LPDDSURFACEDESC,DWORD,HANDLE) PURE; + STDMETHOD(ReleaseDC)(THIS_ HDC) PURE; + STDMETHOD(Restore)(THIS) PURE; + STDMETHOD(SetClipper)(THIS_ LPDIRECTDRAWCLIPPER) PURE; + STDMETHOD(SetColorKey)(THIS_ DWORD, LPDDCOLORKEY) PURE; + STDMETHOD(SetOverlayPosition)(THIS_ LONG, LONG ) PURE; + STDMETHOD(SetPalette)(THIS_ LPDIRECTDRAWPALETTE) PURE; + STDMETHOD(Unlock)(THIS_ LPVOID) PURE; + STDMETHOD(UpdateOverlay)(THIS_ LPRECT, LPDIRECTDRAWSURFACE2,LPRECT,DWORD, LPDDOVERLAYFX) PURE; + STDMETHOD(UpdateOverlayDisplay)(THIS_ DWORD) PURE; + STDMETHOD(UpdateOverlayZOrder)(THIS_ DWORD, LPDIRECTDRAWSURFACE2) PURE; + /*** Added in the v2 interface ***/ + STDMETHOD(GetDDInterface)(THIS_ LPVOID FAR *) PURE; + STDMETHOD(PageLock)(THIS_ DWORD) PURE; + STDMETHOD(PageUnlock)(THIS_ DWORD) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectDrawSurface2_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectDrawSurface2_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectDrawSurface2_Release(p) (p)->lpVtbl->Release(p) +#define IDirectDrawSurface2_AddAttachedSurface(p,a) (p)->lpVtbl->AddAttachedSurface(p,a) +#define IDirectDrawSurface2_AddOverlayDirtyRect(p,a) (p)->lpVtbl->AddOverlayDirtyRect(p,a) +#define IDirectDrawSurface2_Blt(p,a,b,c,d,e) (p)->lpVtbl->Blt(p,a,b,c,d,e) +#define IDirectDrawSurface2_BltBatch(p,a,b,c) (p)->lpVtbl->BltBatch(p,a,b,c) +#define IDirectDrawSurface2_BltFast(p,a,b,c,d,e) (p)->lpVtbl->BltFast(p,a,b,c,d,e) +#define IDirectDrawSurface2_DeleteAttachedSurface(p,a,b) (p)->lpVtbl->DeleteAttachedSurface(p,a,b) +#define IDirectDrawSurface2_EnumAttachedSurfaces(p,a,b) (p)->lpVtbl->EnumAttachedSurfaces(p,a,b) +#define IDirectDrawSurface2_EnumOverlayZOrders(p,a,b,c) (p)->lpVtbl->EnumOverlayZOrders(p,a,b,c) +#define IDirectDrawSurface2_Flip(p,a,b) (p)->lpVtbl->Flip(p,a,b) +#define IDirectDrawSurface2_GetAttachedSurface(p,a,b) (p)->lpVtbl->GetAttachedSurface(p,a,b) +#define IDirectDrawSurface2_GetBltStatus(p,a) (p)->lpVtbl->GetBltStatus(p,a) +#define IDirectDrawSurface2_GetCaps(p,b) (p)->lpVtbl->GetCaps(p,b) +#define IDirectDrawSurface2_GetClipper(p,a) (p)->lpVtbl->GetClipper(p,a) +#define IDirectDrawSurface2_GetColorKey(p,a,b) (p)->lpVtbl->GetColorKey(p,a,b) +#define IDirectDrawSurface2_GetDC(p,a) (p)->lpVtbl->GetDC(p,a) +#define IDirectDrawSurface2_GetFlipStatus(p,a) (p)->lpVtbl->GetFlipStatus(p,a) +#define IDirectDrawSurface2_GetOverlayPosition(p,a,b) (p)->lpVtbl->GetOverlayPosition(p,a,b) +#define IDirectDrawSurface2_GetPalette(p,a) (p)->lpVtbl->GetPalette(p,a) +#define IDirectDrawSurface2_GetPixelFormat(p,a) (p)->lpVtbl->GetPixelFormat(p,a) +#define IDirectDrawSurface2_GetSurfaceDesc(p,a) (p)->lpVtbl->GetSurfaceDesc(p,a) +#define IDirectDrawSurface2_Initialize(p,a,b) (p)->lpVtbl->Initialize(p,a,b) +#define IDirectDrawSurface2_IsLost(p) (p)->lpVtbl->IsLost(p) +#define IDirectDrawSurface2_Lock(p,a,b,c,d) (p)->lpVtbl->Lock(p,a,b,c,d) +#define IDirectDrawSurface2_ReleaseDC(p,a) (p)->lpVtbl->ReleaseDC(p,a) +#define IDirectDrawSurface2_Restore(p) (p)->lpVtbl->Restore(p) +#define IDirectDrawSurface2_SetClipper(p,a) (p)->lpVtbl->SetClipper(p,a) +#define IDirectDrawSurface2_SetColorKey(p,a,b) (p)->lpVtbl->SetColorKey(p,a,b) +#define IDirectDrawSurface2_SetOverlayPosition(p,a,b) (p)->lpVtbl->SetOverlayPosition(p,a,b) +#define IDirectDrawSurface2_SetPalette(p,a) (p)->lpVtbl->SetPalette(p,a) +#define IDirectDrawSurface2_Unlock(p,b) (p)->lpVtbl->Unlock(p,b) +#define IDirectDrawSurface2_UpdateOverlay(p,a,b,c,d,e) (p)->lpVtbl->UpdateOverlay(p,a,b,c,d,e) +#define IDirectDrawSurface2_UpdateOverlayDisplay(p,a) (p)->lpVtbl->UpdateOverlayDisplay(p,a) +#define IDirectDrawSurface2_UpdateOverlayZOrder(p,a,b) (p)->lpVtbl->UpdateOverlayZOrder(p,a,b) +#define IDirectDrawSurface2_GetDDInterface(p,a) (p)->lpVtbl->GetDDInterface(p,a) +#define IDirectDrawSurface2_PageLock(p,a) (p)->lpVtbl->PageLock(p,a) +#define IDirectDrawSurface2_PageUnlock(p,a) (p)->lpVtbl->PageUnlock(p,a) +#else +#define IDirectDrawSurface2_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectDrawSurface2_AddRef(p) (p)->AddRef() +#define IDirectDrawSurface2_Release(p) (p)->Release() +#define IDirectDrawSurface2_AddAttachedSurface(p,a) (p)->AddAttachedSurface(a) +#define IDirectDrawSurface2_AddOverlayDirtyRect(p,a) (p)->AddOverlayDirtyRect(a) +#define IDirectDrawSurface2_Blt(p,a,b,c,d,e) (p)->Blt(a,b,c,d,e) +#define IDirectDrawSurface2_BltBatch(p,a,b,c) (p)->BltBatch(a,b,c) +#define IDirectDrawSurface2_BltFast(p,a,b,c,d,e) (p)->BltFast(a,b,c,d,e) +#define IDirectDrawSurface2_DeleteAttachedSurface(p,a,b) (p)->DeleteAttachedSurface(a,b) +#define IDirectDrawSurface2_EnumAttachedSurfaces(p,a,b) (p)->EnumAttachedSurfaces(a,b) +#define IDirectDrawSurface2_EnumOverlayZOrders(p,a,b,c) (p)->EnumOverlayZOrders(a,b,c) +#define IDirectDrawSurface2_Flip(p,a,b) (p)->Flip(a,b) +#define IDirectDrawSurface2_GetAttachedSurface(p,a,b) (p)->GetAttachedSurface(a,b) +#define IDirectDrawSurface2_GetBltStatus(p,a) (p)->GetBltStatus(a) +#define IDirectDrawSurface2_GetCaps(p,b) (p)->GetCaps(b) +#define IDirectDrawSurface2_GetClipper(p,a) (p)->GetClipper(a) +#define IDirectDrawSurface2_GetColorKey(p,a,b) (p)->GetColorKey(a,b) +#define IDirectDrawSurface2_GetDC(p,a) (p)->GetDC(a) +#define IDirectDrawSurface2_GetFlipStatus(p,a) (p)->GetFlipStatus(a) +#define IDirectDrawSurface2_GetOverlayPosition(p,a,b) (p)->GetOverlayPosition(a,b) +#define IDirectDrawSurface2_GetPalette(p,a) (p)->GetPalette(a) +#define IDirectDrawSurface2_GetPixelFormat(p,a) (p)->GetPixelFormat(a) +#define IDirectDrawSurface2_GetSurfaceDesc(p,a) (p)->GetSurfaceDesc(a) +#define IDirectDrawSurface2_Initialize(p,a,b) (p)->Initialize(a,b) +#define IDirectDrawSurface2_IsLost(p) (p)->IsLost() +#define IDirectDrawSurface2_Lock(p,a,b,c,d) (p)->Lock(a,b,c,d) +#define IDirectDrawSurface2_ReleaseDC(p,a) (p)->ReleaseDC(a) +#define IDirectDrawSurface2_Restore(p) (p)->Restore() +#define IDirectDrawSurface2_SetClipper(p,a) (p)->SetClipper(a) +#define IDirectDrawSurface2_SetColorKey(p,a,b) (p)->SetColorKey(a,b) +#define IDirectDrawSurface2_SetOverlayPosition(p,a,b) (p)->SetOverlayPosition(a,b) +#define IDirectDrawSurface2_SetPalette(p,a) (p)->SetPalette(a) +#define IDirectDrawSurface2_Unlock(p,b) (p)->Unlock(b) +#define IDirectDrawSurface2_UpdateOverlay(p,a,b,c,d,e) (p)->UpdateOverlay(a,b,c,d,e) +#define IDirectDrawSurface2_UpdateOverlayDisplay(p,a) (p)->UpdateOverlayDisplay(a) +#define IDirectDrawSurface2_UpdateOverlayZOrder(p,a,b) (p)->UpdateOverlayZOrder(a,b) +#define IDirectDrawSurface2_GetDDInterface(p,a) (p)->GetDDInterface(a) +#define IDirectDrawSurface2_PageLock(p,a) (p)->PageLock(a) +#define IDirectDrawSurface2_PageUnlock(p,a) (p)->PageUnlock(a) +#endif + +/* + * IDirectDrawSurface3 and related interfaces + */ +#undef INTERFACE +#define INTERFACE IDirectDrawSurface3 +DECLARE_INTERFACE_( IDirectDrawSurface3, IUnknown ) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID FAR * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + /*** IDirectDrawSurface methods ***/ + STDMETHOD(AddAttachedSurface)(THIS_ LPDIRECTDRAWSURFACE3) PURE; + STDMETHOD(AddOverlayDirtyRect)(THIS_ LPRECT) PURE; + STDMETHOD(Blt)(THIS_ LPRECT,LPDIRECTDRAWSURFACE3, LPRECT,DWORD, LPDDBLTFX) PURE; + STDMETHOD(BltBatch)(THIS_ LPDDBLTBATCH, DWORD, DWORD ) PURE; + STDMETHOD(BltFast)(THIS_ DWORD,DWORD,LPDIRECTDRAWSURFACE3, LPRECT,DWORD) PURE; + STDMETHOD(DeleteAttachedSurface)(THIS_ DWORD,LPDIRECTDRAWSURFACE3) PURE; + STDMETHOD(EnumAttachedSurfaces)(THIS_ LPVOID,LPDDENUMSURFACESCALLBACK) PURE; + STDMETHOD(EnumOverlayZOrders)(THIS_ DWORD,LPVOID,LPDDENUMSURFACESCALLBACK) PURE; + STDMETHOD(Flip)(THIS_ LPDIRECTDRAWSURFACE3, DWORD) PURE; + STDMETHOD(GetAttachedSurface)(THIS_ LPDDSCAPS, LPDIRECTDRAWSURFACE3 FAR *) PURE; + STDMETHOD(GetBltStatus)(THIS_ DWORD) PURE; + STDMETHOD(GetCaps)(THIS_ LPDDSCAPS) PURE; + STDMETHOD(GetClipper)(THIS_ LPDIRECTDRAWCLIPPER FAR*) PURE; + STDMETHOD(GetColorKey)(THIS_ DWORD, LPDDCOLORKEY) PURE; + STDMETHOD(GetDC)(THIS_ HDC FAR *) PURE; + STDMETHOD(GetFlipStatus)(THIS_ DWORD) PURE; + STDMETHOD(GetOverlayPosition)(THIS_ LPLONG, LPLONG ) PURE; + STDMETHOD(GetPalette)(THIS_ LPDIRECTDRAWPALETTE FAR*) PURE; + STDMETHOD(GetPixelFormat)(THIS_ LPDDPIXELFORMAT) PURE; + STDMETHOD(GetSurfaceDesc)(THIS_ LPDDSURFACEDESC) PURE; + STDMETHOD(Initialize)(THIS_ LPDIRECTDRAW, LPDDSURFACEDESC) PURE; + STDMETHOD(IsLost)(THIS) PURE; + STDMETHOD(Lock)(THIS_ LPRECT,LPDDSURFACEDESC,DWORD,HANDLE) PURE; + STDMETHOD(ReleaseDC)(THIS_ HDC) PURE; + STDMETHOD(Restore)(THIS) PURE; + STDMETHOD(SetClipper)(THIS_ LPDIRECTDRAWCLIPPER) PURE; + STDMETHOD(SetColorKey)(THIS_ DWORD, LPDDCOLORKEY) PURE; + STDMETHOD(SetOverlayPosition)(THIS_ LONG, LONG ) PURE; + STDMETHOD(SetPalette)(THIS_ LPDIRECTDRAWPALETTE) PURE; + STDMETHOD(Unlock)(THIS_ LPVOID) PURE; + STDMETHOD(UpdateOverlay)(THIS_ LPRECT, LPDIRECTDRAWSURFACE3,LPRECT,DWORD, LPDDOVERLAYFX) PURE; + STDMETHOD(UpdateOverlayDisplay)(THIS_ DWORD) PURE; + STDMETHOD(UpdateOverlayZOrder)(THIS_ DWORD, LPDIRECTDRAWSURFACE3) PURE; + /*** Added in the v2 interface ***/ + STDMETHOD(GetDDInterface)(THIS_ LPVOID FAR *) PURE; + STDMETHOD(PageLock)(THIS_ DWORD) PURE; + STDMETHOD(PageUnlock)(THIS_ DWORD) PURE; + /*** Added in the V3 interface ***/ + STDMETHOD(SetSurfaceDesc)(THIS_ LPDDSURFACEDESC, DWORD) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectDrawSurface3_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectDrawSurface3_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectDrawSurface3_Release(p) (p)->lpVtbl->Release(p) +#define IDirectDrawSurface3_AddAttachedSurface(p,a) (p)->lpVtbl->AddAttachedSurface(p,a) +#define IDirectDrawSurface3_AddOverlayDirtyRect(p,a) (p)->lpVtbl->AddOverlayDirtyRect(p,a) +#define IDirectDrawSurface3_Blt(p,a,b,c,d,e) (p)->lpVtbl->Blt(p,a,b,c,d,e) +#define IDirectDrawSurface3_BltBatch(p,a,b,c) (p)->lpVtbl->BltBatch(p,a,b,c) +#define IDirectDrawSurface3_BltFast(p,a,b,c,d,e) (p)->lpVtbl->BltFast(p,a,b,c,d,e) +#define IDirectDrawSurface3_DeleteAttachedSurface(p,a,b) (p)->lpVtbl->DeleteAttachedSurface(p,a,b) +#define IDirectDrawSurface3_EnumAttachedSurfaces(p,a,b) (p)->lpVtbl->EnumAttachedSurfaces(p,a,b) +#define IDirectDrawSurface3_EnumOverlayZOrders(p,a,b,c) (p)->lpVtbl->EnumOverlayZOrders(p,a,b,c) +#define IDirectDrawSurface3_Flip(p,a,b) (p)->lpVtbl->Flip(p,a,b) +#define IDirectDrawSurface3_GetAttachedSurface(p,a,b) (p)->lpVtbl->GetAttachedSurface(p,a,b) +#define IDirectDrawSurface3_GetBltStatus(p,a) (p)->lpVtbl->GetBltStatus(p,a) +#define IDirectDrawSurface3_GetCaps(p,b) (p)->lpVtbl->GetCaps(p,b) +#define IDirectDrawSurface3_GetClipper(p,a) (p)->lpVtbl->GetClipper(p,a) +#define IDirectDrawSurface3_GetColorKey(p,a,b) (p)->lpVtbl->GetColorKey(p,a,b) +#define IDirectDrawSurface3_GetDC(p,a) (p)->lpVtbl->GetDC(p,a) +#define IDirectDrawSurface3_GetFlipStatus(p,a) (p)->lpVtbl->GetFlipStatus(p,a) +#define IDirectDrawSurface3_GetOverlayPosition(p,a,b) (p)->lpVtbl->GetOverlayPosition(p,a,b) +#define IDirectDrawSurface3_GetPalette(p,a) (p)->lpVtbl->GetPalette(p,a) +#define IDirectDrawSurface3_GetPixelFormat(p,a) (p)->lpVtbl->GetPixelFormat(p,a) +#define IDirectDrawSurface3_GetSurfaceDesc(p,a) (p)->lpVtbl->GetSurfaceDesc(p,a) +#define IDirectDrawSurface3_Initialize(p,a,b) (p)->lpVtbl->Initialize(p,a,b) +#define IDirectDrawSurface3_IsLost(p) (p)->lpVtbl->IsLost(p) +#define IDirectDrawSurface3_Lock(p,a,b,c,d) (p)->lpVtbl->Lock(p,a,b,c,d) +#define IDirectDrawSurface3_ReleaseDC(p,a) (p)->lpVtbl->ReleaseDC(p,a) +#define IDirectDrawSurface3_Restore(p) (p)->lpVtbl->Restore(p) +#define IDirectDrawSurface3_SetClipper(p,a) (p)->lpVtbl->SetClipper(p,a) +#define IDirectDrawSurface3_SetColorKey(p,a,b) (p)->lpVtbl->SetColorKey(p,a,b) +#define IDirectDrawSurface3_SetOverlayPosition(p,a,b) (p)->lpVtbl->SetOverlayPosition(p,a,b) +#define IDirectDrawSurface3_SetPalette(p,a) (p)->lpVtbl->SetPalette(p,a) +#define IDirectDrawSurface3_Unlock(p,b) (p)->lpVtbl->Unlock(p,b) +#define IDirectDrawSurface3_UpdateOverlay(p,a,b,c,d,e) (p)->lpVtbl->UpdateOverlay(p,a,b,c,d,e) +#define IDirectDrawSurface3_UpdateOverlayDisplay(p,a) (p)->lpVtbl->UpdateOverlayDisplay(p,a) +#define IDirectDrawSurface3_UpdateOverlayZOrder(p,a,b) (p)->lpVtbl->UpdateOverlayZOrder(p,a,b) +#define IDirectDrawSurface3_GetDDInterface(p,a) (p)->lpVtbl->GetDDInterface(p,a) +#define IDirectDrawSurface3_PageLock(p,a) (p)->lpVtbl->PageLock(p,a) +#define IDirectDrawSurface3_PageUnlock(p,a) (p)->lpVtbl->PageUnlock(p,a) +#define IDirectDrawSurface3_SetSurfaceDesc(p,a,b) (p)->lpVtbl->SetSurfaceDesc(p,a,b) +#else +#define IDirectDrawSurface3_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectDrawSurface3_AddRef(p) (p)->AddRef() +#define IDirectDrawSurface3_Release(p) (p)->Release() +#define IDirectDrawSurface3_AddAttachedSurface(p,a) (p)->AddAttachedSurface(a) +#define IDirectDrawSurface3_AddOverlayDirtyRect(p,a) (p)->AddOverlayDirtyRect(a) +#define IDirectDrawSurface3_Blt(p,a,b,c,d,e) (p)->Blt(a,b,c,d,e) +#define IDirectDrawSurface3_BltBatch(p,a,b,c) (p)->BltBatch(a,b,c) +#define IDirectDrawSurface3_BltFast(p,a,b,c,d,e) (p)->BltFast(a,b,c,d,e) +#define IDirectDrawSurface3_DeleteAttachedSurface(p,a,b) (p)->DeleteAttachedSurface(a,b) +#define IDirectDrawSurface3_EnumAttachedSurfaces(p,a,b) (p)->EnumAttachedSurfaces(a,b) +#define IDirectDrawSurface3_EnumOverlayZOrders(p,a,b,c) (p)->EnumOverlayZOrders(a,b,c) +#define IDirectDrawSurface3_Flip(p,a,b) (p)->Flip(a,b) +#define IDirectDrawSurface3_GetAttachedSurface(p,a,b) (p)->GetAttachedSurface(a,b) +#define IDirectDrawSurface3_GetBltStatus(p,a) (p)->GetBltStatus(a) +#define IDirectDrawSurface3_GetCaps(p,b) (p)->GetCaps(b) +#define IDirectDrawSurface3_GetClipper(p,a) (p)->GetClipper(a) +#define IDirectDrawSurface3_GetColorKey(p,a,b) (p)->GetColorKey(a,b) +#define IDirectDrawSurface3_GetDC(p,a) (p)->GetDC(a) +#define IDirectDrawSurface3_GetFlipStatus(p,a) (p)->GetFlipStatus(a) +#define IDirectDrawSurface3_GetOverlayPosition(p,a,b) (p)->GetOverlayPosition(a,b) +#define IDirectDrawSurface3_GetPalette(p,a) (p)->GetPalette(a) +#define IDirectDrawSurface3_GetPixelFormat(p,a) (p)->GetPixelFormat(a) +#define IDirectDrawSurface3_GetSurfaceDesc(p,a) (p)->GetSurfaceDesc(a) +#define IDirectDrawSurface3_Initialize(p,a,b) (p)->Initialize(a,b) +#define IDirectDrawSurface3_IsLost(p) (p)->IsLost() +#define IDirectDrawSurface3_Lock(p,a,b,c,d) (p)->Lock(a,b,c,d) +#define IDirectDrawSurface3_ReleaseDC(p,a) (p)->ReleaseDC(a) +#define IDirectDrawSurface3_Restore(p) (p)->Restore() +#define IDirectDrawSurface3_SetClipper(p,a) (p)->SetClipper(a) +#define IDirectDrawSurface3_SetColorKey(p,a,b) (p)->SetColorKey(a,b) +#define IDirectDrawSurface3_SetOverlayPosition(p,a,b) (p)->SetOverlayPosition(a,b) +#define IDirectDrawSurface3_SetPalette(p,a) (p)->SetPalette(a) +#define IDirectDrawSurface3_Unlock(p,b) (p)->Unlock(b) +#define IDirectDrawSurface3_UpdateOverlay(p,a,b,c,d,e) (p)->UpdateOverlay(a,b,c,d,e) +#define IDirectDrawSurface3_UpdateOverlayDisplay(p,a) (p)->UpdateOverlayDisplay(a) +#define IDirectDrawSurface3_UpdateOverlayZOrder(p,a,b) (p)->UpdateOverlayZOrder(a,b) +#define IDirectDrawSurface3_GetDDInterface(p,a) (p)->GetDDInterface(a) +#define IDirectDrawSurface3_PageLock(p,a) (p)->PageLock(a) +#define IDirectDrawSurface3_PageUnlock(p,a) (p)->PageUnlock(a) +#define IDirectDrawSurface3_SetSurfaceDesc(p,a,b) (p)->SetSurfaceDesc(a,b) +#endif + +/* + * IDirectDrawSurface4 and related interfaces + */ +#undef INTERFACE +#define INTERFACE IDirectDrawSurface4 +DECLARE_INTERFACE_( IDirectDrawSurface4, IUnknown ) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID FAR * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + /*** IDirectDrawSurface methods ***/ + STDMETHOD(AddAttachedSurface)(THIS_ LPDIRECTDRAWSURFACE4) PURE; + STDMETHOD(AddOverlayDirtyRect)(THIS_ LPRECT) PURE; + STDMETHOD(Blt)(THIS_ LPRECT,LPDIRECTDRAWSURFACE4, LPRECT,DWORD, LPDDBLTFX) PURE; + STDMETHOD(BltBatch)(THIS_ LPDDBLTBATCH, DWORD, DWORD ) PURE; + STDMETHOD(BltFast)(THIS_ DWORD,DWORD,LPDIRECTDRAWSURFACE4, LPRECT,DWORD) PURE; + STDMETHOD(DeleteAttachedSurface)(THIS_ DWORD,LPDIRECTDRAWSURFACE4) PURE; + STDMETHOD(EnumAttachedSurfaces)(THIS_ LPVOID,LPDDENUMSURFACESCALLBACK2) PURE; + STDMETHOD(EnumOverlayZOrders)(THIS_ DWORD,LPVOID,LPDDENUMSURFACESCALLBACK2) PURE; + STDMETHOD(Flip)(THIS_ LPDIRECTDRAWSURFACE4, DWORD) PURE; + STDMETHOD(GetAttachedSurface)(THIS_ LPDDSCAPS2, LPDIRECTDRAWSURFACE4 FAR *) PURE; + STDMETHOD(GetBltStatus)(THIS_ DWORD) PURE; + STDMETHOD(GetCaps)(THIS_ LPDDSCAPS2) PURE; + STDMETHOD(GetClipper)(THIS_ LPDIRECTDRAWCLIPPER FAR*) PURE; + STDMETHOD(GetColorKey)(THIS_ DWORD, LPDDCOLORKEY) PURE; + STDMETHOD(GetDC)(THIS_ HDC FAR *) PURE; + STDMETHOD(GetFlipStatus)(THIS_ DWORD) PURE; + STDMETHOD(GetOverlayPosition)(THIS_ LPLONG, LPLONG ) PURE; + STDMETHOD(GetPalette)(THIS_ LPDIRECTDRAWPALETTE FAR*) PURE; + STDMETHOD(GetPixelFormat)(THIS_ LPDDPIXELFORMAT) PURE; + STDMETHOD(GetSurfaceDesc)(THIS_ LPDDSURFACEDESC2) PURE; + STDMETHOD(Initialize)(THIS_ LPDIRECTDRAW, LPDDSURFACEDESC2) PURE; + STDMETHOD(IsLost)(THIS) PURE; + STDMETHOD(Lock)(THIS_ LPRECT,LPDDSURFACEDESC2,DWORD,HANDLE) PURE; + STDMETHOD(ReleaseDC)(THIS_ HDC) PURE; + STDMETHOD(Restore)(THIS) PURE; + STDMETHOD(SetClipper)(THIS_ LPDIRECTDRAWCLIPPER) PURE; + STDMETHOD(SetColorKey)(THIS_ DWORD, LPDDCOLORKEY) PURE; + STDMETHOD(SetOverlayPosition)(THIS_ LONG, LONG ) PURE; + STDMETHOD(SetPalette)(THIS_ LPDIRECTDRAWPALETTE) PURE; + STDMETHOD(Unlock)(THIS_ LPRECT) PURE; + STDMETHOD(UpdateOverlay)(THIS_ LPRECT, LPDIRECTDRAWSURFACE4,LPRECT,DWORD, LPDDOVERLAYFX) PURE; + STDMETHOD(UpdateOverlayDisplay)(THIS_ DWORD) PURE; + STDMETHOD(UpdateOverlayZOrder)(THIS_ DWORD, LPDIRECTDRAWSURFACE4) PURE; + /*** Added in the v2 interface ***/ + STDMETHOD(GetDDInterface)(THIS_ LPVOID FAR *) PURE; + STDMETHOD(PageLock)(THIS_ DWORD) PURE; + STDMETHOD(PageUnlock)(THIS_ DWORD) PURE; + /*** Added in the v3 interface ***/ + STDMETHOD(SetSurfaceDesc)(THIS_ LPDDSURFACEDESC2, DWORD) PURE; + /*** Added in the v4 interface ***/ + STDMETHOD(SetPrivateData)(THIS_ REFGUID, LPVOID, DWORD, DWORD) PURE; + STDMETHOD(GetPrivateData)(THIS_ REFGUID, LPVOID, LPDWORD) PURE; + STDMETHOD(FreePrivateData)(THIS_ REFGUID) PURE; + STDMETHOD(GetUniquenessValue)(THIS_ LPDWORD) PURE; + STDMETHOD(ChangeUniquenessValue)(THIS) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectDrawSurface4_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectDrawSurface4_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectDrawSurface4_Release(p) (p)->lpVtbl->Release(p) +#define IDirectDrawSurface4_AddAttachedSurface(p,a) (p)->lpVtbl->AddAttachedSurface(p,a) +#define IDirectDrawSurface4_AddOverlayDirtyRect(p,a) (p)->lpVtbl->AddOverlayDirtyRect(p,a) +#define IDirectDrawSurface4_Blt(p,a,b,c,d,e) (p)->lpVtbl->Blt(p,a,b,c,d,e) +#define IDirectDrawSurface4_BltBatch(p,a,b,c) (p)->lpVtbl->BltBatch(p,a,b,c) +#define IDirectDrawSurface4_BltFast(p,a,b,c,d,e) (p)->lpVtbl->BltFast(p,a,b,c,d,e) +#define IDirectDrawSurface4_DeleteAttachedSurface(p,a,b) (p)->lpVtbl->DeleteAttachedSurface(p,a,b) +#define IDirectDrawSurface4_EnumAttachedSurfaces(p,a,b) (p)->lpVtbl->EnumAttachedSurfaces(p,a,b) +#define IDirectDrawSurface4_EnumOverlayZOrders(p,a,b,c) (p)->lpVtbl->EnumOverlayZOrders(p,a,b,c) +#define IDirectDrawSurface4_Flip(p,a,b) (p)->lpVtbl->Flip(p,a,b) +#define IDirectDrawSurface4_GetAttachedSurface(p,a,b) (p)->lpVtbl->GetAttachedSurface(p,a,b) +#define IDirectDrawSurface4_GetBltStatus(p,a) (p)->lpVtbl->GetBltStatus(p,a) +#define IDirectDrawSurface4_GetCaps(p,b) (p)->lpVtbl->GetCaps(p,b) +#define IDirectDrawSurface4_GetClipper(p,a) (p)->lpVtbl->GetClipper(p,a) +#define IDirectDrawSurface4_GetColorKey(p,a,b) (p)->lpVtbl->GetColorKey(p,a,b) +#define IDirectDrawSurface4_GetDC(p,a) (p)->lpVtbl->GetDC(p,a) +#define IDirectDrawSurface4_GetFlipStatus(p,a) (p)->lpVtbl->GetFlipStatus(p,a) +#define IDirectDrawSurface4_GetOverlayPosition(p,a,b) (p)->lpVtbl->GetOverlayPosition(p,a,b) +#define IDirectDrawSurface4_GetPalette(p,a) (p)->lpVtbl->GetPalette(p,a) +#define IDirectDrawSurface4_GetPixelFormat(p,a) (p)->lpVtbl->GetPixelFormat(p,a) +#define IDirectDrawSurface4_GetSurfaceDesc(p,a) (p)->lpVtbl->GetSurfaceDesc(p,a) +#define IDirectDrawSurface4_Initialize(p,a,b) (p)->lpVtbl->Initialize(p,a,b) +#define IDirectDrawSurface4_IsLost(p) (p)->lpVtbl->IsLost(p) +#define IDirectDrawSurface4_Lock(p,a,b,c,d) (p)->lpVtbl->Lock(p,a,b,c,d) +#define IDirectDrawSurface4_ReleaseDC(p,a) (p)->lpVtbl->ReleaseDC(p,a) +#define IDirectDrawSurface4_Restore(p) (p)->lpVtbl->Restore(p) +#define IDirectDrawSurface4_SetClipper(p,a) (p)->lpVtbl->SetClipper(p,a) +#define IDirectDrawSurface4_SetColorKey(p,a,b) (p)->lpVtbl->SetColorKey(p,a,b) +#define IDirectDrawSurface4_SetOverlayPosition(p,a,b) (p)->lpVtbl->SetOverlayPosition(p,a,b) +#define IDirectDrawSurface4_SetPalette(p,a) (p)->lpVtbl->SetPalette(p,a) +#define IDirectDrawSurface4_Unlock(p,b) (p)->lpVtbl->Unlock(p,b) +#define IDirectDrawSurface4_UpdateOverlay(p,a,b,c,d,e) (p)->lpVtbl->UpdateOverlay(p,a,b,c,d,e) +#define IDirectDrawSurface4_UpdateOverlayDisplay(p,a) (p)->lpVtbl->UpdateOverlayDisplay(p,a) +#define IDirectDrawSurface4_UpdateOverlayZOrder(p,a,b) (p)->lpVtbl->UpdateOverlayZOrder(p,a,b) +#define IDirectDrawSurface4_GetDDInterface(p,a) (p)->lpVtbl->GetDDInterface(p,a) +#define IDirectDrawSurface4_PageLock(p,a) (p)->lpVtbl->PageLock(p,a) +#define IDirectDrawSurface4_PageUnlock(p,a) (p)->lpVtbl->PageUnlock(p,a) +#define IDirectDrawSurface4_SetSurfaceDesc(p,a,b) (p)->lpVtbl->SetSurfaceDesc(p,a,b) +#define IDirectDrawSurface4_SetPrivateData(p,a,b,c,d) (p)->lpVtbl->SetPrivateData(p,a,b,c,d) +#define IDirectDrawSurface4_GetPrivateData(p,a,b,c) (p)->lpVtbl->GetPrivateData(p,a,b,c) +#define IDirectDrawSurface4_FreePrivateData(p,a) (p)->lpVtbl->FreePrivateData(p,a) +#define IDirectDrawSurface4_GetUniquenessValue(p, a) (p)->lpVtbl->GetUniquenessValue(p, a) +#define IDirectDrawSurface4_ChangeUniquenessValue(p) (p)->lpVtbl->ChangeUniquenessValue(p) +#else +#define IDirectDrawSurface4_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectDrawSurface4_AddRef(p) (p)->AddRef() +#define IDirectDrawSurface4_Release(p) (p)->Release() +#define IDirectDrawSurface4_AddAttachedSurface(p,a) (p)->AddAttachedSurface(a) +#define IDirectDrawSurface4_AddOverlayDirtyRect(p,a) (p)->AddOverlayDirtyRect(a) +#define IDirectDrawSurface4_Blt(p,a,b,c,d,e) (p)->Blt(a,b,c,d,e) +#define IDirectDrawSurface4_BltBatch(p,a,b,c) (p)->BltBatch(a,b,c) +#define IDirectDrawSurface4_BltFast(p,a,b,c,d,e) (p)->BltFast(a,b,c,d,e) +#define IDirectDrawSurface4_DeleteAttachedSurface(p,a,b) (p)->DeleteAttachedSurface(a,b) +#define IDirectDrawSurface4_EnumAttachedSurfaces(p,a,b) (p)->EnumAttachedSurfaces(a,b) +#define IDirectDrawSurface4_EnumOverlayZOrders(p,a,b,c) (p)->EnumOverlayZOrders(a,b,c) +#define IDirectDrawSurface4_Flip(p,a,b) (p)->Flip(a,b) +#define IDirectDrawSurface4_GetAttachedSurface(p,a,b) (p)->GetAttachedSurface(a,b) +#define IDirectDrawSurface4_GetBltStatus(p,a) (p)->GetBltStatus(a) +#define IDirectDrawSurface4_GetCaps(p,b) (p)->GetCaps(b) +#define IDirectDrawSurface4_GetClipper(p,a) (p)->GetClipper(a) +#define IDirectDrawSurface4_GetColorKey(p,a,b) (p)->GetColorKey(a,b) +#define IDirectDrawSurface4_GetDC(p,a) (p)->GetDC(a) +#define IDirectDrawSurface4_GetFlipStatus(p,a) (p)->GetFlipStatus(a) +#define IDirectDrawSurface4_GetOverlayPosition(p,a,b) (p)->GetOverlayPosition(a,b) +#define IDirectDrawSurface4_GetPalette(p,a) (p)->GetPalette(a) +#define IDirectDrawSurface4_GetPixelFormat(p,a) (p)->GetPixelFormat(a) +#define IDirectDrawSurface4_GetSurfaceDesc(p,a) (p)->GetSurfaceDesc(a) +#define IDirectDrawSurface4_Initialize(p,a,b) (p)->Initialize(a,b) +#define IDirectDrawSurface4_IsLost(p) (p)->IsLost() +#define IDirectDrawSurface4_Lock(p,a,b,c,d) (p)->Lock(a,b,c,d) +#define IDirectDrawSurface4_ReleaseDC(p,a) (p)->ReleaseDC(a) +#define IDirectDrawSurface4_Restore(p) (p)->Restore() +#define IDirectDrawSurface4_SetClipper(p,a) (p)->SetClipper(a) +#define IDirectDrawSurface4_SetColorKey(p,a,b) (p)->SetColorKey(a,b) +#define IDirectDrawSurface4_SetOverlayPosition(p,a,b) (p)->SetOverlayPosition(a,b) +#define IDirectDrawSurface4_SetPalette(p,a) (p)->SetPalette(a) +#define IDirectDrawSurface4_Unlock(p,b) (p)->Unlock(b) +#define IDirectDrawSurface4_UpdateOverlay(p,a,b,c,d,e) (p)->UpdateOverlay(a,b,c,d,e) +#define IDirectDrawSurface4_UpdateOverlayDisplay(p,a) (p)->UpdateOverlayDisplay(a) +#define IDirectDrawSurface4_UpdateOverlayZOrder(p,a,b) (p)->UpdateOverlayZOrder(a,b) +#define IDirectDrawSurface4_GetDDInterface(p,a) (p)->GetDDInterface(a) +#define IDirectDrawSurface4_PageLock(p,a) (p)->PageLock(a) +#define IDirectDrawSurface4_PageUnlock(p,a) (p)->PageUnlock(a) +#define IDirectDrawSurface4_SetSurfaceDesc(p,a,b) (p)->SetSurfaceDesc(a,b) +#define IDirectDrawSurface4_SetPrivateData(p,a,b,c,d) (p)->SetPrivateData(a,b,c,d) +#define IDirectDrawSurface4_GetPrivateData(p,a,b,c) (p)->GetPrivateData(a,b,c) +#define IDirectDrawSurface4_FreePrivateData(p,a) (p)->FreePrivateData(a) +#define IDirectDrawSurface4_GetUniquenessValue(p, a) (p)->GetUniquenessValue(a) +#define IDirectDrawSurface4_ChangeUniquenessValue(p) (p)->ChangeUniquenessValue() +#endif + + + +/* + * IDirectDrawColorControl + */ +#if defined( _WIN32 ) && !defined( _NO_COM ) +#undef INTERFACE +#define INTERFACE IDirectDrawColorControl +DECLARE_INTERFACE_( IDirectDrawColorControl, IUnknown ) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID FAR * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + /*** IDirectDrawColorControl methods ***/ + STDMETHOD(GetColorControls)(THIS_ LPDDCOLORCONTROL) PURE; + STDMETHOD(SetColorControls)(THIS_ LPDDCOLORCONTROL) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectDrawColorControl_QueryInterface(p, a, b) (p)->lpVtbl->QueryInterface(p, a, b) +#define IDirectDrawColorControl_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectDrawColorControl_Release(p) (p)->lpVtbl->Release(p) +#define IDirectDrawColorControl_GetColorControls(p, a) (p)->lpVtbl->GetColorControls(p, a) +#define IDirectDrawColorControl_SetColorControls(p, a) (p)->lpVtbl->SetColorControls(p, a) +#else +#define IDirectDrawColorControl_QueryInterface(p, a, b) (p)->QueryInterface(a, b) +#define IDirectDrawColorControl_AddRef(p) (p)->AddRef() +#define IDirectDrawColorControl_Release(p) (p)->Release() +#define IDirectDrawColorControl_GetColorControls(p, a) (p)->GetColorControls(a) +#define IDirectDrawColorControl_SetColorControls(p, a) (p)->SetColorControls(a) +#endif + +#endif + + +/* + * IDirectDrawGammaControl + */ +#if defined( _WIN32 ) && !defined( _NO_COM ) +#undef INTERFACE +#define INTERFACE IDirectDrawGammaControl +DECLARE_INTERFACE_( IDirectDrawGammaControl, IUnknown ) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID FAR * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + /*** IDirectDrawColorControl methods ***/ + STDMETHOD(GetGammaRamp)(THIS_ DWORD, LPDDGAMMARAMP) PURE; + STDMETHOD(SetGammaRamp)(THIS_ DWORD, LPDDGAMMARAMP) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectDrawGammaControl_QueryInterface(p, a, b) (p)->lpVtbl->QueryInterface(p, a, b) +#define IDirectDrawGammaControl_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectDrawGammaControl_Release(p) (p)->lpVtbl->Release(p) +#define IDirectDrawGammaControl_GetGammaRamp(p, a, b) (p)->lpVtbl->GetGammaRamp(p, a, b) +#define IDirectDrawGammaControl_SetGammaRamp(p, a, b) (p)->lpVtbl->SetGammaRamp(p, a, b) +#else +#define IDirectDrawGammaControl_QueryInterface(p, a, b) (p)->QueryInterface(a, b) +#define IDirectDrawGammaControl_AddRef(p) (p)->AddRef() +#define IDirectDrawGammaControl_Release(p) (p)->Release() +#define IDirectDrawGammaControl_GetGammaRamp(p, a, b) (p)->GetGammaRamp(a, b) +#define IDirectDrawGammaControl_SetGammaRamp(p, a, b) (p)->SetGammaRamp(a, b) +#endif + +#endif + + + +#endif + + +/* + * DDSURFACEDESC + */ +typedef struct _DDSURFACEDESC +{ + DWORD dwSize; // size of the DDSURFACEDESC structure + DWORD dwFlags; // determines what fields are valid + DWORD dwHeight; // height of surface to be created + DWORD dwWidth; // width of input surface + union + { + LONG lPitch; // distance to start of next line (return value only) + DWORD dwLinearSize; // Formless late-allocated optimized surface size + } DUMMYUNIONNAMEN(1); + DWORD dwBackBufferCount; // number of back buffers requested + union + { + DWORD dwMipMapCount; // number of mip-map levels requested + DWORD dwZBufferBitDepth; // depth of Z buffer requested + DWORD dwRefreshRate; // refresh rate (used when display mode is described) + } DUMMYUNIONNAMEN(2); + DWORD dwAlphaBitDepth; // depth of alpha buffer requested + DWORD dwReserved; // reserved + LPVOID lpSurface; // pointer to the associated surface memory + DDCOLORKEY ddckCKDestOverlay; // color key for destination overlay use + DDCOLORKEY ddckCKDestBlt; // color key for destination blt use + DDCOLORKEY ddckCKSrcOverlay; // color key for source overlay use + DDCOLORKEY ddckCKSrcBlt; // color key for source blt use + DDPIXELFORMAT ddpfPixelFormat; // pixel format description of the surface + DDSCAPS ddsCaps; // direct draw surface capabilities +} DDSURFACEDESC; + +/* + * DDSURFACEDESC2 + */ +typedef struct _DDSURFACEDESC2 +{ + DWORD dwSize; // size of the DDSURFACEDESC structure + DWORD dwFlags; // determines what fields are valid + DWORD dwHeight; // height of surface to be created + DWORD dwWidth; // width of input surface + union + { + LONG lPitch; // distance to start of next line (return value only) + DWORD dwLinearSize; // Formless late-allocated optimized surface size + } DUMMYUNIONNAMEN(1); + DWORD dwBackBufferCount; // number of back buffers requested + union + { + DWORD dwMipMapCount; // number of mip-map levels requestde + // dwZBufferBitDepth removed, use ddpfPixelFormat one instead + DWORD dwRefreshRate; // refresh rate (used when display mode is described) + } DUMMYUNIONNAMEN(2); + DWORD dwAlphaBitDepth; // depth of alpha buffer requested + DWORD dwReserved; // reserved + LPVOID lpSurface; // pointer to the associated surface memory + DDCOLORKEY ddckCKDestOverlay; // color key for destination overlay use + DDCOLORKEY ddckCKDestBlt; // color key for destination blt use + DDCOLORKEY ddckCKSrcOverlay; // color key for source overlay use + DDCOLORKEY ddckCKSrcBlt; // color key for source blt use + DDPIXELFORMAT ddpfPixelFormat; // pixel format description of the surface + DDSCAPS2 ddsCaps; // direct draw surface capabilities + DWORD dwTextureStage; // stage in multitexture cascade +} DDSURFACEDESC2; + +/* + * ddsCaps field is valid. + */ +#define DDSD_CAPS 0x00000001l // default + +/* + * dwHeight field is valid. + */ +#define DDSD_HEIGHT 0x00000002l + +/* + * dwWidth field is valid. + */ +#define DDSD_WIDTH 0x00000004l + +/* + * lPitch is valid. + */ +#define DDSD_PITCH 0x00000008l + +/* + * dwBackBufferCount is valid. + */ +#define DDSD_BACKBUFFERCOUNT 0x00000020l + +/* + * dwZBufferBitDepth is valid. (shouldnt be used in DDSURFACEDESC2) + */ +#define DDSD_ZBUFFERBITDEPTH 0x00000040l + +/* + * dwAlphaBitDepth is valid. + */ +#define DDSD_ALPHABITDEPTH 0x00000080l + + +/* + * lpSurface is valid. + */ +#define DDSD_LPSURFACE 0x00000800l + +/* + * ddpfPixelFormat is valid. + */ +#define DDSD_PIXELFORMAT 0x00001000l + +/* + * ddckCKDestOverlay is valid. + */ +#define DDSD_CKDESTOVERLAY 0x00002000l + +/* + * ddckCKDestBlt is valid. + */ +#define DDSD_CKDESTBLT 0x00004000l + +/* + * ddckCKSrcOverlay is valid. + */ +#define DDSD_CKSRCOVERLAY 0x00008000l + +/* + * ddckCKSrcBlt is valid. + */ +#define DDSD_CKSRCBLT 0x00010000l + +/* + * dwMipMapCount is valid. + */ +#define DDSD_MIPMAPCOUNT 0x00020000l + + /* + * dwRefreshRate is valid + */ +#define DDSD_REFRESHRATE 0x00040000l + +/* + * dwLinearSize is valid + */ +#define DDSD_LINEARSIZE 0x00080000l + +/* + * dwTextureStage is valid + */ +#define DDSD_TEXTURESTAGE 0x00100000l +/* + * All input fields are valid. + */ +#define DDSD_ALL 0x001ff9eel + + +/* + * DDOPTSURFACEDESC + */ +typedef struct _DDOPTSURFACEDESC +{ + DWORD dwSize; // size of the DDOPTSURFACEDESC structure + DWORD dwFlags; // determines what fields are valid + DDSCAPS2 ddSCaps; // Common caps like: Memory type + DDOSCAPS ddOSCaps; // Common caps like: Memory type + GUID guid; // Compression technique GUID + DWORD dwCompressionRatio; // Compression ratio +} DDOPTSURFACEDESC; + +/* + * guid field is valid. + */ +#define DDOSD_GUID 0x00000001l + +/* + * dwCompressionRatio field is valid. + */ +#define DDOSD_COMPRESSION_RATIO 0x00000002l + +/* + * ddSCaps field is valid. + */ +#define DDOSD_SCAPS 0x00000004l + +/* + * ddOSCaps field is valid. + */ +#define DDOSD_OSCAPS 0x00000008l + +/* + * All input fields are valid. + */ +#define DDOSD_ALL 0x0000000fl + +/* + * The surface's optimized pixelformat is compressed + */ +#define DDOSDCAPS_OPTCOMPRESSED 0x00000001l + +/* + * The surface's optimized pixelformat is reordered + */ +#define DDOSDCAPS_OPTREORDERED 0x00000002l + +/* + * The opt surface is a monolithic mipmap + */ +#define DDOSDCAPS_MONOLITHICMIPMAP 0x00000004l + +/* + * The valid Surf caps: + * #define DDSCAPS_SYSTEMMEMORY 0x00000800l + * #define DDSCAPS_VIDEOMEMORY 0x00004000l + * #define DDSCAPS_LOCALVIDMEM 0x10000000l + * #define DDSCAPS_NONLOCALVIDMEM 0x20000000l + */ +#define DDOSDCAPS_VALIDSCAPS 0x30004800l + +/* + * The valid OptSurf caps + */ +#define DDOSDCAPS_VALIDOSCAPS 0x00000007l + + +/* + * DDCOLORCONTROL + */ +typedef struct _DDCOLORCONTROL +{ + DWORD dwSize; + DWORD dwFlags; + LONG lBrightness; + LONG lContrast; + LONG lHue; + LONG lSaturation; + LONG lSharpness; + LONG lGamma; + LONG lColorEnable; + DWORD dwReserved1; +} DDCOLORCONTROL; + + +/* + * lBrightness field is valid. + */ +#define DDCOLOR_BRIGHTNESS 0x00000001l + +/* + * lContrast field is valid. + */ +#define DDCOLOR_CONTRAST 0x00000002l + +/* + * lHue field is valid. + */ +#define DDCOLOR_HUE 0x00000004l + +/* + * lSaturation field is valid. + */ +#define DDCOLOR_SATURATION 0x00000008l + +/* + * lSharpness field is valid. + */ +#define DDCOLOR_SHARPNESS 0x00000010l + +/* + * lGamma field is valid. + */ +#define DDCOLOR_GAMMA 0x00000020l + +/* + * lColorEnable field is valid. + */ +#define DDCOLOR_COLORENABLE 0x00000040l + + + +/*============================================================================ + * + * Direct Draw Capability Flags + * + * These flags are used to describe the capabilities of a given Surface. + * All flags are bit flags. + * + *==========================================================================*/ + +/**************************************************************************** + * + * DIRECTDRAWSURFACE CAPABILITY FLAGS + * + ****************************************************************************/ + +/* + * This bit is reserved. It should not be specified. + */ +#define DDSCAPS_RESERVED1 0x00000001l + +/* + * Indicates that this surface contains alpha-only information. + * (To determine if a surface is RGBA/YUVA, the pixel format must be + * interrogated.) + */ +#define DDSCAPS_ALPHA 0x00000002l + +/* + * Indicates that this surface is a backbuffer. It is generally + * set by CreateSurface when the DDSCAPS_FLIP capability bit is set. + * It indicates that this surface is THE back buffer of a surface + * flipping structure. DirectDraw supports N surfaces in a + * surface flipping structure. Only the surface that immediately + * precedeces the DDSCAPS_FRONTBUFFER has this capability bit set. + * The other surfaces are identified as back buffers by the presence + * of the DDSCAPS_FLIP capability, their attachment order, and the + * absence of the DDSCAPS_FRONTBUFFER and DDSCAPS_BACKBUFFER + * capabilities. The bit is sent to CreateSurface when a standalone + * back buffer is being created. This surface could be attached to + * a front buffer and/or back buffers to form a flipping surface + * structure after the CreateSurface call. See AddAttachments for + * a detailed description of the behaviors in this case. + */ +#define DDSCAPS_BACKBUFFER 0x00000004l + +/* + * Indicates a complex surface structure is being described. A + * complex surface structure results in the creation of more than + * one surface. The additional surfaces are attached to the root + * surface. The complex structure can only be destroyed by + * destroying the root. + */ +#define DDSCAPS_COMPLEX 0x00000008l + +/* + * Indicates that this surface is a part of a surface flipping structure. + * When it is passed to CreateSurface the DDSCAPS_FRONTBUFFER and + * DDSCAP_BACKBUFFER bits are not set. They are set by CreateSurface + * on the resulting creations. The dwBackBufferCount field in the + * DDSURFACEDESC structure must be set to at least 1 in order for + * the CreateSurface call to succeed. The DDSCAPS_COMPLEX capability + * must always be set with creating multiple surfaces through CreateSurface. + */ +#define DDSCAPS_FLIP 0x00000010l + +/* + * Indicates that this surface is THE front buffer of a surface flipping + * structure. It is generally set by CreateSurface when the DDSCAPS_FLIP + * capability bit is set. + * If this capability is sent to CreateSurface then a standalonw front buffer + * is created. This surface will not have the DDSCAPS_FLIP capability. + * It can be attached to other back buffers to form a flipping structure. + * See AddAttachments for a detailed description of the behaviors in this + * case. + */ +#define DDSCAPS_FRONTBUFFER 0x00000020l + +/* + * Indicates that this surface is any offscreen surface that is not an overlay, + * texture, zbuffer, front buffer, back buffer, or alpha surface. It is used + * to identify plain vanilla surfaces. + */ +#define DDSCAPS_OFFSCREENPLAIN 0x00000040l + +/* + * Indicates that this surface is an overlay. It may or may not be directly visible + * depending on whether or not it is currently being overlayed onto the primary + * surface. DDSCAPS_VISIBLE can be used to determine whether or not it is being + * overlayed at the moment. + */ +#define DDSCAPS_OVERLAY 0x00000080l + +/* + * Indicates that unique DirectDrawPalette objects can be created and + * attached to this surface. + */ +#define DDSCAPS_PALETTE 0x00000100l + +/* + * Indicates that this surface is the primary surface. The primary + * surface represents what the user is seeing at the moment. + */ +#define DDSCAPS_PRIMARYSURFACE 0x00000200l + +/* + * Indicates that this surface is the primary surface for the left eye. + * The primary surface for the left eye represents what the user is seeing + * at the moment with the users left eye. When this surface is created the + * DDSCAPS_PRIMARYSURFACE represents what the user is seeing with the users + * right eye. + */ +#define DDSCAPS_PRIMARYSURFACELEFT 0x00000400l + +/* + * Indicates that this surface memory was allocated in system memory + */ +#define DDSCAPS_SYSTEMMEMORY 0x00000800l + +/* + * Indicates that this surface can be used as a 3D texture. It does not + * indicate whether or not the surface is being used for that purpose. + */ +#define DDSCAPS_TEXTURE 0x00001000l + +/* + * Indicates that a surface may be a destination for 3D rendering. This + * bit must be set in order to query for a Direct3D Device Interface + * from this surface. + */ +#define DDSCAPS_3DDEVICE 0x00002000l + +/* + * Indicates that this surface exists in video memory. + */ +#define DDSCAPS_VIDEOMEMORY 0x00004000l + +/* + * Indicates that changes made to this surface are immediately visible. + * It is always set for the primary surface and is set for overlays while + * they are being overlayed and texture maps while they are being textured. + */ +#define DDSCAPS_VISIBLE 0x00008000l + +/* + * Indicates that only writes are permitted to the surface. Read accesses + * from the surface may or may not generate a protection fault, but the + * results of a read from this surface will not be meaningful. READ ONLY. + */ +#define DDSCAPS_WRITEONLY 0x00010000l + +/* + * Indicates that this surface is a z buffer. A z buffer does not contain + * displayable information. Instead it contains bit depth information that is + * used to determine which pixels are visible and which are obscured. + */ +#define DDSCAPS_ZBUFFER 0x00020000l + +/* + * Indicates surface will have a DC associated long term + */ +#define DDSCAPS_OWNDC 0x00040000l + +/* + * Indicates surface should be able to receive live video + */ +#define DDSCAPS_LIVEVIDEO 0x00080000l + +/* + * Indicates surface should be able to have a stream decompressed + * to it by the hardware. + */ +#define DDSCAPS_HWCODEC 0x00100000l + +/* + * Surface is a ModeX surface. + * + */ +#define DDSCAPS_MODEX 0x00200000l + +/* + * Indicates surface is one level of a mip-map. This surface will + * be attached to other DDSCAPS_MIPMAP surfaces to form the mip-map. + * This can be done explicitly, by creating a number of surfaces and + * attaching them with AddAttachedSurface or by implicitly by CreateSurface. + * If this bit is set then DDSCAPS_TEXTURE must also be set. + */ +#define DDSCAPS_MIPMAP 0x00400000l + +/* + * This bit is reserved. It should not be specified. + */ +#define DDSCAPS_RESERVED2 0x00800000l + + +/* + * Indicates that memory for the surface is not allocated until the surface + * is loaded (via the Direct3D texture Load() function). + */ +#define DDSCAPS_ALLOCONLOAD 0x04000000l + +/* + * Indicates that the surface will recieve data from a video port. + */ +#define DDSCAPS_VIDEOPORT 0x08000000l + +/* + * Indicates that a video memory surface is resident in true, local video + * memory rather than non-local video memory. If this flag is specified then + * so must DDSCAPS_VIDEOMEMORY. This flag is mutually exclusive with + * DDSCAPS_NONLOCALVIDMEM. + */ +#define DDSCAPS_LOCALVIDMEM 0x10000000l + +/* + * Indicates that a video memory surface is resident in non-local video + * memory rather than true, local video memory. If this flag is specified + * then so must DDSCAPS_VIDEOMEMORY. This flag is mutually exclusive with + * DDSCAPS_LOCALVIDMEM. + */ +#define DDSCAPS_NONLOCALVIDMEM 0x20000000l + +/* + * Indicates that this surface is a standard VGA mode surface, and not a + * ModeX surface. (This flag will never be set in combination with the + * DDSCAPS_MODEX flag). + */ +#define DDSCAPS_STANDARDVGAMODE 0x40000000l + +/* + * Indicates that this surface will be an optimized surface. This flag is + * currently only valid in conjunction with the DDSCAPS_TEXTURE flag. The surface + * will be created without any underlying video memory until loaded. + */ +#define DDSCAPS_OPTIMIZED 0x80000000l + + + + +/* + * Indicates that this surface will receive data from a video port using + * the de-interlacing hardware. This allows the driver to allocate memory + * for any extra buffers that may be required. The DDSCAPS_VIDEOPORT and + * DDSCAPS_OVERLAY flags must also be set. + */ +#define DDSCAPS2_HARDWAREDEINTERLACE 0x00000002L + +/* + * Indicates to the driver that this surface will be locked very frequently + * (for procedural textures, dynamic lightmaps, etc). Surfaces with this cap + * set must also have DDSCAPS_TEXTURE. This cap cannot be used with + * DDSCAPS2_HINTSTATIC and DDSCAPS2_OPAQUE. + */ +#define DDSCAPS2_HINTDYNAMIC 0x00000004L + +/* + * Indicates to the driver that this surface can be re-ordered/retiled on + * load. This operation will not change the size of the texture. It is + * relatively fast and symmetrical, since the application may lock these + * bits (although it will take a performance hit when doing so). Surfaces + * with this cap set must also have DDSCAPS_TEXTURE. This cap cannot be + * used with DDSCAPS2_HINTDYNAMIC and DDSCAPS2_OPAQUE. + */ +#define DDSCAPS2_HINTSTATIC 0x00000008L + +/* + * Indicates that the client would like this texture surface to be managed by the + * DirectDraw/Direct3D runtime. Surfaces with this cap set must also have + * DDSCAPS_TEXTURE set. + */ +#define DDSCAPS2_TEXTUREMANAGE 0x00000010L + +/* + * These bits are reserved for internal use */ +#define DDSCAPS2_RESERVED1 0x00000020L +#define DDSCAPS2_RESERVED2 0x00000040L + +/* + * Indicates to the driver that this surface will never be locked again. + * The driver is free to optimize this surface via retiling and actual compression. + * All calls to Lock() or Blts from this surface will fail. Surfaces with this + * cap set must also have DDSCAPS_TEXTURE. This cap cannot be used with + * DDSCAPS2_HINTDYNAMIC and DDSCAPS2_HINTSTATIC. + */ +#define DDSCAPS2_OPAQUE 0x00000080L + +/* + * Applications should set this bit at CreateSurface time to indicate that they + * intend to use antialiasing. Only valid if DDSCAPS_3DDEVICE is also set. + */ +#define DDSCAPS2_HINTANTIALIASING 0x00000100L + + + + + /**************************************************************************** + * + * DIRECTDRAW DRIVER CAPABILITY FLAGS + * + ****************************************************************************/ + +/* + * Display hardware has 3D acceleration. + */ +#define DDCAPS_3D 0x00000001l + +/* + * Indicates that DirectDraw will support only dest rectangles that are aligned + * on DIRECTDRAWCAPS.dwAlignBoundaryDest boundaries of the surface, respectively. + * READ ONLY. + */ +#define DDCAPS_ALIGNBOUNDARYDEST 0x00000002l + +/* + * Indicates that DirectDraw will support only source rectangles whose sizes in + * BYTEs are DIRECTDRAWCAPS.dwAlignSizeDest multiples, respectively. READ ONLY. + */ +#define DDCAPS_ALIGNSIZEDEST 0x00000004l +/* + * Indicates that DirectDraw will support only source rectangles that are aligned + * on DIRECTDRAWCAPS.dwAlignBoundarySrc boundaries of the surface, respectively. + * READ ONLY. + */ +#define DDCAPS_ALIGNBOUNDARYSRC 0x00000008l + +/* + * Indicates that DirectDraw will support only source rectangles whose sizes in + * BYTEs are DIRECTDRAWCAPS.dwAlignSizeSrc multiples, respectively. READ ONLY. + */ +#define DDCAPS_ALIGNSIZESRC 0x00000010l + +/* + * Indicates that DirectDraw will create video memory surfaces that have a stride + * alignment equal to DIRECTDRAWCAPS.dwAlignStride. READ ONLY. + */ +#define DDCAPS_ALIGNSTRIDE 0x00000020l + +/* + * Display hardware is capable of blt operations. + */ +#define DDCAPS_BLT 0x00000040l + +/* + * Display hardware is capable of asynchronous blt operations. + */ +#define DDCAPS_BLTQUEUE 0x00000080l + +/* + * Display hardware is capable of color space conversions during the blt operation. + */ +#define DDCAPS_BLTFOURCC 0x00000100l + +/* + * Display hardware is capable of stretching during blt operations. + */ +#define DDCAPS_BLTSTRETCH 0x00000200l + +/* + * Display hardware is shared with GDI. + */ +#define DDCAPS_GDI 0x00000400l + +/* + * Display hardware can overlay. + */ +#define DDCAPS_OVERLAY 0x00000800l + +/* + * Set if display hardware supports overlays but can not clip them. + */ +#define DDCAPS_OVERLAYCANTCLIP 0x00001000l + +/* + * Indicates that overlay hardware is capable of color space conversions during + * the overlay operation. + */ +#define DDCAPS_OVERLAYFOURCC 0x00002000l + +/* + * Indicates that stretching can be done by the overlay hardware. + */ +#define DDCAPS_OVERLAYSTRETCH 0x00004000l + +/* + * Indicates that unique DirectDrawPalettes can be created for DirectDrawSurfaces + * other than the primary surface. + */ +#define DDCAPS_PALETTE 0x00008000l + +/* + * Indicates that palette changes can be syncd with the veritcal refresh. + */ +#define DDCAPS_PALETTEVSYNC 0x00010000l + +/* + * Display hardware can return the current scan line. + */ +#define DDCAPS_READSCANLINE 0x00020000l + +/* + * Display hardware has stereo vision capabilities. DDSCAPS_PRIMARYSURFACELEFT + * can be created. + */ +#define DDCAPS_STEREOVIEW 0x00040000l + +/* + * Display hardware is capable of generating a vertical blank interrupt. + */ +#define DDCAPS_VBI 0x00080000l + +/* + * Supports the use of z buffers with blt operations. + */ +#define DDCAPS_ZBLTS 0x00100000l + +/* + * Supports Z Ordering of overlays. + */ +#define DDCAPS_ZOVERLAYS 0x00200000l + +/* + * Supports color key + */ +#define DDCAPS_COLORKEY 0x00400000l + +/* + * Supports alpha surfaces + */ +#define DDCAPS_ALPHA 0x00800000l + +/* + * colorkey is hardware assisted(DDCAPS_COLORKEY will also be set) + */ +#define DDCAPS_COLORKEYHWASSIST 0x01000000l + +/* + * no hardware support at all + */ +#define DDCAPS_NOHARDWARE 0x02000000l + +/* + * Display hardware is capable of color fill with bltter + */ +#define DDCAPS_BLTCOLORFILL 0x04000000l + +/* + * Display hardware is bank switched, and potentially very slow at + * random access to VRAM. + */ +#define DDCAPS_BANKSWITCHED 0x08000000l + +/* + * Display hardware is capable of depth filling Z-buffers with bltter + */ +#define DDCAPS_BLTDEPTHFILL 0x10000000l + +/* + * Display hardware is capable of clipping while bltting. + */ +#define DDCAPS_CANCLIP 0x20000000l + +/* + * Display hardware is capable of clipping while stretch bltting. + */ +#define DDCAPS_CANCLIPSTRETCHED 0x40000000l + +/* + * Display hardware is capable of bltting to or from system memory + */ +#define DDCAPS_CANBLTSYSMEM 0x80000000l + + + /**************************************************************************** + * + * MORE DIRECTDRAW DRIVER CAPABILITY FLAGS (dwCaps2) + * + ****************************************************************************/ + +/* + * Display hardware is certified + */ +#define DDCAPS2_CERTIFIED 0x00000001l + +/* + * Driver cannot interleave 2D operations (lock and blt) to surfaces with + * Direct3D rendering operations between calls to BeginScene() and EndScene() + */ +#define DDCAPS2_NO2DDURING3DSCENE 0x00000002l + +/* + * Display hardware contains a video port + */ +#define DDCAPS2_VIDEOPORT 0x00000004l + +/* + * The overlay can be automatically flipped according to the video port + * VSYNCs, providing automatic doubled buffered display of video port + * data using an overlay + */ +#define DDCAPS2_AUTOFLIPOVERLAY 0x00000008l + +/* + * Overlay can display each field of interlaced data individually while + * it is interleaved in memory without causing jittery artifacts. + */ +#define DDCAPS2_CANBOBINTERLEAVED 0x00000010l + +/* + * Overlay can display each field of interlaced data individually while + * it is not interleaved in memory without causing jittery artifacts. + */ +#define DDCAPS2_CANBOBNONINTERLEAVED 0x00000020l + +/* + * The overlay surface contains color controls (brightness, sharpness, etc.) + */ +#define DDCAPS2_COLORCONTROLOVERLAY 0x00000040l + +/* + * The primary surface contains color controls (gamma, etc.) + */ +#define DDCAPS2_COLORCONTROLPRIMARY 0x00000080l + +/* + * RGBZ -> RGB supported for 16:16 RGB:Z + */ +#define DDCAPS2_CANDROPZ16BIT 0x00000100l + +/* + * Driver supports non-local video memory. + */ +#define DDCAPS2_NONLOCALVIDMEM 0x00000200l + +/* + * Dirver supports non-local video memory but has different capabilities for + * non-local video memory surfaces. If this bit is set then so must + * DDCAPS2_NONLOCALVIDMEM. + */ +#define DDCAPS2_NONLOCALVIDMEMCAPS 0x00000400l + +/* + * Driver neither requires nor prefers surfaces to be pagelocked when performing + * blts involving system memory surfaces + */ +#define DDCAPS2_NOPAGELOCKREQUIRED 0x00000800l + +/* + * Driver can create surfaces which are wider than the primary surface + */ +#define DDCAPS2_WIDESURFACES 0x00001000l + +/* + * Driver supports bob without using a video port by handling the + * DDFLIP_ODD and DDFLIP_EVEN flags specified in Flip. + */ +#define DDCAPS2_CANFLIPODDEVEN 0x00002000l + +/* + * Driver supports bob using hardware + */ +#define DDCAPS2_CANBOBHARDWARE 0x00004000l + +/* + * Driver supports bltting any FOURCC surface to another surface of the same FOURCC + */ +#define DDCAPS2_COPYFOURCC 0x00008000l + + +/* + * Driver supports loadable gamma ramps for the primary surface + */ +#define DDCAPS2_PRIMARYGAMMA 0x00020000l + +/* + * Driver can render in windowed mode. + */ +#define DDCAPS2_CANRENDERWINDOWED 0x00080000l + +/* + * A calibrator is available to adjust the gamma ramp according to the + * physical display properties so that the result will be identical on + * all calibrated systems. + */ +#define DDCAPS2_CANCALIBRATEGAMMA 0x00100000l + +/* + * Indicates that the driver will respond to DDFLIP_INTERVALn flags + */ +#define DDCAPS2_FLIPINTERVAL 0x00200000l + +/* + * Indicates that the driver will respond to DDFLIP_NOVSYNC + */ +#define DDCAPS2_FLIPNOVSYNC 0x00400000l + + +/**************************************************************************** + * + * DIRECTDRAW FX ALPHA CAPABILITY FLAGS + * + ****************************************************************************/ + +/* + * Supports alpha blending around the edge of a source color keyed surface. + * For Blt. + */ +#define DDFXALPHACAPS_BLTALPHAEDGEBLEND 0x00000001l + +/* + * Supports alpha information in the pixel format. The bit depth of alpha + * information in the pixel format can be 1,2,4, or 8. The alpha value becomes + * more opaque as the alpha value increases. (0 is transparent.) + * For Blt. + */ +#define DDFXALPHACAPS_BLTALPHAPIXELS 0x00000002l + +/* + * Supports alpha information in the pixel format. The bit depth of alpha + * information in the pixel format can be 1,2,4, or 8. The alpha value + * becomes more transparent as the alpha value increases. (0 is opaque.) + * This flag can only be set if DDCAPS_ALPHA is set. + * For Blt. + */ +#define DDFXALPHACAPS_BLTALPHAPIXELSNEG 0x00000004l + +/* + * Supports alpha only surfaces. The bit depth of an alpha only surface can be + * 1,2,4, or 8. The alpha value becomes more opaque as the alpha value increases. + * (0 is transparent.) + * For Blt. + */ +#define DDFXALPHACAPS_BLTALPHASURFACES 0x00000008l + +/* + * The depth of the alpha channel data can range can be 1,2,4, or 8. + * The NEG suffix indicates that this alpha channel becomes more transparent + * as the alpha value increases. (0 is opaque.) This flag can only be set if + * DDCAPS_ALPHA is set. + * For Blt. + */ +#define DDFXALPHACAPS_BLTALPHASURFACESNEG 0x00000010l + +/* + * Supports alpha blending around the edge of a source color keyed surface. + * For Overlays. + */ +#define DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND 0x00000020l + +/* + * Supports alpha information in the pixel format. The bit depth of alpha + * information in the pixel format can be 1,2,4, or 8. The alpha value becomes + * more opaque as the alpha value increases. (0 is transparent.) + * For Overlays. + */ +#define DDFXALPHACAPS_OVERLAYALPHAPIXELS 0x00000040l + +/* + * Supports alpha information in the pixel format. The bit depth of alpha + * information in the pixel format can be 1,2,4, or 8. The alpha value + * becomes more transparent as the alpha value increases. (0 is opaque.) + * This flag can only be set if DDCAPS_ALPHA is set. + * For Overlays. + */ +#define DDFXALPHACAPS_OVERLAYALPHAPIXELSNEG 0x00000080l + +/* + * Supports alpha only surfaces. The bit depth of an alpha only surface can be + * 1,2,4, or 8. The alpha value becomes more opaque as the alpha value increases. + * (0 is transparent.) + * For Overlays. + */ +#define DDFXALPHACAPS_OVERLAYALPHASURFACES 0x00000100l + +/* + * The depth of the alpha channel data can range can be 1,2,4, or 8. + * The NEG suffix indicates that this alpha channel becomes more transparent + * as the alpha value increases. (0 is opaque.) This flag can only be set if + * DDCAPS_ALPHA is set. + * For Overlays. + */ +#define DDFXALPHACAPS_OVERLAYALPHASURFACESNEG 0x00000200l + +#if DIRECTDRAW_VERSION < 0x0600 +#endif //DIRECTDRAW_VERSION + + + + +/**************************************************************************** + * + * DIRECTDRAW FX CAPABILITY FLAGS + * + ****************************************************************************/ + +/* + * Uses arithmetic operations to stretch and shrink surfaces during blt + * rather than pixel doubling techniques. Along the Y axis. + */ +#define DDFXCAPS_BLTARITHSTRETCHY 0x00000020l + +/* + * Uses arithmetic operations to stretch during blt + * rather than pixel doubling techniques. Along the Y axis. Only + * works for x1, x2, etc. + */ +#define DDFXCAPS_BLTARITHSTRETCHYN 0x00000010l + +/* + * Supports mirroring left to right in blt. + */ +#define DDFXCAPS_BLTMIRRORLEFTRIGHT 0x00000040l + +/* + * Supports mirroring top to bottom in blt. + */ +#define DDFXCAPS_BLTMIRRORUPDOWN 0x00000080l + +/* + * Supports arbitrary rotation for blts. + */ +#define DDFXCAPS_BLTROTATION 0x00000100l + +/* + * Supports 90 degree rotations for blts. + */ +#define DDFXCAPS_BLTROTATION90 0x00000200l + +/* + * DirectDraw supports arbitrary shrinking of a surface along the + * x axis (horizontal direction) for blts. + */ +#define DDFXCAPS_BLTSHRINKX 0x00000400l + +/* + * DirectDraw supports integer shrinking (1x,2x,) of a surface + * along the x axis (horizontal direction) for blts. + */ +#define DDFXCAPS_BLTSHRINKXN 0x00000800l + +/* + * DirectDraw supports arbitrary shrinking of a surface along the + * y axis (horizontal direction) for blts. + */ +#define DDFXCAPS_BLTSHRINKY 0x00001000l + +/* + * DirectDraw supports integer shrinking (1x,2x,) of a surface + * along the y axis (vertical direction) for blts. + */ +#define DDFXCAPS_BLTSHRINKYN 0x00002000l + +/* + * DirectDraw supports arbitrary stretching of a surface along the + * x axis (horizontal direction) for blts. + */ +#define DDFXCAPS_BLTSTRETCHX 0x00004000l + +/* + * DirectDraw supports integer stretching (1x,2x,) of a surface + * along the x axis (horizontal direction) for blts. + */ +#define DDFXCAPS_BLTSTRETCHXN 0x00008000l + +/* + * DirectDraw supports arbitrary stretching of a surface along the + * y axis (horizontal direction) for blts. + */ +#define DDFXCAPS_BLTSTRETCHY 0x00010000l + +/* + * DirectDraw supports integer stretching (1x,2x,) of a surface + * along the y axis (vertical direction) for blts. + */ +#define DDFXCAPS_BLTSTRETCHYN 0x00020000l + +/* + * Uses arithmetic operations to stretch and shrink surfaces during + * overlay rather than pixel doubling techniques. Along the Y axis + * for overlays. + */ +#define DDFXCAPS_OVERLAYARITHSTRETCHY 0x00040000l + +/* + * Uses arithmetic operations to stretch surfaces during + * overlay rather than pixel doubling techniques. Along the Y axis + * for overlays. Only works for x1, x2, etc. + */ +#define DDFXCAPS_OVERLAYARITHSTRETCHYN 0x00000008l + +/* + * DirectDraw supports arbitrary shrinking of a surface along the + * x axis (horizontal direction) for overlays. + */ +#define DDFXCAPS_OVERLAYSHRINKX 0x00080000l + +/* + * DirectDraw supports integer shrinking (1x,2x,) of a surface + * along the x axis (horizontal direction) for overlays. + */ +#define DDFXCAPS_OVERLAYSHRINKXN 0x00100000l + +/* + * DirectDraw supports arbitrary shrinking of a surface along the + * y axis (horizontal direction) for overlays. + */ +#define DDFXCAPS_OVERLAYSHRINKY 0x00200000l + +/* + * DirectDraw supports integer shrinking (1x,2x,) of a surface + * along the y axis (vertical direction) for overlays. + */ +#define DDFXCAPS_OVERLAYSHRINKYN 0x00400000l + +/* + * DirectDraw supports arbitrary stretching of a surface along the + * x axis (horizontal direction) for overlays. + */ +#define DDFXCAPS_OVERLAYSTRETCHX 0x00800000l + +/* + * DirectDraw supports integer stretching (1x,2x,) of a surface + * along the x axis (horizontal direction) for overlays. + */ +#define DDFXCAPS_OVERLAYSTRETCHXN 0x01000000l + +/* + * DirectDraw supports arbitrary stretching of a surface along the + * y axis (horizontal direction) for overlays. + */ +#define DDFXCAPS_OVERLAYSTRETCHY 0x02000000l + +/* + * DirectDraw supports integer stretching (1x,2x,) of a surface + * along the y axis (vertical direction) for overlays. + */ +#define DDFXCAPS_OVERLAYSTRETCHYN 0x04000000l + +/* + * DirectDraw supports mirroring of overlays across the vertical axis + */ +#define DDFXCAPS_OVERLAYMIRRORLEFTRIGHT 0x08000000l + +/* + * DirectDraw supports mirroring of overlays across the horizontal axis + */ +#define DDFXCAPS_OVERLAYMIRRORUPDOWN 0x10000000l + +/* + * Driver can do alpha blending for blits. + */ +#define DDFXCAPS_BLTALPHA 0x00000001l + +/* + * Driver can do geometric transformations (or warps) for blits. + */ +#define DDFXCAPS_BLTTRANSFORM 0x00000002l + +/* + * Driver can do surface-reconstruction filtering for warped blits. + */ +#define DDFXCAPS_BLTFILTER DDFXCAPS_BLTARITHSTRETCHY + +/* + * Driver can do alpha blending for overlays. + */ +#define DDFXCAPS_OVERLAYALPHA 0x00000004l + +/* + * Driver can do geometric transformations (or warps) for overlays. + */ +#define DDFXCAPS_OVERLAYTRANSFORM 0x20000000l + +/* + * Driver can do surface-reconstruction filtering for warped overlays. + */ +#define DDFXCAPS_OVERLAYFILTER DDFXCAPS_OVERLAYARITHSTRETCHY + + +/**************************************************************************** + * + * DIRECTDRAW STEREO VIEW CAPABILITIES + * + ****************************************************************************/ + +/* + * The stereo view is accomplished via enigma encoding. + */ +#define DDSVCAPS_ENIGMA 0x00000001l + +/* + * The stereo view is accomplished via high frequency flickering. + */ +#define DDSVCAPS_FLICKER 0x00000002l + +/* + * The stereo view is accomplished via red and blue filters applied + * to the left and right eyes. All images must adapt their colorspaces + * for this process. + */ +#define DDSVCAPS_REDBLUE 0x00000004l + +/* + * The stereo view is accomplished with split screen technology. + */ +#define DDSVCAPS_SPLIT 0x00000008l + +/**************************************************************************** + * + * DIRECTDRAWPALETTE CAPABILITIES + * + ****************************************************************************/ + +/* + * Index is 4 bits. There are sixteen color entries in the palette table. + */ +#define DDPCAPS_4BIT 0x00000001l + +/* + * Index is onto a 8 bit color index. This field is only valid with the + * DDPCAPS_1BIT, DDPCAPS_2BIT or DDPCAPS_4BIT capability and the target + * surface is in 8bpp. Each color entry is one byte long and is an index + * into destination surface's 8bpp palette. + */ +#define DDPCAPS_8BITENTRIES 0x00000002l + +/* + * Index is 8 bits. There are 256 color entries in the palette table. + */ +#define DDPCAPS_8BIT 0x00000004l + +/* + * Indicates that this DIRECTDRAWPALETTE should use the palette color array + * passed into the lpDDColorArray parameter to initialize the DIRECTDRAWPALETTE + * object. + */ +#define DDPCAPS_INITIALIZE 0x00000008l + +/* + * This palette is the one attached to the primary surface. Changing this + * table has immediate effect on the display unless DDPSETPAL_VSYNC is specified + * and supported. + */ +#define DDPCAPS_PRIMARYSURFACE 0x00000010l + +/* + * This palette is the one attached to the primary surface left. Changing + * this table has immediate effect on the display for the left eye unless + * DDPSETPAL_VSYNC is specified and supported. + */ +#define DDPCAPS_PRIMARYSURFACELEFT 0x00000020l + +/* + * This palette can have all 256 entries defined + */ +#define DDPCAPS_ALLOW256 0x00000040l + +/* + * This palette can have modifications to it synced with the monitors + * refresh rate. + */ +#define DDPCAPS_VSYNC 0x00000080l + +/* + * Index is 1 bit. There are two color entries in the palette table. + */ +#define DDPCAPS_1BIT 0x00000100l + +/* + * Index is 2 bit. There are four color entries in the palette table. + */ +#define DDPCAPS_2BIT 0x00000200l + +/* + * The peFlags member of PALETTEENTRY denotes an 8 bit alpha value + */ +#define DDPCAPS_ALPHA 0x00000400l + + +/**************************************************************************** + * + * DIRECTDRAWPALETTE SETENTRY CONSTANTS + * + ****************************************************************************/ + + +/**************************************************************************** + * + * DIRECTDRAWPALETTE GETENTRY CONSTANTS + * + ****************************************************************************/ + +/* 0 is the only legal value */ + +/**************************************************************************** + * + * DIRECTDRAWSURFACE SETPRIVATEDATA CONSTANTS + * + ****************************************************************************/ + +/* + * The passed pointer is an IUnknown ptr. The cbData argument to SetPrivateData + * must be set to sizeof(IUnknown*). DirectDraw will call AddRef through this + * pointer and Release when the private data is destroyed. This includes when + * the surface or palette is destroyed before such priovate data is destroyed. + */ +#define DDSPD_IUNKNOWNPOINTER 0x00000001L + +/* + * Private data is only valid for the current state of the object, + * as determined by the uniqueness value. + */ +#define DDSPD_VOLATILE 0x00000002L + + +/**************************************************************************** + * + * DIRECTDRAWSURFACE SETPALETTE CONSTANTS + * + ****************************************************************************/ + + +/**************************************************************************** + * + * DIRECTDRAW BITDEPTH CONSTANTS + * + * NOTE: These are only used to indicate supported bit depths. These + * are flags only, they are not to be used as an actual bit depth. The + * absolute numbers 1, 2, 4, 8, 16, 24 and 32 are used to indicate actual + * bit depths in a surface or for changing the display mode. + * + ****************************************************************************/ + +/* + * 1 bit per pixel. + */ +#define DDBD_1 0x00004000l + +/* + * 2 bits per pixel. + */ +#define DDBD_2 0x00002000l + +/* + * 4 bits per pixel. + */ +#define DDBD_4 0x00001000l + +/* + * 8 bits per pixel. + */ +#define DDBD_8 0x00000800l + +/* + * 16 bits per pixel. + */ +#define DDBD_16 0x00000400l + +/* + * 24 bits per pixel. + */ +#define DDBD_24 0X00000200l + +/* + * 32 bits per pixel. + */ +#define DDBD_32 0x00000100l + +/**************************************************************************** + * + * DIRECTDRAWSURFACE SET/GET COLOR KEY FLAGS + * + ****************************************************************************/ + +/* + * Set if the structure contains a color space. Not set if the structure + * contains a single color key. + */ +#define DDCKEY_COLORSPACE 0x00000001l + +/* + * Set if the structure specifies a color key or color space which is to be + * used as a destination color key for blt operations. + */ +#define DDCKEY_DESTBLT 0x00000002l + +/* + * Set if the structure specifies a color key or color space which is to be + * used as a destination color key for overlay operations. + */ +#define DDCKEY_DESTOVERLAY 0x00000004l + +/* + * Set if the structure specifies a color key or color space which is to be + * used as a source color key for blt operations. + */ +#define DDCKEY_SRCBLT 0x00000008l + +/* + * Set if the structure specifies a color key or color space which is to be + * used as a source color key for overlay operations. + */ +#define DDCKEY_SRCOVERLAY 0x00000010l + + +/**************************************************************************** + * + * DIRECTDRAW COLOR KEY CAPABILITY FLAGS + * + ****************************************************************************/ + +/* + * Supports transparent blting using a color key to identify the replaceable + * bits of the destination surface for RGB colors. + */ +#define DDCKEYCAPS_DESTBLT 0x00000001l + +/* + * Supports transparent blting using a color space to identify the replaceable + * bits of the destination surface for RGB colors. + */ +#define DDCKEYCAPS_DESTBLTCLRSPACE 0x00000002l + +/* + * Supports transparent blting using a color space to identify the replaceable + * bits of the destination surface for YUV colors. + */ +#define DDCKEYCAPS_DESTBLTCLRSPACEYUV 0x00000004l + +/* + * Supports transparent blting using a color key to identify the replaceable + * bits of the destination surface for YUV colors. + */ +#define DDCKEYCAPS_DESTBLTYUV 0x00000008l + +/* + * Supports overlaying using colorkeying of the replaceable bits of the surface + * being overlayed for RGB colors. + */ +#define DDCKEYCAPS_DESTOVERLAY 0x00000010l + +/* + * Supports a color space as the color key for the destination for RGB colors. + */ +#define DDCKEYCAPS_DESTOVERLAYCLRSPACE 0x00000020l + +/* + * Supports a color space as the color key for the destination for YUV colors. + */ +#define DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV 0x00000040l + +/* + * Supports only one active destination color key value for visible overlay + * surfaces. + */ +#define DDCKEYCAPS_DESTOVERLAYONEACTIVE 0x00000080l + +/* + * Supports overlaying using colorkeying of the replaceable bits of the + * surface being overlayed for YUV colors. + */ +#define DDCKEYCAPS_DESTOVERLAYYUV 0x00000100l + +/* + * Supports transparent blting using the color key for the source with + * this surface for RGB colors. + */ +#define DDCKEYCAPS_SRCBLT 0x00000200l + +/* + * Supports transparent blting using a color space for the source with + * this surface for RGB colors. + */ +#define DDCKEYCAPS_SRCBLTCLRSPACE 0x00000400l + +/* + * Supports transparent blting using a color space for the source with + * this surface for YUV colors. + */ +#define DDCKEYCAPS_SRCBLTCLRSPACEYUV 0x00000800l + +/* + * Supports transparent blting using the color key for the source with + * this surface for YUV colors. + */ +#define DDCKEYCAPS_SRCBLTYUV 0x00001000l + +/* + * Supports overlays using the color key for the source with this + * overlay surface for RGB colors. + */ +#define DDCKEYCAPS_SRCOVERLAY 0x00002000l + +/* + * Supports overlays using a color space as the source color key for + * the overlay surface for RGB colors. + */ +#define DDCKEYCAPS_SRCOVERLAYCLRSPACE 0x00004000l + +/* + * Supports overlays using a color space as the source color key for + * the overlay surface for YUV colors. + */ +#define DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV 0x00008000l + +/* + * Supports only one active source color key value for visible + * overlay surfaces. + */ +#define DDCKEYCAPS_SRCOVERLAYONEACTIVE 0x00010000l + +/* + * Supports overlays using the color key for the source with this + * overlay surface for YUV colors. + */ +#define DDCKEYCAPS_SRCOVERLAYYUV 0x00020000l + +/* + * there are no bandwidth trade-offs for using colorkey with an overlay + */ +#define DDCKEYCAPS_NOCOSTOVERLAY 0x00040000l + + +/**************************************************************************** + * + * DIRECTDRAW PIXELFORMAT FLAGS + * + ****************************************************************************/ + +/* + * The surface has alpha channel information in the pixel format. + */ +#define DDPF_ALPHAPIXELS 0x00000001l + +/* + * The pixel format contains alpha only information + */ +#define DDPF_ALPHA 0x00000002l + +/* + * The FourCC code is valid. + */ +#define DDPF_FOURCC 0x00000004l + +/* + * The surface is 4-bit color indexed. + */ +#define DDPF_PALETTEINDEXED4 0x00000008l + +/* + * The surface is indexed into a palette which stores indices + * into the destination surface's 8-bit palette. + */ +#define DDPF_PALETTEINDEXEDTO8 0x00000010l + +/* + * The surface is 8-bit color indexed. + */ +#define DDPF_PALETTEINDEXED8 0x00000020l + +/* + * The RGB data in the pixel format structure is valid. + */ +#define DDPF_RGB 0x00000040l + +/* + * The surface will accept pixel data in the format specified + * and compress it during the write. + */ +#define DDPF_COMPRESSED 0x00000080l + +/* + * The surface will accept RGB data and translate it during + * the write to YUV data. The format of the data to be written + * will be contained in the pixel format structure. The DDPF_RGB + * flag will be set. + */ +#define DDPF_RGBTOYUV 0x00000100l + +/* + * pixel format is YUV - YUV data in pixel format struct is valid + */ +#define DDPF_YUV 0x00000200l + +/* + * pixel format is a z buffer only surface + */ +#define DDPF_ZBUFFER 0x00000400l + +/* + * The surface is 1-bit color indexed. + */ +#define DDPF_PALETTEINDEXED1 0x00000800l + +/* + * The surface is 2-bit color indexed. + */ +#define DDPF_PALETTEINDEXED2 0x00001000l + +/* + * The surface contains Z information in the pixels + */ +#define DDPF_ZPIXELS 0x00002000l + +/* + * The surface contains stencil information along with Z + */ +#define DDPF_STENCILBUFFER 0x00004000l + +/* + * Premultiplied alpha format -- the color components have been + * premultiplied by the alpha component. + */ +#define DDPF_ALPHAPREMULT 0x00008000l + + +/* + * Luminance data in the pixel format is valid. + * Use this flag for luminance-only or luminance+alpha surfaces, + * the bit depth is then ddpf.dwLuminanceBitCount. + */ +#define DDPF_LUMINANCE 0x00020000l + +/* + * Luminance data in the pixel format is valid. + * Use this flag when hanging luminance off bumpmap surfaces, + * the bit mask for the luminance portion of the pixel is then + * ddpf.dwBumpLuminanceBitMask + */ +#define DDPF_BUMPLUMINANCE 0x00040000l + +/* + * Bump map dUdV data in the pixel format is valid. + */ +#define DDPF_BUMPDUDV 0x00080000l + +/*=========================================================================== + * + * + * DIRECTDRAW CALLBACK FLAGS + * + * + *==========================================================================*/ + +/**************************************************************************** + * + * DIRECTDRAW ENUMSURFACES FLAGS + * + ****************************************************************************/ + +/* + * Enumerate all of the surfaces that meet the search criterion. + */ +#define DDENUMSURFACES_ALL 0x00000001l + +/* + * A search hit is a surface that matches the surface description. + */ +#define DDENUMSURFACES_MATCH 0x00000002l + +/* + * A search hit is a surface that does not match the surface description. + */ +#define DDENUMSURFACES_NOMATCH 0x00000004l + +/* + * Enumerate the first surface that can be created which meets the search criterion. + */ +#define DDENUMSURFACES_CANBECREATED 0x00000008l + +/* + * Enumerate the surfaces that already exist that meet the search criterion. + */ +#define DDENUMSURFACES_DOESEXIST 0x00000010l + + +/**************************************************************************** + * + * DIRECTDRAW SETDISPLAYMODE FLAGS + * + ****************************************************************************/ + +/* + * The desired mode is a standard VGA mode + */ +#define DDSDM_STANDARDVGAMODE 0x00000001l + + + +/**************************************************************************** + * + * DIRECTDRAW ENUMDISPLAYMODES FLAGS + * + ****************************************************************************/ + +/* + * Enumerate Modes with different refresh rates. EnumDisplayModes guarantees + * that a particular mode will be enumerated only once. This flag specifies whether + * the refresh rate is taken into account when determining if a mode is unique. + */ +#define DDEDM_REFRESHRATES 0x00000001l + +/* + * Enumerate VGA modes. Specify this flag if you wish to enumerate supported VGA + * modes such as mode 0x13 in addition to the usual ModeX modes (which are always + * enumerated if the application has previously called SetCooperativeLevel with the + * DDSCL_ALLOWMODEX flag set). + */ +#define DDEDM_STANDARDVGAMODES 0x00000002L + + +/**************************************************************************** + * + * DIRECTDRAW SETCOOPERATIVELEVEL FLAGS + * + ****************************************************************************/ + +/* + * Exclusive mode owner will be responsible for the entire primary surface. + * GDI can be ignored. used with DD + */ +#define DDSCL_FULLSCREEN 0x00000001l + +/* + * allow CTRL_ALT_DEL to work while in fullscreen exclusive mode + */ +#define DDSCL_ALLOWREBOOT 0x00000002l + +/* + * prevents DDRAW from modifying the application window. + * prevents DDRAW from minimize/restore the application window on activation. + */ +#define DDSCL_NOWINDOWCHANGES 0x00000004l + +/* + * app wants to work as a regular Windows application + */ +#define DDSCL_NORMAL 0x00000008l + +/* + * app wants exclusive access + */ +#define DDSCL_EXCLUSIVE 0x00000010l + + +/* + * app can deal with non-windows display modes + */ +#define DDSCL_ALLOWMODEX 0x00000040l + +/* + * this window will receive the focus messages + */ +#define DDSCL_SETFOCUSWINDOW 0x00000080l + +/* + * this window is associated with the DDRAW object and will + * cover the screen in fullscreen mode + */ +#define DDSCL_SETDEVICEWINDOW 0x00000100l + +/* + * app wants DDRAW to create a window to be associated with the + * DDRAW object + */ +#define DDSCL_CREATEDEVICEWINDOW 0x00000200l + +/* + * App explicitly asks DDRAW/D3D to be multithread safe. This makes D3D + * take the global crtisec more frequently. + */ +#define DDSCL_MULTITHREADED 0x00000400l + +/* + * App hints that it would like to keep the FPU set up for optimal Direct3D + * performance (single precision and exceptions disabled) so Direct3D + * does not need to explicitly set the FPU each time + */ +#define DDSCL_FPUSETUP 0x00000800l + + +/**************************************************************************** + * + * DIRECTDRAW BLT FLAGS + * + ****************************************************************************/ + +/* + * Use the alpha information in the pixel format or the alpha channel surface + * attached to the destination surface as the alpha channel for this blt. + */ +#define DDBLT_ALPHADEST 0x00000001l + +/* + * Use the dwConstAlphaDest field in the DDBLTFX structure as the alpha channel + * for the destination surface for this blt. + */ +#define DDBLT_ALPHADESTCONSTOVERRIDE 0x00000002l + +/* + * The NEG suffix indicates that the destination surface becomes more + * transparent as the alpha value increases. (0 is opaque) + */ +#define DDBLT_ALPHADESTNEG 0x00000004l + +/* + * Use the lpDDSAlphaDest field in the DDBLTFX structure as the alpha + * channel for the destination for this blt. + */ +#define DDBLT_ALPHADESTSURFACEOVERRIDE 0x00000008l + +/* + * Use the dwAlphaEdgeBlend field in the DDBLTFX structure as the alpha channel + * for the edges of the image that border the color key colors. + */ +#define DDBLT_ALPHAEDGEBLEND 0x00000010l + +/* + * Use the alpha information in the pixel format or the alpha channel surface + * attached to the source surface as the alpha channel for this blt. + */ +#define DDBLT_ALPHASRC 0x00000020l + +/* + * Use the dwConstAlphaSrc field in the DDBLTFX structure as the alpha channel + * for the source for this blt. + */ +#define DDBLT_ALPHASRCCONSTOVERRIDE 0x00000040l + +/* + * The NEG suffix indicates that the source surface becomes more transparent + * as the alpha value increases. (0 is opaque) + */ +#define DDBLT_ALPHASRCNEG 0x00000080l + +/* + * Use the lpDDSAlphaSrc field in the DDBLTFX structure as the alpha channel + * for the source for this blt. + */ +#define DDBLT_ALPHASRCSURFACEOVERRIDE 0x00000100l + +/* + * Do this blt asynchronously through the FIFO in the order received. If + * there is no room in the hardware FIFO fail the call. + */ +#define DDBLT_ASYNC 0x00000200l + +/* + * Uses the dwFillColor field in the DDBLTFX structure as the RGB color + * to fill the destination rectangle on the destination surface with. + */ +#define DDBLT_COLORFILL 0x00000400l + +/* + * Uses the dwDDFX field in the DDBLTFX structure to specify the effects + * to use for the blt. + */ +#define DDBLT_DDFX 0x00000800l + +/* + * Uses the dwDDROPS field in the DDBLTFX structure to specify the ROPS + * that are not part of the Win32 API. + */ +#define DDBLT_DDROPS 0x00001000l + +/* + * Use the color key associated with the destination surface. + */ +#define DDBLT_KEYDEST 0x00002000l + +/* + * Use the dckDestColorkey field in the DDBLTFX structure as the color key + * for the destination surface. + */ +#define DDBLT_KEYDESTOVERRIDE 0x00004000l + +/* + * Use the color key associated with the source surface. + */ +#define DDBLT_KEYSRC 0x00008000l + +/* + * Use the dckSrcColorkey field in the DDBLTFX structure as the color key + * for the source surface. + */ +#define DDBLT_KEYSRCOVERRIDE 0x00010000l + +/* + * Use the dwROP field in the DDBLTFX structure for the raster operation + * for this blt. These ROPs are the same as the ones defined in the Win32 API. + */ +#define DDBLT_ROP 0x00020000l + +/* + * Use the dwRotationAngle field in the DDBLTFX structure as the angle + * (specified in 1/100th of a degree) to rotate the surface. + */ +#define DDBLT_ROTATIONANGLE 0x00040000l + +/* + * Z-buffered blt using the z-buffers attached to the source and destination + * surfaces and the dwZBufferOpCode field in the DDBLTFX structure as the + * z-buffer opcode. + */ +#define DDBLT_ZBUFFER 0x00080000l + +/* + * Z-buffered blt using the dwConstDest Zfield and the dwZBufferOpCode field + * in the DDBLTFX structure as the z-buffer and z-buffer opcode respectively + * for the destination. + */ +#define DDBLT_ZBUFFERDESTCONSTOVERRIDE 0x00100000l + +/* + * Z-buffered blt using the lpDDSDestZBuffer field and the dwZBufferOpCode + * field in the DDBLTFX structure as the z-buffer and z-buffer opcode + * respectively for the destination. + */ +#define DDBLT_ZBUFFERDESTOVERRIDE 0x00200000l + +/* + * Z-buffered blt using the dwConstSrcZ field and the dwZBufferOpCode field + * in the DDBLTFX structure as the z-buffer and z-buffer opcode respectively + * for the source. + */ +#define DDBLT_ZBUFFERSRCCONSTOVERRIDE 0x00400000l + +/* + * Z-buffered blt using the lpDDSSrcZBuffer field and the dwZBufferOpCode + * field in the DDBLTFX structure as the z-buffer and z-buffer opcode + * respectively for the source. + */ +#define DDBLT_ZBUFFERSRCOVERRIDE 0x00800000l + +/* + * wait until the device is ready to handle the blt + * this will cause blt to not return DDERR_WASSTILLDRAWING + */ +#define DDBLT_WAIT 0x01000000l + +/* + * Uses the dwFillDepth field in the DDBLTFX structure as the depth value + * to fill the destination rectangle on the destination Z-buffer surface + * with. + */ +#define DDBLT_DEPTHFILL 0x02000000l + + +/**************************************************************************** + * + * BLTFAST FLAGS + * + ****************************************************************************/ + +#define DDBLTFAST_NOCOLORKEY 0x00000000 +#define DDBLTFAST_SRCCOLORKEY 0x00000001 +#define DDBLTFAST_DESTCOLORKEY 0x00000002 +#define DDBLTFAST_WAIT 0x00000010 + + + + +/**************************************************************************** + * + * FLIP FLAGS + * + ****************************************************************************/ + +#define DDFLIP_WAIT 0x00000001L + +/* + * Indicates that the target surface contains the even field of video data. + * This flag is only valid with an overlay surface. + */ +#define DDFLIP_EVEN 0x00000002L + +/* + * Indicates that the target surface contains the odd field of video data. + * This flag is only valid with an overlay surface. + */ +#define DDFLIP_ODD 0x00000004L + +/* + * Causes DirectDraw to perform the physical flip immediately and return + * to the application. Typically, what was the front buffer but is now the back + * buffer will still be visible (depending on timing) until the next vertical + * retrace. Subsequent operations involving the two flipped surfaces will + * not check to see if the physical flip has finished (i.e. will not return + * DDERR_WASSTILLDRAWING for that reason (but may for other reasons)). + * This allows an application to perform Flips at a higher frequency than the + * monitor refresh rate, but may introduce visible artifacts. + * Only effective if DDCAPS2_FLIPNOVSYNC is set. If that bit is not set, + * DDFLIP_NOVSYNC has no effect. + */ +#define DDFLIP_NOVSYNC 0x00000008L + + +/* + * Flip Interval Flags. These flags indicate how many vertical retraces to wait between + * each flip. The default is one. DirectDraw will return DDERR_WASSTILLDRAWING for each + * surface involved in the flip until the specified number of vertical retraces has + * ocurred. Only effective if DDCAPS2_FLIPINTERVAL is set. If that bit is not set, + * DDFLIP_INTERVALn has no effect. + */ + +/* + * DirectDraw will flip on every other vertical sync + */ +#define DDFLIP_INTERVAL2 0x02000000L + + +/* + * DirectDraw will flip on every third vertical sync + */ +#define DDFLIP_INTERVAL3 0x03000000L + + +/* + * DirectDraw will flip on every fourth vertical sync + */ +#define DDFLIP_INTERVAL4 0x04000000L + + + +/**************************************************************************** + * + * DIRECTDRAW SURFACE OVERLAY FLAGS + * + ****************************************************************************/ + +/* + * Use the alpha information in the pixel format or the alpha channel surface + * attached to the destination surface as the alpha channel for the + * destination overlay. + */ +#define DDOVER_ALPHADEST 0x00000001l + +/* + * Use the dwConstAlphaDest field in the DDOVERLAYFX structure as the + * destination alpha channel for this overlay. + */ +#define DDOVER_ALPHADESTCONSTOVERRIDE 0x00000002l + +/* + * The NEG suffix indicates that the destination surface becomes more + * transparent as the alpha value increases. + */ +#define DDOVER_ALPHADESTNEG 0x00000004l + +/* + * Use the lpDDSAlphaDest field in the DDOVERLAYFX structure as the alpha + * channel destination for this overlay. + */ +#define DDOVER_ALPHADESTSURFACEOVERRIDE 0x00000008l + +/* + * Use the dwAlphaEdgeBlend field in the DDOVERLAYFX structure as the alpha + * channel for the edges of the image that border the color key colors. + */ +#define DDOVER_ALPHAEDGEBLEND 0x00000010l + +/* + * Use the alpha information in the pixel format or the alpha channel surface + * attached to the source surface as the source alpha channel for this overlay. + */ +#define DDOVER_ALPHASRC 0x00000020l + +/* + * Use the dwConstAlphaSrc field in the DDOVERLAYFX structure as the source + * alpha channel for this overlay. + */ +#define DDOVER_ALPHASRCCONSTOVERRIDE 0x00000040l + +/* + * The NEG suffix indicates that the source surface becomes more transparent + * as the alpha value increases. + */ +#define DDOVER_ALPHASRCNEG 0x00000080l + +/* + * Use the lpDDSAlphaSrc field in the DDOVERLAYFX structure as the alpha channel + * source for this overlay. + */ +#define DDOVER_ALPHASRCSURFACEOVERRIDE 0x00000100l + +/* + * Turn this overlay off. + */ +#define DDOVER_HIDE 0x00000200l + +/* + * Use the color key associated with the destination surface. + */ +#define DDOVER_KEYDEST 0x00000400l + +/* + * Use the dckDestColorkey field in the DDOVERLAYFX structure as the color key + * for the destination surface + */ +#define DDOVER_KEYDESTOVERRIDE 0x00000800l + +/* + * Use the color key associated with the source surface. + */ +#define DDOVER_KEYSRC 0x00001000l + +/* + * Use the dckSrcColorkey field in the DDOVERLAYFX structure as the color key + * for the source surface. + */ +#define DDOVER_KEYSRCOVERRIDE 0x00002000l + +/* + * Turn this overlay on. + */ +#define DDOVER_SHOW 0x00004000l + +/* + * Add a dirty rect to an emulated overlayed surface. + */ +#define DDOVER_ADDDIRTYRECT 0x00008000l + +/* + * Redraw all dirty rects on an emulated overlayed surface. + */ +#define DDOVER_REFRESHDIRTYRECTS 0x00010000l + +/* + * Redraw the entire surface on an emulated overlayed surface. + */ +#define DDOVER_REFRESHALL 0x00020000l + + +/* + * Use the overlay FX flags to define special overlay FX + */ +#define DDOVER_DDFX 0x00080000l + +/* + * Autoflip the overlay when ever the video port autoflips + */ +#define DDOVER_AUTOFLIP 0x00100000l + +/* + * Display each field of video port data individually without + * causing any jittery artifacts + */ +#define DDOVER_BOB 0x00200000l + +/* + * Indicates that bob/weave decisions should not be overridden by other + * interfaces. + */ +#define DDOVER_OVERRIDEBOBWEAVE 0x00400000l + +/* + * Indicates that the surface memory is composed of interleaved fields. + */ +#define DDOVER_INTERLEAVED 0x00800000l + +/* + * Indicates that bob will be performed using hardware rather than + * software or emulated. + */ +#define DDOVER_BOBHARDWARE 0x01000000l + + + + + + + + +/**************************************************************************** + * + * DIRECTDRAWSURFACE LOCK FLAGS + * + ****************************************************************************/ + +/* + * The default. Set to indicate that Lock should return a valid memory pointer + * to the top of the specified rectangle. If no rectangle is specified then a + * pointer to the top of the surface is returned. + */ +#define DDLOCK_SURFACEMEMORYPTR 0x00000000L // default + +/* + * Set to indicate that Lock should wait until it can obtain a valid memory + * pointer before returning. If this bit is set, Lock will never return + * DDERR_WASSTILLDRAWING. + */ +#define DDLOCK_WAIT 0x00000001L + +/* + * Set if an event handle is being passed to Lock. Lock will trigger the event + * when it can return the surface memory pointer requested. + */ +#define DDLOCK_EVENT 0x00000002L + +/* + * Indicates that the surface being locked will only be read from. + */ +#define DDLOCK_READONLY 0x00000010L + +/* + * Indicates that the surface being locked will only be written to + */ +#define DDLOCK_WRITEONLY 0x00000020L + + +/* + * Indicates that a system wide lock should not be taken when this surface + * is locked. This has several advantages (cursor responsiveness, ability + * to call more Windows functions, easier debugging) when locking video + * memory surfaces. However, an application specifying this flag must + * comply with a number of conditions documented in the help file. + * Furthermore, this flag cannot be specified when locking the primary. + */ +#define DDLOCK_NOSYSLOCK 0x00000800L + + +/**************************************************************************** + * + * DIRECTDRAWSURFACE PAGELOCK FLAGS + * + ****************************************************************************/ + +/* + * No flags defined at present + */ + + +/**************************************************************************** + * + * DIRECTDRAWSURFACE PAGEUNLOCK FLAGS + * + ****************************************************************************/ + +/* + * No flags defined at present + */ + + +/**************************************************************************** + * + * DIRECTDRAWSURFACE BLT FX FLAGS + * + ****************************************************************************/ + +/* + * If stretching, use arithmetic stretching along the Y axis for this blt. + */ +#define DDBLTFX_ARITHSTRETCHY 0x00000001l + +/* + * Do this blt mirroring the surface left to right. Spin the + * surface around its y-axis. + */ +#define DDBLTFX_MIRRORLEFTRIGHT 0x00000002l + +/* + * Do this blt mirroring the surface up and down. Spin the surface + * around its x-axis. + */ +#define DDBLTFX_MIRRORUPDOWN 0x00000004l + +/* + * Schedule this blt to avoid tearing. + */ +#define DDBLTFX_NOTEARING 0x00000008l + +/* + * Do this blt rotating the surface one hundred and eighty degrees. + */ +#define DDBLTFX_ROTATE180 0x00000010l + +/* + * Do this blt rotating the surface two hundred and seventy degrees. + */ +#define DDBLTFX_ROTATE270 0x00000020l + +/* + * Do this blt rotating the surface ninety degrees. + */ +#define DDBLTFX_ROTATE90 0x00000040l + +/* + * Do this z blt using dwZBufferLow and dwZBufferHigh as range values + * specified to limit the bits copied from the source surface. + */ +#define DDBLTFX_ZBUFFERRANGE 0x00000080l + +/* + * Do this z blt adding the dwZBufferBaseDest to each of the sources z values + * before comparing it with the desting z values. + */ +#define DDBLTFX_ZBUFFERBASEDEST 0x00000100l + +/**************************************************************************** + * + * DIRECTDRAWSURFACE OVERLAY FX FLAGS + * + ****************************************************************************/ + +/* + * If stretching, use arithmetic stretching along the Y axis for this overlay. + */ +#define DDOVERFX_ARITHSTRETCHY 0x00000001l + +/* + * Mirror the overlay across the vertical axis + */ +#define DDOVERFX_MIRRORLEFTRIGHT 0x00000002l + +/* + * Mirror the overlay across the horizontal axis + */ +#define DDOVERFX_MIRRORUPDOWN 0x00000004l + +/**************************************************************************** + * + * Flags for dwDDFX member of DDSPRITEFX structure + * + ****************************************************************************/ +/* + * Use affine transformation matrix in fTransform member. + */ +#define DDSPRITEFX_AFFINETRANSFORM 0x00000001l + +/* + * Use RGBA scaling factors in ddrgbaScaleFactors member. + */ +#define DDSPRITEFX_RGBASCALING 0x00000002l + +/* + * Degrade RGBA scaling factors to accommodate driver's capabilities. + */ +#define DDSPRITEFX_DEGRADERGBASCALING 0x00000004l + +/* + * Do bilinear filtering of stretched or warped sprite. + */ +#define DDSPRITEFX_BILINEARFILTER 0x00000008l + +/* + * Do "blur" filtering of stretched or warped sprite. + */ +#define DDSPRITEFX_BLURFILTER 0x00000010l + +/* + * Do "flat" filtering of stretched or warped sprite. + */ +#define DDSPRITEFX_FLATFILTER 0x00000020l + +/* + * Degrade filtering operation to accommodate driver's capabilities. + */ +#define DDSPRITEFX_DEGRADEFILTER 0x00000040l + + +/**************************************************************************** + * + * DIRECTDRAW WAITFORVERTICALBLANK FLAGS + * + ****************************************************************************/ + +/* + * return when the vertical blank interval begins + */ +#define DDWAITVB_BLOCKBEGIN 0x00000001l + +/* + * set up an event to trigger when the vertical blank begins + */ +#define DDWAITVB_BLOCKBEGINEVENT 0x00000002l + +/* + * return when the vertical blank interval ends and display begins + */ +#define DDWAITVB_BLOCKEND 0x00000004l + +/**************************************************************************** + * + * DIRECTDRAW GETFLIPSTATUS FLAGS + * + ****************************************************************************/ + +/* + * is it OK to flip now? + */ +#define DDGFS_CANFLIP 0x00000001l + +/* + * is the last flip finished? + */ +#define DDGFS_ISFLIPDONE 0x00000002l + +/**************************************************************************** + * + * DIRECTDRAW GETBLTSTATUS FLAGS + * + ****************************************************************************/ + +/* + * is it OK to blt now? + */ +#define DDGBS_CANBLT 0x00000001l + +/* + * is the blt to the surface finished? + */ +#define DDGBS_ISBLTDONE 0x00000002l + + +/**************************************************************************** + * + * DIRECTDRAW ENUMOVERLAYZORDER FLAGS + * + ****************************************************************************/ + +/* + * Enumerate overlays back to front. + */ +#define DDENUMOVERLAYZ_BACKTOFRONT 0x00000000l + +/* + * Enumerate overlays front to back + */ +#define DDENUMOVERLAYZ_FRONTTOBACK 0x00000001l + +/**************************************************************************** + * + * DIRECTDRAW UPDATEOVERLAYZORDER FLAGS + * + ****************************************************************************/ + +/* + * Send overlay to front + */ +#define DDOVERZ_SENDTOFRONT 0x00000000l + +/* + * Send overlay to back + */ +#define DDOVERZ_SENDTOBACK 0x00000001l + +/* + * Move Overlay forward + */ +#define DDOVERZ_MOVEFORWARD 0x00000002l + +/* + * Move Overlay backward + */ +#define DDOVERZ_MOVEBACKWARD 0x00000003l + +/* + * Move Overlay in front of relative surface + */ +#define DDOVERZ_INSERTINFRONTOF 0x00000004l + +/* + * Move Overlay in back of relative surface + */ +#define DDOVERZ_INSERTINBACKOF 0x00000005l + + + +/**************************************************************************** + * + * DIRECTDRAW SETGAMMARAMP FLAGS + * + ****************************************************************************/ + +/* + * Request calibrator to adjust the gamma ramp according to the physical + * properties of the display so that the result should appear identical + * on all systems. + */ +#define DDSGR_CALIBRATE 0x00000001L + + +/*=========================================================================== + * + * + * DIRECTDRAW RETURN CODES + * + * The return values from DirectDraw Commands and Surface that return an HRESULT + * are codes from DirectDraw concerning the results of the action + * requested by DirectDraw. + * + *==========================================================================*/ + +/* + * Status is OK + * + * Issued by: DirectDraw Commands and all callbacks + */ +#define DD_OK 0 +#define DD_FALSE S_FALSE + +/**************************************************************************** + * + * DIRECTDRAW ENUMCALLBACK RETURN VALUES + * + * EnumCallback returns are used to control the flow of the DIRECTDRAW and + * DIRECTDRAWSURFACE object enumerations. They can only be returned by + * enumeration callback routines. + * + ****************************************************************************/ + +/* + * stop the enumeration + */ +#define DDENUMRET_CANCEL 0 + +/* + * continue the enumeration + */ +#define DDENUMRET_OK 1 + +/**************************************************************************** + * + * DIRECTDRAW ERRORS + * + * Errors are represented by negative values and cannot be combined. + * + ****************************************************************************/ + +/* + * This object is already initialized + */ +#define DDERR_ALREADYINITIALIZED MAKE_DDHRESULT( 5 ) + +/* + * This surface can not be attached to the requested surface. + */ +#define DDERR_CANNOTATTACHSURFACE MAKE_DDHRESULT( 10 ) + +/* + * This surface can not be detached from the requested surface. + */ +#define DDERR_CANNOTDETACHSURFACE MAKE_DDHRESULT( 20 ) + +/* + * Support is currently not available. + */ +#define DDERR_CURRENTLYNOTAVAIL MAKE_DDHRESULT( 40 ) + +/* + * An exception was encountered while performing the requested operation + */ +#define DDERR_EXCEPTION MAKE_DDHRESULT( 55 ) + +/* + * Generic failure. + */ +#define DDERR_GENERIC E_FAIL + +/* + * Height of rectangle provided is not a multiple of reqd alignment + */ +#define DDERR_HEIGHTALIGN MAKE_DDHRESULT( 90 ) + +/* + * Unable to match primary surface creation request with existing + * primary surface. + */ +#define DDERR_INCOMPATIBLEPRIMARY MAKE_DDHRESULT( 95 ) + +/* + * One or more of the caps bits passed to the callback are incorrect. + */ +#define DDERR_INVALIDCAPS MAKE_DDHRESULT( 100 ) + +/* + * DirectDraw does not support provided Cliplist. + */ +#define DDERR_INVALIDCLIPLIST MAKE_DDHRESULT( 110 ) + +/* + * DirectDraw does not support the requested mode + */ +#define DDERR_INVALIDMODE MAKE_DDHRESULT( 120 ) + +/* + * DirectDraw received a pointer that was an invalid DIRECTDRAW object. + */ +#define DDERR_INVALIDOBJECT MAKE_DDHRESULT( 130 ) + +/* + * One or more of the parameters passed to the callback function are + * incorrect. + */ +#define DDERR_INVALIDPARAMS E_INVALIDARG + +/* + * pixel format was invalid as specified + */ +#define DDERR_INVALIDPIXELFORMAT MAKE_DDHRESULT( 145 ) + +/* + * Rectangle provided was invalid. + */ +#define DDERR_INVALIDRECT MAKE_DDHRESULT( 150 ) + +/* + * Operation could not be carried out because one or more surfaces are locked + */ +#define DDERR_LOCKEDSURFACES MAKE_DDHRESULT( 160 ) + +/* + * There is no 3D present. + */ +#define DDERR_NO3D MAKE_DDHRESULT( 170 ) + +/* + * Operation could not be carried out because there is no alpha accleration + * hardware present or available. + */ +#define DDERR_NOALPHAHW MAKE_DDHRESULT( 180 ) + + +/* + * no clip list available + */ +#define DDERR_NOCLIPLIST MAKE_DDHRESULT( 205 ) + +/* + * Operation could not be carried out because there is no color conversion + * hardware present or available. + */ +#define DDERR_NOCOLORCONVHW MAKE_DDHRESULT( 210 ) + +/* + * Create function called without DirectDraw object method SetCooperativeLevel + * being called. + */ +#define DDERR_NOCOOPERATIVELEVELSET MAKE_DDHRESULT( 212 ) + +/* + * Surface doesn't currently have a color key + */ +#define DDERR_NOCOLORKEY MAKE_DDHRESULT( 215 ) + +/* + * Operation could not be carried out because there is no hardware support + * of the dest color key. + */ +#define DDERR_NOCOLORKEYHW MAKE_DDHRESULT( 220 ) + +/* + * No DirectDraw support possible with current display driver + */ +#define DDERR_NODIRECTDRAWSUPPORT MAKE_DDHRESULT( 222 ) + +/* + * Operation requires the application to have exclusive mode but the + * application does not have exclusive mode. + */ +#define DDERR_NOEXCLUSIVEMODE MAKE_DDHRESULT( 225 ) + +/* + * Flipping visible surfaces is not supported. + */ +#define DDERR_NOFLIPHW MAKE_DDHRESULT( 230 ) + +/* + * There is no GDI present. + */ +#define DDERR_NOGDI MAKE_DDHRESULT( 240 ) + +/* + * Operation could not be carried out because there is no hardware present + * or available. + */ +#define DDERR_NOMIRRORHW MAKE_DDHRESULT( 250 ) + +/* + * Requested item was not found + */ +#define DDERR_NOTFOUND MAKE_DDHRESULT( 255 ) + +/* + * Operation could not be carried out because there is no overlay hardware + * present or available. + */ +#define DDERR_NOOVERLAYHW MAKE_DDHRESULT( 260 ) + +/* + * Operation could not be carried out because the source and destination + * rectangles are on the same surface and overlap each other. + */ +#define DDERR_OVERLAPPINGRECTS MAKE_DDHRESULT( 270 ) + +/* + * Operation could not be carried out because there is no appropriate raster + * op hardware present or available. + */ +#define DDERR_NORASTEROPHW MAKE_DDHRESULT( 280 ) + +/* + * Operation could not be carried out because there is no rotation hardware + * present or available. + */ +#define DDERR_NOROTATIONHW MAKE_DDHRESULT( 290 ) + +/* + * Operation could not be carried out because there is no hardware support + * for stretching + */ +#define DDERR_NOSTRETCHHW MAKE_DDHRESULT( 310 ) + +/* + * DirectDrawSurface is not in 4 bit color palette and the requested operation + * requires 4 bit color palette. + */ +#define DDERR_NOT4BITCOLOR MAKE_DDHRESULT( 316 ) + +/* + * DirectDrawSurface is not in 4 bit color index palette and the requested + * operation requires 4 bit color index palette. + */ +#define DDERR_NOT4BITCOLORINDEX MAKE_DDHRESULT( 317 ) + +/* + * DirectDraw Surface is not in 8 bit color mode and the requested operation + * requires 8 bit color. + */ +#define DDERR_NOT8BITCOLOR MAKE_DDHRESULT( 320 ) + +/* + * Operation could not be carried out because there is no texture mapping + * hardware present or available. + */ +#define DDERR_NOTEXTUREHW MAKE_DDHRESULT( 330 ) + +/* + * Operation could not be carried out because there is no hardware support + * for vertical blank synchronized operations. + */ +#define DDERR_NOVSYNCHW MAKE_DDHRESULT( 335 ) + +/* + * Operation could not be carried out because there is no hardware support + * for zbuffer blting. + */ +#define DDERR_NOZBUFFERHW MAKE_DDHRESULT( 340 ) + +/* + * Overlay surfaces could not be z layered based on their BltOrder because + * the hardware does not support z layering of overlays. + */ +#define DDERR_NOZOVERLAYHW MAKE_DDHRESULT( 350 ) + +/* + * The hardware needed for the requested operation has already been + * allocated. + */ +#define DDERR_OUTOFCAPS MAKE_DDHRESULT( 360 ) + +/* + * DirectDraw does not have enough memory to perform the operation. + */ +#define DDERR_OUTOFMEMORY E_OUTOFMEMORY + +/* + * DirectDraw does not have enough memory to perform the operation. + */ +#define DDERR_OUTOFVIDEOMEMORY MAKE_DDHRESULT( 380 ) + +/* + * hardware does not support clipped overlays + */ +#define DDERR_OVERLAYCANTCLIP MAKE_DDHRESULT( 382 ) + +/* + * Can only have ony color key active at one time for overlays + */ +#define DDERR_OVERLAYCOLORKEYONLYONEACTIVE MAKE_DDHRESULT( 384 ) + +/* + * Access to this palette is being refused because the palette is already + * locked by another thread. + */ +#define DDERR_PALETTEBUSY MAKE_DDHRESULT( 387 ) + +/* + * No src color key specified for this operation. + */ +#define DDERR_COLORKEYNOTSET MAKE_DDHRESULT( 400 ) + +/* + * This surface is already attached to the surface it is being attached to. + */ +#define DDERR_SURFACEALREADYATTACHED MAKE_DDHRESULT( 410 ) + +/* + * This surface is already a dependency of the surface it is being made a + * dependency of. + */ +#define DDERR_SURFACEALREADYDEPENDENT MAKE_DDHRESULT( 420 ) + +/* + * Access to this surface is being refused because the surface is already + * locked by another thread. + */ +#define DDERR_SURFACEBUSY MAKE_DDHRESULT( 430 ) + +/* + * Access to this surface is being refused because no driver exists + * which can supply a pointer to the surface. + * This is most likely to happen when attempting to lock the primary + * surface when no DCI provider is present. + * Will also happen on attempts to lock an optimized surface. + */ +#define DDERR_CANTLOCKSURFACE MAKE_DDHRESULT( 435 ) + +/* + * Access to Surface refused because Surface is obscured. + */ +#define DDERR_SURFACEISOBSCURED MAKE_DDHRESULT( 440 ) + +/* + * Access to this surface is being refused because the surface is gone. + * The DIRECTDRAWSURFACE object representing this surface should + * have Restore called on it. + */ +#define DDERR_SURFACELOST MAKE_DDHRESULT( 450 ) + +/* + * The requested surface is not attached. + */ +#define DDERR_SURFACENOTATTACHED MAKE_DDHRESULT( 460 ) + +/* + * Height requested by DirectDraw is too large. + */ +#define DDERR_TOOBIGHEIGHT MAKE_DDHRESULT( 470 ) + +/* + * Size requested by DirectDraw is too large -- The individual height and + * width are OK. + */ +#define DDERR_TOOBIGSIZE MAKE_DDHRESULT( 480 ) + +/* + * Width requested by DirectDraw is too large. + */ +#define DDERR_TOOBIGWIDTH MAKE_DDHRESULT( 490 ) + +/* + * Action not supported. + */ +#define DDERR_UNSUPPORTED E_NOTIMPL + +/* + * FOURCC format requested is unsupported by DirectDraw + */ +#define DDERR_UNSUPPORTEDFORMAT MAKE_DDHRESULT( 510 ) + +/* + * Bitmask in the pixel format requested is unsupported by DirectDraw + */ +#define DDERR_UNSUPPORTEDMASK MAKE_DDHRESULT( 520 ) + +/* + * The specified stream contains invalid data + */ +#define DDERR_INVALIDSTREAM MAKE_DDHRESULT( 521 ) + +/* + * vertical blank is in progress + */ +#define DDERR_VERTICALBLANKINPROGRESS MAKE_DDHRESULT( 537 ) + +/* + * Informs DirectDraw that the previous Blt which is transfering information + * to or from this Surface is incomplete. + */ +#define DDERR_WASSTILLDRAWING MAKE_DDHRESULT( 540 ) + + +/* + * Rectangle provided was not horizontally aligned on reqd. boundary + */ +#define DDERR_XALIGN MAKE_DDHRESULT( 560 ) + +/* + * The GUID passed to DirectDrawCreate is not a valid DirectDraw driver + * identifier. + */ +#define DDERR_INVALIDDIRECTDRAWGUID MAKE_DDHRESULT( 561 ) + +/* + * A DirectDraw object representing this driver has already been created + * for this process. + */ +#define DDERR_DIRECTDRAWALREADYCREATED MAKE_DDHRESULT( 562 ) + +/* + * A hardware only DirectDraw object creation was attempted but the driver + * did not support any hardware. + */ +#define DDERR_NODIRECTDRAWHW MAKE_DDHRESULT( 563 ) + +/* + * this process already has created a primary surface + */ +#define DDERR_PRIMARYSURFACEALREADYEXISTS MAKE_DDHRESULT( 564 ) + +/* + * software emulation not available. + */ +#define DDERR_NOEMULATION MAKE_DDHRESULT( 565 ) + +/* + * region passed to Clipper::GetClipList is too small. + */ +#define DDERR_REGIONTOOSMALL MAKE_DDHRESULT( 566 ) + +/* + * an attempt was made to set a clip list for a clipper objec that + * is already monitoring an hwnd. + */ +#define DDERR_CLIPPERISUSINGHWND MAKE_DDHRESULT( 567 ) + +/* + * No clipper object attached to surface object + */ +#define DDERR_NOCLIPPERATTACHED MAKE_DDHRESULT( 568 ) + +/* + * Clipper notification requires an HWND or + * no HWND has previously been set as the CooperativeLevel HWND. + */ +#define DDERR_NOHWND MAKE_DDHRESULT( 569 ) + +/* + * HWND used by DirectDraw CooperativeLevel has been subclassed, + * this prevents DirectDraw from restoring state. + */ +#define DDERR_HWNDSUBCLASSED MAKE_DDHRESULT( 570 ) + +/* + * The CooperativeLevel HWND has already been set. + * It can not be reset while the process has surfaces or palettes created. + */ +#define DDERR_HWNDALREADYSET MAKE_DDHRESULT( 571 ) + +/* + * No palette object attached to this surface. + */ +#define DDERR_NOPALETTEATTACHED MAKE_DDHRESULT( 572 ) + +/* + * No hardware support for 16 or 256 color palettes. + */ +#define DDERR_NOPALETTEHW MAKE_DDHRESULT( 573 ) + +/* + * If a clipper object is attached to the source surface passed into a + * BltFast call. + */ +#define DDERR_BLTFASTCANTCLIP MAKE_DDHRESULT( 574 ) + +/* + * No blter. + */ +#define DDERR_NOBLTHW MAKE_DDHRESULT( 575 ) + +/* + * No DirectDraw ROP hardware. + */ +#define DDERR_NODDROPSHW MAKE_DDHRESULT( 576 ) + +/* + * returned when GetOverlayPosition is called on a hidden overlay + */ +#define DDERR_OVERLAYNOTVISIBLE MAKE_DDHRESULT( 577 ) + +/* + * returned when GetOverlayPosition is called on a overlay that UpdateOverlay + * has never been called on to establish a destionation. + */ +#define DDERR_NOOVERLAYDEST MAKE_DDHRESULT( 578 ) + +/* + * returned when the position of the overlay on the destionation is no longer + * legal for that destionation. + */ +#define DDERR_INVALIDPOSITION MAKE_DDHRESULT( 579 ) + +/* + * returned when an overlay member is called for a non-overlay surface + */ +#define DDERR_NOTAOVERLAYSURFACE MAKE_DDHRESULT( 580 ) + +/* + * An attempt was made to set the cooperative level when it was already + * set to exclusive. + */ +#define DDERR_EXCLUSIVEMODEALREADYSET MAKE_DDHRESULT( 581 ) + +/* + * An attempt has been made to flip a surface that is not flippable. + */ +#define DDERR_NOTFLIPPABLE MAKE_DDHRESULT( 582 ) + +/* + * Can't duplicate primary & 3D surfaces, or surfaces that are implicitly + * created. + */ +#define DDERR_CANTDUPLICATE MAKE_DDHRESULT( 583 ) + +/* + * Surface was not locked. An attempt to unlock a surface that was not + * locked at all, or by this process, has been attempted. + */ +#define DDERR_NOTLOCKED MAKE_DDHRESULT( 584 ) + +/* + * Windows can not create any more DCs, or a DC was requested for a paltte-indexed + * surface when the surface had no palette AND the display mode was not palette-indexed + * (in this case DirectDraw cannot select a proper palette into the DC) + */ +#define DDERR_CANTCREATEDC MAKE_DDHRESULT( 585 ) + +/* + * No DC was ever created for this surface. + */ +#define DDERR_NODC MAKE_DDHRESULT( 586 ) + +/* + * This surface can not be restored because it was created in a different + * mode. + */ +#define DDERR_WRONGMODE MAKE_DDHRESULT( 587 ) + +/* + * This surface can not be restored because it is an implicitly created + * surface. + */ +#define DDERR_IMPLICITLYCREATED MAKE_DDHRESULT( 588 ) + +/* + * The surface being used is not a palette-based surface + */ +#define DDERR_NOTPALETTIZED MAKE_DDHRESULT( 589 ) + + +/* + * The display is currently in an unsupported mode + */ +#define DDERR_UNSUPPORTEDMODE MAKE_DDHRESULT( 590 ) + +/* + * Operation could not be carried out because there is no mip-map + * texture mapping hardware present or available. + */ +#define DDERR_NOMIPMAPHW MAKE_DDHRESULT( 591 ) + +/* + * The requested action could not be performed because the surface was of + * the wrong type. + */ +#define DDERR_INVALIDSURFACETYPE MAKE_DDHRESULT( 592 ) + + + +/* + * Device does not support optimized surfaces, therefore no video memory optimized surfaces + */ +#define DDERR_NOOPTIMIZEHW MAKE_DDHRESULT( 600 ) + +/* + * Surface is an optimized surface, but has not yet been allocated any memory + */ +#define DDERR_NOTLOADED MAKE_DDHRESULT( 601 ) + +/* + * Attempt was made to create or set a device window without first setting + * the focus window + */ +#define DDERR_NOFOCUSWINDOW MAKE_DDHRESULT( 602 ) + +/* + * A DC has already been returned for this surface. Only one DC can be + * retrieved per surface. + */ +#define DDERR_DCALREADYCREATED MAKE_DDHRESULT( 620 ) + +/* + * An attempt was made to allocate non-local video memory from a device + * that does not support non-local video memory. + */ +#define DDERR_NONONLOCALVIDMEM MAKE_DDHRESULT( 630 ) + +/* + * The attempt to page lock a surface failed. + */ +#define DDERR_CANTPAGELOCK MAKE_DDHRESULT( 640 ) + + +/* + * The attempt to page unlock a surface failed. + */ +#define DDERR_CANTPAGEUNLOCK MAKE_DDHRESULT( 660 ) + +/* + * An attempt was made to page unlock a surface with no outstanding page locks. + */ +#define DDERR_NOTPAGELOCKED MAKE_DDHRESULT( 680 ) + +/* + * There is more data available than the specified buffer size could hold + */ +#define DDERR_MOREDATA MAKE_DDHRESULT( 690 ) + +/* + * The data has expired and is therefore no longer valid. + */ +#define DDERR_EXPIRED MAKE_DDHRESULT( 691 ) + +/* + * The video port is not active + */ +#define DDERR_VIDEONOTACTIVE MAKE_DDHRESULT( 695 ) + +/* + * Surfaces created by one direct draw device cannot be used directly by + * another direct draw device. + */ +#define DDERR_DEVICEDOESNTOWNSURFACE MAKE_DDHRESULT( 699 ) + + +/* + * An attempt was made to invoke an interface member of a DirectDraw object + * created by CoCreateInstance() before it was initialized. + */ +#define DDERR_NOTINITIALIZED CO_E_NOTINITIALIZED + + +/* Alpha bit depth constants */ + + +#ifdef __cplusplus +}; +#endif + +#endif + diff --git a/misc/builddeps/dp.win64/include/dinput.h b/misc/builddeps/dp.win64/include/dinput.h new file mode 100644 index 00000000..5bf9f5ae --- /dev/null +++ b/misc/builddeps/dp.win64/include/dinput.h @@ -0,0 +1,1849 @@ +/**************************************************************************** + * + * Copyright (C) 1996-1997 Microsoft Corporation. All Rights Reserved. + * + * File: dinput.h + * Content: DirectInput include file + * + ****************************************************************************/ + +#ifndef __DINPUT_INCLUDED__ +#define __DINPUT_INCLUDED__ + +#ifndef DIJ_RINGZERO + +#ifdef _WIN32 +#define COM_NO_WINDOWS_H +#include +#endif + +#endif /* DIJ_RINGZERO */ + +#ifdef __cplusplus +extern "C" { +#endif + +#ifndef DIRECTINPUT_VERSION +#define DIRECTINPUT_VERSION 0x0500 +#endif + +#ifndef DIJ_RINGZERO +/**************************************************************************** + * + * Class IDs + * + ****************************************************************************/ + +DEFINE_GUID(CLSID_DirectInput, 0x25E609E0,0xB259,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(CLSID_DirectInputDevice,0x25E609E1,0xB259,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); + +/**************************************************************************** + * + * Interfaces + * + ****************************************************************************/ + +DEFINE_GUID(IID_IDirectInputA, 0x89521360,0xAA8A,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(IID_IDirectInputW, 0x89521361,0xAA8A,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(IID_IDirectInput2A, 0x5944E662,0xAA8A,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(IID_IDirectInput2W, 0x5944E663,0xAA8A,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); + +DEFINE_GUID(IID_IDirectInputDeviceA, 0x5944E680,0xC92E,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(IID_IDirectInputDeviceW, 0x5944E681,0xC92E,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(IID_IDirectInputDevice2A,0x5944E682,0xC92E,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(IID_IDirectInputDevice2W,0x5944E683,0xC92E,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); + +DEFINE_GUID(IID_IDirectInputEffect, 0xE7E1F7C0,0x88D2,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); + +/**************************************************************************** + * + * Predefined object types + * + ****************************************************************************/ + +DEFINE_GUID(GUID_XAxis, 0xA36D02E0,0xC9F3,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(GUID_YAxis, 0xA36D02E1,0xC9F3,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(GUID_ZAxis, 0xA36D02E2,0xC9F3,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(GUID_RxAxis, 0xA36D02F4,0xC9F3,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(GUID_RyAxis, 0xA36D02F5,0xC9F3,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(GUID_RzAxis, 0xA36D02E3,0xC9F3,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(GUID_Slider, 0xA36D02E4,0xC9F3,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); + +DEFINE_GUID(GUID_Button, 0xA36D02F0,0xC9F3,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(GUID_Key, 0x55728220,0xD33C,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); + +DEFINE_GUID(GUID_POV, 0xA36D02F2,0xC9F3,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); + +DEFINE_GUID(GUID_Unknown, 0xA36D02F3,0xC9F3,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); + +/**************************************************************************** + * + * Predefined product GUIDs + * + ****************************************************************************/ + +DEFINE_GUID(GUID_SysMouse, 0x6F1D2B60,0xD5A0,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(GUID_SysKeyboard,0x6F1D2B61,0xD5A0,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); +DEFINE_GUID(GUID_Joystick ,0x6F1D2B70,0xD5A0,0x11CF,0xBF,0xC7,0x44,0x45,0x53,0x54,0x00,0x00); + +/**************************************************************************** + * + * Predefined force feedback effects + * + ****************************************************************************/ + +DEFINE_GUID(GUID_ConstantForce,0x13541C20,0x8E33,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); +DEFINE_GUID(GUID_RampForce, 0x13541C21,0x8E33,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); +DEFINE_GUID(GUID_Square, 0x13541C22,0x8E33,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); +DEFINE_GUID(GUID_Sine, 0x13541C23,0x8E33,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); +DEFINE_GUID(GUID_Triangle, 0x13541C24,0x8E33,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); +DEFINE_GUID(GUID_SawtoothUp, 0x13541C25,0x8E33,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); +DEFINE_GUID(GUID_SawtoothDown, 0x13541C26,0x8E33,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); +DEFINE_GUID(GUID_Spring, 0x13541C27,0x8E33,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); +DEFINE_GUID(GUID_Damper, 0x13541C28,0x8E33,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); +DEFINE_GUID(GUID_Inertia, 0x13541C29,0x8E33,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); +DEFINE_GUID(GUID_Friction, 0x13541C2A,0x8E33,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); +DEFINE_GUID(GUID_CustomForce, 0x13541C2B,0x8E33,0x11D0,0x9A,0xD0,0x00,0xA0,0xC9,0xA0,0x6E,0x35); + + +#endif /* DIJ_RINGZERO */ + +/**************************************************************************** + * + * Interfaces and Structures... + * + ****************************************************************************/ + +#if(DIRECTINPUT_VERSION >= 0x0500) + +/**************************************************************************** + * + * IDirectInputEffect + * + ****************************************************************************/ + +#define DIEFT_ALL 0x00000000 + +#define DIEFT_CONSTANTFORCE 0x00000001 +#define DIEFT_RAMPFORCE 0x00000002 +#define DIEFT_PERIODIC 0x00000003 +#define DIEFT_CONDITION 0x00000004 +#define DIEFT_CUSTOMFORCE 0x00000005 +#define DIEFT_HARDWARE 0x000000FF + +#define DIEFT_FFATTACK 0x00000200 +#define DIEFT_FFFADE 0x00000400 +#define DIEFT_SATURATION 0x00000800 +#define DIEFT_POSNEGCOEFFICIENTS 0x00001000 +#define DIEFT_POSNEGSATURATION 0x00002000 +#define DIEFT_DEADBAND 0x00004000 + +#define DIEFT_GETTYPE(n) LOBYTE(n) + +#define DI_DEGREES 100 +#define DI_FFNOMINALMAX 10000 +#define DI_SECONDS 1000000 + +typedef struct DICONSTANTFORCE { + LONG lMagnitude; +} DICONSTANTFORCE, *LPDICONSTANTFORCE; +typedef const DICONSTANTFORCE *LPCDICONSTANTFORCE; + +typedef struct DIRAMPFORCE { + LONG lStart; + LONG lEnd; +} DIRAMPFORCE, *LPDIRAMPFORCE; +typedef const DIRAMPFORCE *LPCDIRAMPFORCE; + +typedef struct DIPERIODIC { + DWORD dwMagnitude; + LONG lOffset; + DWORD dwPhase; + DWORD dwPeriod; +} DIPERIODIC, *LPDIPERIODIC; +typedef const DIPERIODIC *LPCDIPERIODIC; + +typedef struct DICONDITION { + LONG lOffset; + LONG lPositiveCoefficient; + LONG lNegativeCoefficient; + DWORD dwPositiveSaturation; + DWORD dwNegativeSaturation; + LONG lDeadBand; +} DICONDITION, *LPDICONDITION; +typedef const DICONDITION *LPCDICONDITION; + +typedef struct DICUSTOMFORCE { + DWORD cChannels; + DWORD dwSamplePeriod; + DWORD cSamples; + LPLONG rglForceData; +} DICUSTOMFORCE, *LPDICUSTOMFORCE; +typedef const DICUSTOMFORCE *LPCDICUSTOMFORCE; + +typedef struct DIENVELOPE { + DWORD dwSize; /* sizeof(DIENVELOPE) */ + DWORD dwAttackLevel; + DWORD dwAttackTime; /* Microseconds */ + DWORD dwFadeLevel; + DWORD dwFadeTime; /* Microseconds */ +} DIENVELOPE, *LPDIENVELOPE; +typedef const DIENVELOPE *LPCDIENVELOPE; + +typedef struct DIEFFECT { + DWORD dwSize; /* sizeof(DIEFFECT) */ + DWORD dwFlags; /* DIEFF_* */ + DWORD dwDuration; /* Microseconds */ + DWORD dwSamplePeriod; /* Microseconds */ + DWORD dwGain; + DWORD dwTriggerButton; /* or DIEB_NOTRIGGER */ + DWORD dwTriggerRepeatInterval; /* Microseconds */ + DWORD cAxes; /* Number of axes */ + LPDWORD rgdwAxes; /* Array of axes */ + LPLONG rglDirection; /* Array of directions */ + LPDIENVELOPE lpEnvelope; /* Optional */ + DWORD cbTypeSpecificParams; /* Size of params */ + LPVOID lpvTypeSpecificParams; /* Pointer to params */ +} DIEFFECT, *LPDIEFFECT; +typedef const DIEFFECT *LPCDIEFFECT; + +#define DIEFF_OBJECTIDS 0x00000001 +#define DIEFF_OBJECTOFFSETS 0x00000002 +#define DIEFF_CARTESIAN 0x00000010 +#define DIEFF_POLAR 0x00000020 +#define DIEFF_SPHERICAL 0x00000040 + +#define DIEP_DURATION 0x00000001 +#define DIEP_SAMPLEPERIOD 0x00000002 +#define DIEP_GAIN 0x00000004 +#define DIEP_TRIGGERBUTTON 0x00000008 +#define DIEP_TRIGGERREPEATINTERVAL 0x00000010 +#define DIEP_AXES 0x00000020 +#define DIEP_DIRECTION 0x00000040 +#define DIEP_ENVELOPE 0x00000080 +#define DIEP_TYPESPECIFICPARAMS 0x00000100 +#define DIEP_ALLPARAMS 0x000001FF +#define DIEP_START 0x20000000 +#define DIEP_NORESTART 0x40000000 +#define DIEP_NODOWNLOAD 0x80000000 +#define DIEB_NOTRIGGER 0xFFFFFFFF + +#define DIES_SOLO 0x00000001 +#define DIES_NODOWNLOAD 0x80000000 + +#define DIEGES_PLAYING 0x00000001 +#define DIEGES_EMULATED 0x00000002 + +typedef struct DIEFFESCAPE { + DWORD dwSize; + DWORD dwCommand; + LPVOID lpvInBuffer; + DWORD cbInBuffer; + LPVOID lpvOutBuffer; + DWORD cbOutBuffer; +} DIEFFESCAPE, *LPDIEFFESCAPE; + +#ifndef DIJ_RINGZERO + +#undef INTERFACE +#define INTERFACE IDirectInputEffect + +DECLARE_INTERFACE_(IDirectInputEffect, IUnknown) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef)(THIS) PURE; + STDMETHOD_(ULONG,Release)(THIS) PURE; + + /*** IDirectInputEffect methods ***/ + STDMETHOD(Initialize)(THIS_ HINSTANCE,DWORD,REFGUID) PURE; + STDMETHOD(GetEffectGuid)(THIS_ LPGUID) PURE; + STDMETHOD(GetParameters)(THIS_ LPDIEFFECT,DWORD) PURE; + STDMETHOD(SetParameters)(THIS_ LPCDIEFFECT,DWORD) PURE; + STDMETHOD(Start)(THIS_ DWORD,DWORD) PURE; + STDMETHOD(Stop)(THIS) PURE; + STDMETHOD(GetEffectStatus)(THIS_ LPDWORD) PURE; + STDMETHOD(Download)(THIS) PURE; + STDMETHOD(Unload)(THIS) PURE; + STDMETHOD(Escape)(THIS_ LPDIEFFESCAPE) PURE; +}; + +typedef struct IDirectInputEffect *LPDIRECTINPUTEFFECT; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectInputEffect_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectInputEffect_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectInputEffect_Release(p) (p)->lpVtbl->Release(p) +#define IDirectInputEffect_Initialize(p,a,b,c) (p)->lpVtbl->Initialize(p,a,b,c) +#define IDirectInputEffect_GetEffectGuid(p,a) (p)->lpVtbl->GetEffectGuid(p,a) +#define IDirectInputEffect_GetParameters(p,a,b) (p)->lpVtbl->GetParameters(p,a,b) +#define IDirectInputEffect_SetParameters(p,a,b) (p)->lpVtbl->SetParameters(p,a,b) +#define IDirectInputEffect_Start(p,a,b) (p)->lpVtbl->Start(p,a,b) +#define IDirectInputEffect_Stop(p) (p)->lpVtbl->Stop(p) +#define IDirectInputEffect_GetEffectStatus(p,a) (p)->lpVtbl->GetEffectStatus(p,a) +#define IDirectInputEffect_Download(p) (p)->lpVtbl->Download(p) +#define IDirectInputEffect_Unload(p) (p)->lpVtbl->Unload(p) +#define IDirectInputEffect_Escape(p,a) (p)->lpVtbl->Escape(p,a) +#else +#define IDirectInputEffect_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectInputEffect_AddRef(p) (p)->AddRef() +#define IDirectInputEffect_Release(p) (p)->Release() +#define IDirectInputEffect_Initialize(p,a,b,c) (p)->Initialize(a,b,c) +#define IDirectInputEffect_GetEffectGuid(p,a) (p)->GetEffectGuid(a) +#define IDirectInputEffect_GetParameters(p,a,b) (p)->GetParameters(a,b) +#define IDirectInputEffect_SetParameters(p,a,b) (p)->SetParameters(a,b) +#define IDirectInputEffect_Start(p,a,b) (p)->Start(a,b) +#define IDirectInputEffect_Stop(p) (p)->Stop() +#define IDirectInputEffect_GetEffectStatus(p,a) (p)->GetEffectStatus(a) +#define IDirectInputEffect_Download(p) (p)->Download() +#define IDirectInputEffect_Unload(p) (p)->Unload() +#define IDirectInputEffect_Escape(p,a) (p)->Escape(a) +#endif + +#endif /* DIJ_RINGZERO */ + +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ + +/**************************************************************************** + * + * IDirectInputDevice + * + ****************************************************************************/ + +#define DIDEVTYPE_DEVICE 1 +#define DIDEVTYPE_MOUSE 2 +#define DIDEVTYPE_KEYBOARD 3 +#define DIDEVTYPE_JOYSTICK 4 +#define DIDEVTYPE_HID 0x00010000 + +#define DIDEVTYPEMOUSE_UNKNOWN 1 +#define DIDEVTYPEMOUSE_TRADITIONAL 2 +#define DIDEVTYPEMOUSE_FINGERSTICK 3 +#define DIDEVTYPEMOUSE_TOUCHPAD 4 +#define DIDEVTYPEMOUSE_TRACKBALL 5 + +#define DIDEVTYPEKEYBOARD_UNKNOWN 0 +#define DIDEVTYPEKEYBOARD_PCXT 1 +#define DIDEVTYPEKEYBOARD_OLIVETTI 2 +#define DIDEVTYPEKEYBOARD_PCAT 3 +#define DIDEVTYPEKEYBOARD_PCENH 4 +#define DIDEVTYPEKEYBOARD_NOKIA1050 5 +#define DIDEVTYPEKEYBOARD_NOKIA9140 6 +#define DIDEVTYPEKEYBOARD_NEC98 7 +#define DIDEVTYPEKEYBOARD_NEC98LAPTOP 8 +#define DIDEVTYPEKEYBOARD_NEC98106 9 +#define DIDEVTYPEKEYBOARD_JAPAN106 10 +#define DIDEVTYPEKEYBOARD_JAPANAX 11 +#define DIDEVTYPEKEYBOARD_J3100 12 + +#define DIDEVTYPEJOYSTICK_UNKNOWN 1 +#define DIDEVTYPEJOYSTICK_TRADITIONAL 2 +#define DIDEVTYPEJOYSTICK_FLIGHTSTICK 3 +#define DIDEVTYPEJOYSTICK_GAMEPAD 4 +#define DIDEVTYPEJOYSTICK_RUDDER 5 +#define DIDEVTYPEJOYSTICK_WHEEL 6 +#define DIDEVTYPEJOYSTICK_HEADTRACKER 7 + +#define GET_DIDEVICE_TYPE(dwDevType) LOBYTE(dwDevType) +#define GET_DIDEVICE_SUBTYPE(dwDevType) HIBYTE(dwDevType) + +#if(DIRECTINPUT_VERSION >= 0x0500) +/* This structure is defined for DirectX 3.0 compatibility */ + +typedef struct DIDEVCAPS_DX3 { + DWORD dwSize; + DWORD dwFlags; + DWORD dwDevType; + DWORD dwAxes; + DWORD dwButtons; + DWORD dwPOVs; +} DIDEVCAPS_DX3, *LPDIDEVCAPS_DX3; +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ + +typedef struct DIDEVCAPS { + DWORD dwSize; + DWORD dwFlags; + DWORD dwDevType; + DWORD dwAxes; + DWORD dwButtons; + DWORD dwPOVs; +#if(DIRECTINPUT_VERSION >= 0x0500) + DWORD dwFFSamplePeriod; + DWORD dwFFMinTimeResolution; + DWORD dwFirmwareRevision; + DWORD dwHardwareRevision; + DWORD dwFFDriverVersion; +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ +} DIDEVCAPS, *LPDIDEVCAPS; + +#define DIDC_ATTACHED 0x00000001 +#define DIDC_POLLEDDEVICE 0x00000002 +#define DIDC_EMULATED 0x00000004 +#define DIDC_POLLEDDATAFORMAT 0x00000008 +#if(DIRECTINPUT_VERSION >= 0x0500) +#define DIDC_FORCEFEEDBACK 0x00000100 +#define DIDC_FFATTACK 0x00000200 +#define DIDC_FFFADE 0x00000400 +#define DIDC_SATURATION 0x00000800 +#define DIDC_POSNEGCOEFFICIENTS 0x00001000 +#define DIDC_POSNEGSATURATION 0x00002000 +#define DIDC_DEADBAND 0x00004000 +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ + +#define DIDFT_ALL 0x00000000 + +#define DIDFT_RELAXIS 0x00000001 +#define DIDFT_ABSAXIS 0x00000002 +#define DIDFT_AXIS 0x00000003 + +#define DIDFT_PSHBUTTON 0x00000004 +#define DIDFT_TGLBUTTON 0x00000008 +#define DIDFT_BUTTON 0x0000000C + +#define DIDFT_POV 0x00000010 + +#define DIDFT_COLLECTION 0x00000040 +#define DIDFT_NODATA 0x00000080 + +#define DIDFT_ANYINSTANCE 0x00FFFF00 +#define DIDFT_INSTANCEMASK DIDFT_ANYINSTANCE +#define DIDFT_MAKEINSTANCE(n) ((WORD)(n) << 8) +#define DIDFT_GETTYPE(n) LOBYTE(n) +#define DIDFT_GETINSTANCE(n) LOWORD((n) >> 8) +#define DIDFT_FFACTUATOR 0x01000000 +#define DIDFT_FFEFFECTTRIGGER 0x02000000 + +#define DIDFT_ENUMCOLLECTION(n) ((WORD)(n) << 8) +#define DIDFT_NOCOLLECTION 0x00FFFF00 + + +#ifndef DIJ_RINGZERO + +typedef struct _DIOBJECTDATAFORMAT { + const GUID *pguid; + DWORD dwOfs; + DWORD dwType; + DWORD dwFlags; +} DIOBJECTDATAFORMAT, *LPDIOBJECTDATAFORMAT; +typedef const DIOBJECTDATAFORMAT *LPCDIOBJECTDATAFORMAT; + +typedef struct _DIDATAFORMAT { + DWORD dwSize; + DWORD dwObjSize; + DWORD dwFlags; + DWORD dwDataSize; + DWORD dwNumObjs; + LPDIOBJECTDATAFORMAT rgodf; +} DIDATAFORMAT, *LPDIDATAFORMAT; +typedef const DIDATAFORMAT *LPCDIDATAFORMAT; + +#define DIDF_ABSAXIS 0x00000001 +#define DIDF_RELAXIS 0x00000002 + +extern const DIDATAFORMAT c_dfDIMouse; +extern const DIDATAFORMAT c_dfDIKeyboard; +extern const DIDATAFORMAT c_dfDIJoystick; +extern const DIDATAFORMAT c_dfDIJoystick2; + +#if(DIRECTINPUT_VERSION >= 0x0500) +/* These structures are defined for DirectX 3.0 compatibility */ + +typedef struct DIDEVICEOBJECTINSTANCE_DX3A { + DWORD dwSize; + GUID guidType; + DWORD dwOfs; + DWORD dwType; + DWORD dwFlags; + CHAR tszName[MAX_PATH]; +} DIDEVICEOBJECTINSTANCE_DX3A, *LPDIDEVICEOBJECTINSTANCE_DX3A; +typedef struct DIDEVICEOBJECTINSTANCE_DX3W { + DWORD dwSize; + GUID guidType; + DWORD dwOfs; + DWORD dwType; + DWORD dwFlags; + WCHAR tszName[MAX_PATH]; +} DIDEVICEOBJECTINSTANCE_DX3W, *LPDIDEVICEOBJECTINSTANCE_DX3W; +#ifdef UNICODE +typedef DIDEVICEOBJECTINSTANCE_DX3W DIDEVICEOBJECTINSTANCE_DX3; +typedef LPDIDEVICEOBJECTINSTANCE_DX3W LPDIDEVICEOBJECTINSTANCE_DX3; +#else +typedef DIDEVICEOBJECTINSTANCE_DX3A DIDEVICEOBJECTINSTANCE_DX3; +typedef LPDIDEVICEOBJECTINSTANCE_DX3A LPDIDEVICEOBJECTINSTANCE_DX3; +#endif // UNICODE +typedef const DIDEVICEOBJECTINSTANCE_DX3A *LPCDIDEVICEOBJECTINSTANCE_DX3A; +typedef const DIDEVICEOBJECTINSTANCE_DX3W *LPCDIDEVICEOBJECTINSTANCE_DX3W; +typedef const DIDEVICEOBJECTINSTANCE_DX3 *LPCDIDEVICEOBJECTINSTANCE_DX3; +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ + +typedef struct DIDEVICEOBJECTINSTANCEA { + DWORD dwSize; + GUID guidType; + DWORD dwOfs; + DWORD dwType; + DWORD dwFlags; + CHAR tszName[MAX_PATH]; +#if(DIRECTINPUT_VERSION >= 0x0500) + DWORD dwFFMaxForce; + DWORD dwFFForceResolution; + WORD wCollectionNumber; + WORD wDesignatorIndex; + WORD wUsagePage; + WORD wUsage; + DWORD dwDimension; + WORD wExponent; + WORD wReserved; +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ +} DIDEVICEOBJECTINSTANCEA, *LPDIDEVICEOBJECTINSTANCEA; +typedef struct DIDEVICEOBJECTINSTANCEW { + DWORD dwSize; + GUID guidType; + DWORD dwOfs; + DWORD dwType; + DWORD dwFlags; + WCHAR tszName[MAX_PATH]; +#if(DIRECTINPUT_VERSION >= 0x0500) + DWORD dwFFMaxForce; + DWORD dwFFForceResolution; + WORD wCollectionNumber; + WORD wDesignatorIndex; + WORD wUsagePage; + WORD wUsage; + DWORD dwDimension; + WORD wExponent; + WORD wReserved; +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ +} DIDEVICEOBJECTINSTANCEW, *LPDIDEVICEOBJECTINSTANCEW; +#ifdef UNICODE +typedef DIDEVICEOBJECTINSTANCEW DIDEVICEOBJECTINSTANCE; +typedef LPDIDEVICEOBJECTINSTANCEW LPDIDEVICEOBJECTINSTANCE; +#else +typedef DIDEVICEOBJECTINSTANCEA DIDEVICEOBJECTINSTANCE; +typedef LPDIDEVICEOBJECTINSTANCEA LPDIDEVICEOBJECTINSTANCE; +#endif // UNICODE +typedef const DIDEVICEOBJECTINSTANCEA *LPCDIDEVICEOBJECTINSTANCEA; +typedef const DIDEVICEOBJECTINSTANCEW *LPCDIDEVICEOBJECTINSTANCEW; +typedef const DIDEVICEOBJECTINSTANCE *LPCDIDEVICEOBJECTINSTANCE; + +typedef BOOL (FAR PASCAL * LPDIENUMDEVICEOBJECTSCALLBACKA)(LPCDIDEVICEOBJECTINSTANCEA, LPVOID); +typedef BOOL (FAR PASCAL * LPDIENUMDEVICEOBJECTSCALLBACKW)(LPCDIDEVICEOBJECTINSTANCEW, LPVOID); +#ifdef UNICODE +#define LPDIENUMDEVICEOBJECTSCALLBACK LPDIENUMDEVICEOBJECTSCALLBACKW +#else +#define LPDIENUMDEVICEOBJECTSCALLBACK LPDIENUMDEVICEOBJECTSCALLBACKA +#endif // !UNICODE + +#if(DIRECTINPUT_VERSION >= 0x0500) +#define DIDOI_FFACTUATOR 0x00000001 +#define DIDOI_FFEFFECTTRIGGER 0x00000002 +#define DIDOI_POLLED 0x00008000 +#define DIDOI_ASPECTPOSITION 0x00000100 +#define DIDOI_ASPECTVELOCITY 0x00000200 +#define DIDOI_ASPECTACCEL 0x00000300 +#define DIDOI_ASPECTFORCE 0x00000400 +#define DIDOI_ASPECTMASK 0x00000F00 +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ + +typedef struct DIPROPHEADER { + DWORD dwSize; + DWORD dwHeaderSize; + DWORD dwObj; + DWORD dwHow; +} DIPROPHEADER, *LPDIPROPHEADER; +typedef const DIPROPHEADER *LPCDIPROPHEADER; + +#define DIPH_DEVICE 0 +#define DIPH_BYOFFSET 1 +#define DIPH_BYID 2 + +typedef struct DIPROPDWORD { + DIPROPHEADER diph; + DWORD dwData; +} DIPROPDWORD, *LPDIPROPDWORD; +typedef const DIPROPDWORD *LPCDIPROPDWORD; + +typedef struct DIPROPRANGE { + DIPROPHEADER diph; + LONG lMin; + LONG lMax; +} DIPROPRANGE, *LPDIPROPRANGE; +typedef const DIPROPRANGE *LPCDIPROPRANGE; + +#define DIPROPRANGE_NOMIN ((LONG)0x80000000) +#define DIPROPRANGE_NOMAX ((LONG)0x7FFFFFFF) + +#ifdef __cplusplus +#define MAKEDIPROP(prop) (*(const GUID *)(prop)) +#else +#define MAKEDIPROP(prop) ((REFGUID)(prop)) +#endif + +#define DIPROP_BUFFERSIZE MAKEDIPROP(1) + +#define DIPROP_AXISMODE MAKEDIPROP(2) + +#define DIPROPAXISMODE_ABS 0 +#define DIPROPAXISMODE_REL 1 + +#define DIPROP_GRANULARITY MAKEDIPROP(3) + +#define DIPROP_RANGE MAKEDIPROP(4) + +#define DIPROP_DEADZONE MAKEDIPROP(5) + +#define DIPROP_SATURATION MAKEDIPROP(6) + +#define DIPROP_FFGAIN MAKEDIPROP(7) + +#define DIPROP_FFLOAD MAKEDIPROP(8) + +#define DIPROP_AUTOCENTER MAKEDIPROP(9) + +#define DIPROPAUTOCENTER_OFF 0 +#define DIPROPAUTOCENTER_ON 1 + +#define DIPROP_CALIBRATIONMODE MAKEDIPROP(10) + +#define DIPROPCALIBRATIONMODE_COOKED 0 +#define DIPROPCALIBRATIONMODE_RAW 1 + +typedef struct DIDEVICEOBJECTDATA { + DWORD dwOfs; + DWORD dwData; + DWORD dwTimeStamp; + DWORD dwSequence; +} DIDEVICEOBJECTDATA, *LPDIDEVICEOBJECTDATA; +typedef const DIDEVICEOBJECTDATA *LPCDIDEVICEOBJECTDATA; + +#define DIGDD_PEEK 0x00000001 + +#define DISEQUENCE_COMPARE(dwSequence1, cmp, dwSequence2) \ + ((int)((dwSequence1) - (dwSequence2)) cmp 0) +#define DISCL_EXCLUSIVE 0x00000001 +#define DISCL_NONEXCLUSIVE 0x00000002 +#define DISCL_FOREGROUND 0x00000004 +#define DISCL_BACKGROUND 0x00000008 + +#if(DIRECTINPUT_VERSION >= 0x0500) +/* These structures are defined for DirectX 3.0 compatibility */ + +typedef struct DIDEVICEINSTANCE_DX3A { + DWORD dwSize; + GUID guidInstance; + GUID guidProduct; + DWORD dwDevType; + CHAR tszInstanceName[MAX_PATH]; + CHAR tszProductName[MAX_PATH]; +} DIDEVICEINSTANCE_DX3A, *LPDIDEVICEINSTANCE_DX3A; +typedef struct DIDEVICEINSTANCE_DX3W { + DWORD dwSize; + GUID guidInstance; + GUID guidProduct; + DWORD dwDevType; + WCHAR tszInstanceName[MAX_PATH]; + WCHAR tszProductName[MAX_PATH]; +} DIDEVICEINSTANCE_DX3W, *LPDIDEVICEINSTANCE_DX3W; +#ifdef UNICODE +typedef DIDEVICEINSTANCE_DX3W DIDEVICEINSTANCE_DX3; +typedef LPDIDEVICEINSTANCE_DX3W LPDIDEVICEINSTANCE_DX3; +#else +typedef DIDEVICEINSTANCE_DX3A DIDEVICEINSTANCE_DX3; +typedef LPDIDEVICEINSTANCE_DX3A LPDIDEVICEINSTANCE_DX3; +#endif // UNICODE +typedef const DIDEVICEINSTANCE_DX3A *LPCDIDEVICEINSTANCE_DX3A; +typedef const DIDEVICEINSTANCE_DX3W *LPCDIDEVICEINSTANCE_DX3W; +typedef const DIDEVICEINSTANCE_DX3 *LPCDIDEVICEINSTANCE_DX3; +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ + +typedef struct DIDEVICEINSTANCEA { + DWORD dwSize; + GUID guidInstance; + GUID guidProduct; + DWORD dwDevType; + CHAR tszInstanceName[MAX_PATH]; + CHAR tszProductName[MAX_PATH]; +#if(DIRECTINPUT_VERSION >= 0x0500) + GUID guidFFDriver; + WORD wUsagePage; + WORD wUsage; +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ +} DIDEVICEINSTANCEA, *LPDIDEVICEINSTANCEA; +typedef struct DIDEVICEINSTANCEW { + DWORD dwSize; + GUID guidInstance; + GUID guidProduct; + DWORD dwDevType; + WCHAR tszInstanceName[MAX_PATH]; + WCHAR tszProductName[MAX_PATH]; +#if(DIRECTINPUT_VERSION >= 0x0500) + GUID guidFFDriver; + WORD wUsagePage; + WORD wUsage; +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ +} DIDEVICEINSTANCEW, *LPDIDEVICEINSTANCEW; +#ifdef UNICODE +typedef DIDEVICEINSTANCEW DIDEVICEINSTANCE; +typedef LPDIDEVICEINSTANCEW LPDIDEVICEINSTANCE; +#else +typedef DIDEVICEINSTANCEA DIDEVICEINSTANCE; +typedef LPDIDEVICEINSTANCEA LPDIDEVICEINSTANCE; +#endif // UNICODE +typedef const DIDEVICEINSTANCEA *LPCDIDEVICEINSTANCEA; +typedef const DIDEVICEINSTANCEW *LPCDIDEVICEINSTANCEW; +typedef const DIDEVICEINSTANCE *LPCDIDEVICEINSTANCE; + +#undef INTERFACE +#define INTERFACE IDirectInputDeviceW + +DECLARE_INTERFACE_(IDirectInputDeviceW, IUnknown) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef)(THIS) PURE; + STDMETHOD_(ULONG,Release)(THIS) PURE; + + /*** IDirectInputDeviceW methods ***/ + STDMETHOD(GetCapabilities)(THIS_ LPDIDEVCAPS) PURE; + STDMETHOD(EnumObjects)(THIS_ LPDIENUMDEVICEOBJECTSCALLBACKW,LPVOID,DWORD) PURE; + STDMETHOD(GetProperty)(THIS_ REFGUID,LPDIPROPHEADER) PURE; + STDMETHOD(SetProperty)(THIS_ REFGUID,LPCDIPROPHEADER) PURE; + STDMETHOD(Acquire)(THIS) PURE; + STDMETHOD(Unacquire)(THIS) PURE; + STDMETHOD(GetDeviceState)(THIS_ DWORD,LPVOID) PURE; + STDMETHOD(GetDeviceData)(THIS_ DWORD,LPDIDEVICEOBJECTDATA,LPDWORD,DWORD) PURE; + STDMETHOD(SetDataFormat)(THIS_ LPCDIDATAFORMAT) PURE; + STDMETHOD(SetEventNotification)(THIS_ HANDLE) PURE; + STDMETHOD(SetCooperativeLevel)(THIS_ HWND,DWORD) PURE; + STDMETHOD(GetObjectInfo)(THIS_ LPDIDEVICEOBJECTINSTANCEW,DWORD,DWORD) PURE; + STDMETHOD(GetDeviceInfo)(THIS_ LPDIDEVICEINSTANCEW) PURE; + STDMETHOD(RunControlPanel)(THIS_ HWND,DWORD) PURE; + STDMETHOD(Initialize)(THIS_ HINSTANCE,DWORD,REFGUID) PURE; +}; + +typedef struct IDirectInputDeviceW *LPDIRECTINPUTDEVICEW; + +#undef INTERFACE +#define INTERFACE IDirectInputDeviceA + +DECLARE_INTERFACE_(IDirectInputDeviceA, IUnknown) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef)(THIS) PURE; + STDMETHOD_(ULONG,Release)(THIS) PURE; + + /*** IDirectInputDeviceA methods ***/ + STDMETHOD(GetCapabilities)(THIS_ LPDIDEVCAPS) PURE; + STDMETHOD(EnumObjects)(THIS_ LPDIENUMDEVICEOBJECTSCALLBACKA,LPVOID,DWORD) PURE; + STDMETHOD(GetProperty)(THIS_ REFGUID,LPDIPROPHEADER) PURE; + STDMETHOD(SetProperty)(THIS_ REFGUID,LPCDIPROPHEADER) PURE; + STDMETHOD(Acquire)(THIS) PURE; + STDMETHOD(Unacquire)(THIS) PURE; + STDMETHOD(GetDeviceState)(THIS_ DWORD,LPVOID) PURE; + STDMETHOD(GetDeviceData)(THIS_ DWORD,LPDIDEVICEOBJECTDATA,LPDWORD,DWORD) PURE; + STDMETHOD(SetDataFormat)(THIS_ LPCDIDATAFORMAT) PURE; + STDMETHOD(SetEventNotification)(THIS_ HANDLE) PURE; + STDMETHOD(SetCooperativeLevel)(THIS_ HWND,DWORD) PURE; + STDMETHOD(GetObjectInfo)(THIS_ LPDIDEVICEOBJECTINSTANCEA,DWORD,DWORD) PURE; + STDMETHOD(GetDeviceInfo)(THIS_ LPDIDEVICEINSTANCEA) PURE; + STDMETHOD(RunControlPanel)(THIS_ HWND,DWORD) PURE; + STDMETHOD(Initialize)(THIS_ HINSTANCE,DWORD,REFGUID) PURE; +}; + +typedef struct IDirectInputDeviceA *LPDIRECTINPUTDEVICEA; + +#ifdef UNICODE +#define IID_IDirectInputDevice IID_IDirectInputDeviceW +#define IDirectInputDevice IDirectInputDeviceW +#define IDirectInputDeviceVtbl IDirectInputDeviceWVtbl +#else +#define IID_IDirectInputDevice IID_IDirectInputDeviceA +#define IDirectInputDevice IDirectInputDeviceA +#define IDirectInputDeviceVtbl IDirectInputDeviceAVtbl +#endif +typedef struct IDirectInputDevice *LPDIRECTINPUTDEVICE; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectInputDevice_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectInputDevice_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectInputDevice_Release(p) (p)->lpVtbl->Release(p) +#define IDirectInputDevice_GetCapabilities(p,a) (p)->lpVtbl->GetCapabilities(p,a) +#define IDirectInputDevice_EnumObjects(p,a,b,c) (p)->lpVtbl->EnumObjects(p,a,b,c) +#define IDirectInputDevice_GetProperty(p,a,b) (p)->lpVtbl->GetProperty(p,a,b) +#define IDirectInputDevice_SetProperty(p,a,b) (p)->lpVtbl->SetProperty(p,a,b) +#define IDirectInputDevice_Acquire(p) (p)->lpVtbl->Acquire(p) +#define IDirectInputDevice_Unacquire(p) (p)->lpVtbl->Unacquire(p) +#define IDirectInputDevice_GetDeviceState(p,a,b) (p)->lpVtbl->GetDeviceState(p,a,b) +#define IDirectInputDevice_GetDeviceData(p,a,b,c,d) (p)->lpVtbl->GetDeviceData(p,a,b,c,d) +#define IDirectInputDevice_SetDataFormat(p,a) (p)->lpVtbl->SetDataFormat(p,a) +#define IDirectInputDevice_SetEventNotification(p,a) (p)->lpVtbl->SetEventNotification(p,a) +#define IDirectInputDevice_SetCooperativeLevel(p,a,b) (p)->lpVtbl->SetCooperativeLevel(p,a,b) +#define IDirectInputDevice_GetObjectInfo(p,a,b,c) (p)->lpVtbl->GetObjectInfo(p,a,b,c) +#define IDirectInputDevice_GetDeviceInfo(p,a) (p)->lpVtbl->GetDeviceInfo(p,a) +#define IDirectInputDevice_RunControlPanel(p,a,b) (p)->lpVtbl->RunControlPanel(p,a,b) +#define IDirectInputDevice_Initialize(p,a,b,c) (p)->lpVtbl->Initialize(p,a,b,c) +#else +#define IDirectInputDevice_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectInputDevice_AddRef(p) (p)->AddRef() +#define IDirectInputDevice_Release(p) (p)->Release() +#define IDirectInputDevice_GetCapabilities(p,a) (p)->GetCapabilities(a) +#define IDirectInputDevice_EnumObjects(p,a,b,c) (p)->EnumObjects(a,b,c) +#define IDirectInputDevice_GetProperty(p,a,b) (p)->GetProperty(a,b) +#define IDirectInputDevice_SetProperty(p,a,b) (p)->SetProperty(a,b) +#define IDirectInputDevice_Acquire(p) (p)->Acquire() +#define IDirectInputDevice_Unacquire(p) (p)->Unacquire() +#define IDirectInputDevice_GetDeviceState(p,a,b) (p)->GetDeviceState(a,b) +#define IDirectInputDevice_GetDeviceData(p,a,b,c,d) (p)->GetDeviceData(a,b,c,d) +#define IDirectInputDevice_SetDataFormat(p,a) (p)->SetDataFormat(a) +#define IDirectInputDevice_SetEventNotification(p,a) (p)->SetEventNotification(a) +#define IDirectInputDevice_SetCooperativeLevel(p,a,b) (p)->SetCooperativeLevel(a,b) +#define IDirectInputDevice_GetObjectInfo(p,a,b,c) (p)->GetObjectInfo(a,b,c) +#define IDirectInputDevice_GetDeviceInfo(p,a) (p)->GetDeviceInfo(a) +#define IDirectInputDevice_RunControlPanel(p,a,b) (p)->RunControlPanel(a,b) +#define IDirectInputDevice_Initialize(p,a,b,c) (p)->Initialize(a,b,c) +#endif + +#endif /* DIJ_RINGZERO */ + + +#if(DIRECTINPUT_VERSION >= 0x0500) + +#define DISFFC_RESET 0x00000001 +#define DISFFC_STOPALL 0x00000002 +#define DISFFC_PAUSE 0x00000004 +#define DISFFC_CONTINUE 0x00000008 +#define DISFFC_SETACTUATORSON 0x00000010 +#define DISFFC_SETACTUATORSOFF 0x00000020 + +#define DIGFFS_EMPTY 0x00000001 +#define DIGFFS_STOPPED 0x00000002 +#define DIGFFS_PAUSED 0x00000004 +#define DIGFFS_ACTUATORSON 0x00000010 +#define DIGFFS_ACTUATORSOFF 0x00000020 +#define DIGFFS_POWERON 0x00000040 +#define DIGFFS_POWEROFF 0x00000080 +#define DIGFFS_SAFETYSWITCHON 0x00000100 +#define DIGFFS_SAFETYSWITCHOFF 0x00000200 +#define DIGFFS_USERFFSWITCHON 0x00000400 +#define DIGFFS_USERFFSWITCHOFF 0x00000800 +#define DIGFFS_DEVICELOST 0x80000000 + +#ifndef DIJ_RINGZERO + +typedef struct DIEFFECTINFOA { + DWORD dwSize; + GUID guid; + DWORD dwEffType; + DWORD dwStaticParams; + DWORD dwDynamicParams; + CHAR tszName[MAX_PATH]; +} DIEFFECTINFOA, *LPDIEFFECTINFOA; +typedef struct DIEFFECTINFOW { + DWORD dwSize; + GUID guid; + DWORD dwEffType; + DWORD dwStaticParams; + DWORD dwDynamicParams; + WCHAR tszName[MAX_PATH]; +} DIEFFECTINFOW, *LPDIEFFECTINFOW; +#ifdef UNICODE +typedef DIEFFECTINFOW DIEFFECTINFO; +typedef LPDIEFFECTINFOW LPDIEFFECTINFO; +#else +typedef DIEFFECTINFOA DIEFFECTINFO; +typedef LPDIEFFECTINFOA LPDIEFFECTINFO; +#endif // UNICODE +typedef const DIEFFECTINFOA *LPCDIEFFECTINFOA; +typedef const DIEFFECTINFOW *LPCDIEFFECTINFOW; +typedef const DIEFFECTINFO *LPCDIEFFECTINFO; + +typedef BOOL (FAR PASCAL * LPDIENUMEFFECTSCALLBACKA)(LPCDIEFFECTINFOA, LPVOID); +typedef BOOL (FAR PASCAL * LPDIENUMEFFECTSCALLBACKW)(LPCDIEFFECTINFOW, LPVOID); +#ifdef UNICODE +#define LPDIENUMEFFECTSCALLBACK LPDIENUMEFFECTSCALLBACKW +#else +#define LPDIENUMEFFECTSCALLBACK LPDIENUMEFFECTSCALLBACKA +#endif // !UNICODE +typedef BOOL (FAR PASCAL * LPDIENUMCREATEDEFFECTOBJECTSCALLBACK)(LPDIRECTINPUTEFFECT, LPVOID); + +#undef INTERFACE +#define INTERFACE IDirectInputDevice2W + +DECLARE_INTERFACE_(IDirectInputDevice2W, IDirectInputDeviceW) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef)(THIS) PURE; + STDMETHOD_(ULONG,Release)(THIS) PURE; + + /*** IDirectInputDeviceW methods ***/ + STDMETHOD(GetCapabilities)(THIS_ LPDIDEVCAPS) PURE; + STDMETHOD(EnumObjects)(THIS_ LPDIENUMDEVICEOBJECTSCALLBACKW,LPVOID,DWORD) PURE; + STDMETHOD(GetProperty)(THIS_ REFGUID,LPDIPROPHEADER) PURE; + STDMETHOD(SetProperty)(THIS_ REFGUID,LPCDIPROPHEADER) PURE; + STDMETHOD(Acquire)(THIS) PURE; + STDMETHOD(Unacquire)(THIS) PURE; + STDMETHOD(GetDeviceState)(THIS_ DWORD,LPVOID) PURE; + STDMETHOD(GetDeviceData)(THIS_ DWORD,LPDIDEVICEOBJECTDATA,LPDWORD,DWORD) PURE; + STDMETHOD(SetDataFormat)(THIS_ LPCDIDATAFORMAT) PURE; + STDMETHOD(SetEventNotification)(THIS_ HANDLE) PURE; + STDMETHOD(SetCooperativeLevel)(THIS_ HWND,DWORD) PURE; + STDMETHOD(GetObjectInfo)(THIS_ LPDIDEVICEOBJECTINSTANCEW,DWORD,DWORD) PURE; + STDMETHOD(GetDeviceInfo)(THIS_ LPDIDEVICEINSTANCEW) PURE; + STDMETHOD(RunControlPanel)(THIS_ HWND,DWORD) PURE; + STDMETHOD(Initialize)(THIS_ HINSTANCE,DWORD,REFGUID) PURE; + + /*** IDirectInputDevice2W methods ***/ + STDMETHOD(CreateEffect)(THIS_ REFGUID,LPCDIEFFECT,LPDIRECTINPUTEFFECT *,LPUNKNOWN) PURE; + STDMETHOD(EnumEffects)(THIS_ LPDIENUMEFFECTSCALLBACKW,LPVOID,DWORD) PURE; + STDMETHOD(GetEffectInfo)(THIS_ LPDIEFFECTINFOW,REFGUID) PURE; + STDMETHOD(GetForceFeedbackState)(THIS_ LPDWORD) PURE; + STDMETHOD(SendForceFeedbackCommand)(THIS_ DWORD) PURE; + STDMETHOD(EnumCreatedEffectObjects)(THIS_ LPDIENUMCREATEDEFFECTOBJECTSCALLBACK,LPVOID,DWORD) PURE; + STDMETHOD(Escape)(THIS_ LPDIEFFESCAPE) PURE; + STDMETHOD(Poll)(THIS) PURE; + STDMETHOD(SendDeviceData)(THIS_ DWORD,LPDIDEVICEOBJECTDATA,LPDWORD,DWORD) PURE; +}; + +typedef struct IDirectInputDevice2W *LPDIRECTINPUTDEVICE2W; + +#undef INTERFACE +#define INTERFACE IDirectInputDevice2A + +DECLARE_INTERFACE_(IDirectInputDevice2A, IDirectInputDeviceA) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef)(THIS) PURE; + STDMETHOD_(ULONG,Release)(THIS) PURE; + + /*** IDirectInputDeviceA methods ***/ + STDMETHOD(GetCapabilities)(THIS_ LPDIDEVCAPS) PURE; + STDMETHOD(EnumObjects)(THIS_ LPDIENUMDEVICEOBJECTSCALLBACKA,LPVOID,DWORD) PURE; + STDMETHOD(GetProperty)(THIS_ REFGUID,LPDIPROPHEADER) PURE; + STDMETHOD(SetProperty)(THIS_ REFGUID,LPCDIPROPHEADER) PURE; + STDMETHOD(Acquire)(THIS) PURE; + STDMETHOD(Unacquire)(THIS) PURE; + STDMETHOD(GetDeviceState)(THIS_ DWORD,LPVOID) PURE; + STDMETHOD(GetDeviceData)(THIS_ DWORD,LPDIDEVICEOBJECTDATA,LPDWORD,DWORD) PURE; + STDMETHOD(SetDataFormat)(THIS_ LPCDIDATAFORMAT) PURE; + STDMETHOD(SetEventNotification)(THIS_ HANDLE) PURE; + STDMETHOD(SetCooperativeLevel)(THIS_ HWND,DWORD) PURE; + STDMETHOD(GetObjectInfo)(THIS_ LPDIDEVICEOBJECTINSTANCEA,DWORD,DWORD) PURE; + STDMETHOD(GetDeviceInfo)(THIS_ LPDIDEVICEINSTANCEA) PURE; + STDMETHOD(RunControlPanel)(THIS_ HWND,DWORD) PURE; + STDMETHOD(Initialize)(THIS_ HINSTANCE,DWORD,REFGUID) PURE; + + /*** IDirectInputDevice2A methods ***/ + STDMETHOD(CreateEffect)(THIS_ REFGUID,LPCDIEFFECT,LPDIRECTINPUTEFFECT *,LPUNKNOWN) PURE; + STDMETHOD(EnumEffects)(THIS_ LPDIENUMEFFECTSCALLBACKA,LPVOID,DWORD) PURE; + STDMETHOD(GetEffectInfo)(THIS_ LPDIEFFECTINFOA,REFGUID) PURE; + STDMETHOD(GetForceFeedbackState)(THIS_ LPDWORD) PURE; + STDMETHOD(SendForceFeedbackCommand)(THIS_ DWORD) PURE; + STDMETHOD(EnumCreatedEffectObjects)(THIS_ LPDIENUMCREATEDEFFECTOBJECTSCALLBACK,LPVOID,DWORD) PURE; + STDMETHOD(Escape)(THIS_ LPDIEFFESCAPE) PURE; + STDMETHOD(Poll)(THIS) PURE; + STDMETHOD(SendDeviceData)(THIS_ DWORD,LPDIDEVICEOBJECTDATA,LPDWORD,DWORD) PURE; +}; + +typedef struct IDirectInputDevice2A *LPDIRECTINPUTDEVICE2A; + +#ifdef UNICODE +#define IID_IDirectInputDevice2 IID_IDirectInputDevice2W +#define IDirectInputDevice2 IDirectInputDevice2W +#define IDirectInputDevice2Vtbl IDirectInputDevice2WVtbl +#else +#define IID_IDirectInputDevice2 IID_IDirectInputDevice2A +#define IDirectInputDevice2 IDirectInputDevice2A +#define IDirectInputDevice2Vtbl IDirectInputDevice2AVtbl +#endif +typedef struct IDirectInputDevice2 *LPDIRECTINPUTDEVICE2; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectInputDevice2_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectInputDevice2_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectInputDevice2_Release(p) (p)->lpVtbl->Release(p) +#define IDirectInputDevice2_GetCapabilities(p,a) (p)->lpVtbl->GetCapabilities(p,a) +#define IDirectInputDevice2_EnumObjects(p,a,b,c) (p)->lpVtbl->EnumObjects(p,a,b,c) +#define IDirectInputDevice2_GetProperty(p,a,b) (p)->lpVtbl->GetProperty(p,a,b) +#define IDirectInputDevice2_SetProperty(p,a,b) (p)->lpVtbl->SetProperty(p,a,b) +#define IDirectInputDevice2_Acquire(p) (p)->lpVtbl->Acquire(p) +#define IDirectInputDevice2_Unacquire(p) (p)->lpVtbl->Unacquire(p) +#define IDirectInputDevice2_GetDeviceState(p,a,b) (p)->lpVtbl->GetDeviceState(p,a,b) +#define IDirectInputDevice2_GetDeviceData(p,a,b,c,d) (p)->lpVtbl->GetDeviceData(p,a,b,c,d) +#define IDirectInputDevice2_SetDataFormat(p,a) (p)->lpVtbl->SetDataFormat(p,a) +#define IDirectInputDevice2_SetEventNotification(p,a) (p)->lpVtbl->SetEventNotification(p,a) +#define IDirectInputDevice2_SetCooperativeLevel(p,a,b) (p)->lpVtbl->SetCooperativeLevel(p,a,b) +#define IDirectInputDevice2_GetObjectInfo(p,a,b,c) (p)->lpVtbl->GetObjectInfo(p,a,b,c) +#define IDirectInputDevice2_GetDeviceInfo(p,a) (p)->lpVtbl->GetDeviceInfo(p,a) +#define IDirectInputDevice2_RunControlPanel(p,a,b) (p)->lpVtbl->RunControlPanel(p,a,b) +#define IDirectInputDevice2_Initialize(p,a,b,c) (p)->lpVtbl->Initialize(p,a,b,c) +#define IDirectInputDevice2_CreateEffect(p,a,b,c,d) (p)->lpVtbl->CreateEffect(p,a,b,c,d) +#define IDirectInputDevice2_EnumEffects(p,a,b,c) (p)->lpVtbl->EnumEffects(p,a,b,c) +#define IDirectInputDevice2_GetEffectInfo(p,a,b) (p)->lpVtbl->GetEffectInfo(p,a,b) +#define IDirectInputDevice2_GetForceFeedbackState(p,a) (p)->lpVtbl->GetForceFeedbackState(p,a) +#define IDirectInputDevice2_SendForceFeedbackCommand(p,a) (p)->lpVtbl->SendForceFeedbackCommand(p,a) +#define IDirectInputDevice2_EnumCreatedEffectObjects(p,a,b,c) (p)->lpVtbl->EnumCreatedEffectObjects(p,a,b,c) +#define IDirectInputDevice2_Escape(p,a) (p)->lpVtbl->Escape(p,a) +#define IDirectInputDevice2_Poll(p) (p)->lpVtbl->Poll(p) +#define IDirectInputDevice2_SendDeviceData(p,a,b,c,d) (p)->lpVtbl->SendDeviceData(p,a,b,c,d) +#else +#define IDirectInputDevice2_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectInputDevice2_AddRef(p) (p)->AddRef() +#define IDirectInputDevice2_Release(p) (p)->Release() +#define IDirectInputDevice2_GetCapabilities(p,a) (p)->GetCapabilities(a) +#define IDirectInputDevice2_EnumObjects(p,a,b,c) (p)->EnumObjects(a,b,c) +#define IDirectInputDevice2_GetProperty(p,a,b) (p)->GetProperty(a,b) +#define IDirectInputDevice2_SetProperty(p,a,b) (p)->SetProperty(a,b) +#define IDirectInputDevice2_Acquire(p) (p)->Acquire() +#define IDirectInputDevice2_Unacquire(p) (p)->Unacquire() +#define IDirectInputDevice2_GetDeviceState(p,a,b) (p)->GetDeviceState(a,b) +#define IDirectInputDevice2_GetDeviceData(p,a,b,c,d) (p)->GetDeviceData(a,b,c,d) +#define IDirectInputDevice2_SetDataFormat(p,a) (p)->SetDataFormat(a) +#define IDirectInputDevice2_SetEventNotification(p,a) (p)->SetEventNotification(a) +#define IDirectInputDevice2_SetCooperativeLevel(p,a,b) (p)->SetCooperativeLevel(a,b) +#define IDirectInputDevice2_GetObjectInfo(p,a,b,c) (p)->GetObjectInfo(a,b,c) +#define IDirectInputDevice2_GetDeviceInfo(p,a) (p)->GetDeviceInfo(a) +#define IDirectInputDevice2_RunControlPanel(p,a,b) (p)->RunControlPanel(a,b) +#define IDirectInputDevice2_Initialize(p,a,b,c) (p)->Initialize(a,b,c) +#define IDirectInputDevice2_CreateEffect(p,a,b,c,d) (p)->CreateEffect(a,b,c,d) +#define IDirectInputDevice2_EnumEffects(p,a,b,c) (p)->EnumEffects(a,b,c) +#define IDirectInputDevice2_GetEffectInfo(p,a,b) (p)->GetEffectInfo(a,b) +#define IDirectInputDevice2_GetForceFeedbackState(p,a) (p)->GetForceFeedbackState(a) +#define IDirectInputDevice2_SendForceFeedbackCommand(p,a) (p)->SendForceFeedbackCommand(a) +#define IDirectInputDevice2_EnumCreatedEffectObjects(p,a,b,c) (p)->EnumCreatedEffectObjects(a,b,c) +#define IDirectInputDevice2_Escape(p,a) (p)->Escape(a) +#define IDirectInputDevice2_Poll(p) (p)->Poll() +#define IDirectInputDevice2_SendDeviceData(p,a,b,c,d) (p)->SendDeviceData(a,b,c,d) +#endif + +#endif /* DIJ_RINGZERO */ + +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ + +/**************************************************************************** + * + * Mouse + * + ****************************************************************************/ + +#ifndef DIJ_RINGZERO + +typedef struct _DIMOUSESTATE { + LONG lX; + LONG lY; + LONG lZ; + BYTE rgbButtons[4]; +} DIMOUSESTATE, *LPDIMOUSESTATE; + +#define DIMOFS_X FIELD_OFFSET(DIMOUSESTATE, lX) +#define DIMOFS_Y FIELD_OFFSET(DIMOUSESTATE, lY) +#define DIMOFS_Z FIELD_OFFSET(DIMOUSESTATE, lZ) +#define DIMOFS_BUTTON0 (FIELD_OFFSET(DIMOUSESTATE, rgbButtons) + 0) +#define DIMOFS_BUTTON1 (FIELD_OFFSET(DIMOUSESTATE, rgbButtons) + 1) +#define DIMOFS_BUTTON2 (FIELD_OFFSET(DIMOUSESTATE, rgbButtons) + 2) +#define DIMOFS_BUTTON3 (FIELD_OFFSET(DIMOUSESTATE, rgbButtons) + 3) + +#endif /* DIJ_RINGZERO */ + +/**************************************************************************** + * + * Keyboard + * + ****************************************************************************/ + +#ifndef DIJ_RINGZERO + +/**************************************************************************** + * + * DirectInput keyboard scan codes + * + ****************************************************************************/ + +#define DIK_ESCAPE 0x01 +#define DIK_1 0x02 +#define DIK_2 0x03 +#define DIK_3 0x04 +#define DIK_4 0x05 +#define DIK_5 0x06 +#define DIK_6 0x07 +#define DIK_7 0x08 +#define DIK_8 0x09 +#define DIK_9 0x0A +#define DIK_0 0x0B +#define DIK_MINUS 0x0C /* - on main keyboard */ +#define DIK_EQUALS 0x0D +#define DIK_BACK 0x0E /* backspace */ +#define DIK_TAB 0x0F +#define DIK_Q 0x10 +#define DIK_W 0x11 +#define DIK_E 0x12 +#define DIK_R 0x13 +#define DIK_T 0x14 +#define DIK_Y 0x15 +#define DIK_U 0x16 +#define DIK_I 0x17 +#define DIK_O 0x18 +#define DIK_P 0x19 +#define DIK_LBRACKET 0x1A +#define DIK_RBRACKET 0x1B +#define DIK_RETURN 0x1C /* Enter on main keyboard */ +#define DIK_LCONTROL 0x1D +#define DIK_A 0x1E +#define DIK_S 0x1F +#define DIK_D 0x20 +#define DIK_F 0x21 +#define DIK_G 0x22 +#define DIK_H 0x23 +#define DIK_J 0x24 +#define DIK_K 0x25 +#define DIK_L 0x26 +#define DIK_SEMICOLON 0x27 +#define DIK_APOSTROPHE 0x28 +#define DIK_GRAVE 0x29 /* accent grave */ +#define DIK_LSHIFT 0x2A +#define DIK_BACKSLASH 0x2B +#define DIK_Z 0x2C +#define DIK_X 0x2D +#define DIK_C 0x2E +#define DIK_V 0x2F +#define DIK_B 0x30 +#define DIK_N 0x31 +#define DIK_M 0x32 +#define DIK_COMMA 0x33 +#define DIK_PERIOD 0x34 /* . on main keyboard */ +#define DIK_SLASH 0x35 /* / on main keyboard */ +#define DIK_RSHIFT 0x36 +#define DIK_MULTIPLY 0x37 /* * on numeric keypad */ +#define DIK_LMENU 0x38 /* left Alt */ +#define DIK_SPACE 0x39 +#define DIK_CAPITAL 0x3A +#define DIK_F1 0x3B +#define DIK_F2 0x3C +#define DIK_F3 0x3D +#define DIK_F4 0x3E +#define DIK_F5 0x3F +#define DIK_F6 0x40 +#define DIK_F7 0x41 +#define DIK_F8 0x42 +#define DIK_F9 0x43 +#define DIK_F10 0x44 +#define DIK_NUMLOCK 0x45 +#define DIK_SCROLL 0x46 /* Scroll Lock */ +#define DIK_NUMPAD7 0x47 +#define DIK_NUMPAD8 0x48 +#define DIK_NUMPAD9 0x49 +#define DIK_SUBTRACT 0x4A /* - on numeric keypad */ +#define DIK_NUMPAD4 0x4B +#define DIK_NUMPAD5 0x4C +#define DIK_NUMPAD6 0x4D +#define DIK_ADD 0x4E /* + on numeric keypad */ +#define DIK_NUMPAD1 0x4F +#define DIK_NUMPAD2 0x50 +#define DIK_NUMPAD3 0x51 +#define DIK_NUMPAD0 0x52 +#define DIK_DECIMAL 0x53 /* . on numeric keypad */ +#define DIK_F11 0x57 +#define DIK_F12 0x58 + +#define DIK_F13 0x64 /* (NEC PC98) */ +#define DIK_F14 0x65 /* (NEC PC98) */ +#define DIK_F15 0x66 /* (NEC PC98) */ + +#define DIK_KANA 0x70 /* (Japanese keyboard) */ +#define DIK_CONVERT 0x79 /* (Japanese keyboard) */ +#define DIK_NOCONVERT 0x7B /* (Japanese keyboard) */ +#define DIK_YEN 0x7D /* (Japanese keyboard) */ +#define DIK_NUMPADEQUALS 0x8D /* = on numeric keypad (NEC PC98) */ +#define DIK_CIRCUMFLEX 0x90 /* (Japanese keyboard) */ +#define DIK_AT 0x91 /* (NEC PC98) */ +#define DIK_COLON 0x92 /* (NEC PC98) */ +#define DIK_UNDERLINE 0x93 /* (NEC PC98) */ +#define DIK_KANJI 0x94 /* (Japanese keyboard) */ +#define DIK_STOP 0x95 /* (NEC PC98) */ +#define DIK_AX 0x96 /* (Japan AX) */ +#define DIK_UNLABELED 0x97 /* (J3100) */ +#define DIK_NUMPADENTER 0x9C /* Enter on numeric keypad */ +#define DIK_RCONTROL 0x9D +#define DIK_NUMPADCOMMA 0xB3 /* , on numeric keypad (NEC PC98) */ +#define DIK_DIVIDE 0xB5 /* / on numeric keypad */ +#define DIK_SYSRQ 0xB7 +#define DIK_RMENU 0xB8 /* right Alt */ +#define DIK_HOME 0xC7 /* Home on arrow keypad */ +#define DIK_UP 0xC8 /* UpArrow on arrow keypad */ +#define DIK_PRIOR 0xC9 /* PgUp on arrow keypad */ +#define DIK_LEFT 0xCB /* LeftArrow on arrow keypad */ +#define DIK_RIGHT 0xCD /* RightArrow on arrow keypad */ +#define DIK_END 0xCF /* End on arrow keypad */ +#define DIK_DOWN 0xD0 /* DownArrow on arrow keypad */ +#define DIK_NEXT 0xD1 /* PgDn on arrow keypad */ +#define DIK_INSERT 0xD2 /* Insert on arrow keypad */ +#define DIK_DELETE 0xD3 /* Delete on arrow keypad */ +#define DIK_LWIN 0xDB /* Left Windows key */ +#define DIK_RWIN 0xDC /* Right Windows key */ +#define DIK_APPS 0xDD /* AppMenu key */ + +/* + * Alternate names for keys, to facilitate transition from DOS. + */ +#define DIK_BACKSPACE DIK_BACK /* backspace */ +#define DIK_NUMPADSTAR DIK_MULTIPLY /* * on numeric keypad */ +#define DIK_LALT DIK_LMENU /* left Alt */ +#define DIK_CAPSLOCK DIK_CAPITAL /* CapsLock */ +#define DIK_NUMPADMINUS DIK_SUBTRACT /* - on numeric keypad */ +#define DIK_NUMPADPLUS DIK_ADD /* + on numeric keypad */ +#define DIK_NUMPADPERIOD DIK_DECIMAL /* . on numeric keypad */ +#define DIK_NUMPADSLASH DIK_DIVIDE /* / on numeric keypad */ +#define DIK_RALT DIK_RMENU /* right Alt */ +#define DIK_UPARROW DIK_UP /* UpArrow on arrow keypad */ +#define DIK_PGUP DIK_PRIOR /* PgUp on arrow keypad */ +#define DIK_LEFTARROW DIK_LEFT /* LeftArrow on arrow keypad */ +#define DIK_RIGHTARROW DIK_RIGHT /* RightArrow on arrow keypad */ +#define DIK_DOWNARROW DIK_DOWN /* DownArrow on arrow keypad */ +#define DIK_PGDN DIK_NEXT /* PgDn on arrow keypad */ + +#endif /* DIJ_RINGZERO */ + +/**************************************************************************** + * + * Joystick + * + ****************************************************************************/ + +#ifndef DIJ_RINGZERO + +typedef struct DIJOYSTATE { + LONG lX; /* x-axis position */ + LONG lY; /* y-axis position */ + LONG lZ; /* z-axis position */ + LONG lRx; /* x-axis rotation */ + LONG lRy; /* y-axis rotation */ + LONG lRz; /* z-axis rotation */ + LONG rglSlider[2]; /* extra axes positions */ + DWORD rgdwPOV[4]; /* POV directions */ + BYTE rgbButtons[32]; /* 32 buttons */ +} DIJOYSTATE, *LPDIJOYSTATE; + +typedef struct DIJOYSTATE2 { + LONG lX; /* x-axis position */ + LONG lY; /* y-axis position */ + LONG lZ; /* z-axis position */ + LONG lRx; /* x-axis rotation */ + LONG lRy; /* y-axis rotation */ + LONG lRz; /* z-axis rotation */ + LONG rglSlider[2]; /* extra axes positions */ + DWORD rgdwPOV[4]; /* POV directions */ + BYTE rgbButtons[128]; /* 128 buttons */ + LONG lVX; /* x-axis velocity */ + LONG lVY; /* y-axis velocity */ + LONG lVZ; /* z-axis velocity */ + LONG lVRx; /* x-axis angular velocity */ + LONG lVRy; /* y-axis angular velocity */ + LONG lVRz; /* z-axis angular velocity */ + LONG rglVSlider[2]; /* extra axes velocities */ + LONG lAX; /* x-axis acceleration */ + LONG lAY; /* y-axis acceleration */ + LONG lAZ; /* z-axis acceleration */ + LONG lARx; /* x-axis angular acceleration */ + LONG lARy; /* y-axis angular acceleration */ + LONG lARz; /* z-axis angular acceleration */ + LONG rglASlider[2]; /* extra axes accelerations */ + LONG lFX; /* x-axis force */ + LONG lFY; /* y-axis force */ + LONG lFZ; /* z-axis force */ + LONG lFRx; /* x-axis torque */ + LONG lFRy; /* y-axis torque */ + LONG lFRz; /* z-axis torque */ + LONG rglFSlider[2]; /* extra axes forces */ +} DIJOYSTATE2, *LPDIJOYSTATE2; + +#define DIJOFS_X FIELD_OFFSET(DIJOYSTATE, lX) +#define DIJOFS_Y FIELD_OFFSET(DIJOYSTATE, lY) +#define DIJOFS_Z FIELD_OFFSET(DIJOYSTATE, lZ) +#define DIJOFS_RX FIELD_OFFSET(DIJOYSTATE, lRx) +#define DIJOFS_RY FIELD_OFFSET(DIJOYSTATE, lRy) +#define DIJOFS_RZ FIELD_OFFSET(DIJOYSTATE, lRz) +#define DIJOFS_SLIDER(n) (FIELD_OFFSET(DIJOYSTATE, rglSlider) + \ + (n) * sizeof(LONG)) +#define DIJOFS_POV(n) (FIELD_OFFSET(DIJOYSTATE, rgdwPOV) + \ + (n) * sizeof(DWORD)) +#define DIJOFS_BUTTON(n) (FIELD_OFFSET(DIJOYSTATE, rgbButtons) + (n)) +#define DIJOFS_BUTTON0 DIJOFS_BUTTON(0) +#define DIJOFS_BUTTON1 DIJOFS_BUTTON(1) +#define DIJOFS_BUTTON2 DIJOFS_BUTTON(2) +#define DIJOFS_BUTTON3 DIJOFS_BUTTON(3) +#define DIJOFS_BUTTON4 DIJOFS_BUTTON(4) +#define DIJOFS_BUTTON5 DIJOFS_BUTTON(5) +#define DIJOFS_BUTTON6 DIJOFS_BUTTON(6) +#define DIJOFS_BUTTON7 DIJOFS_BUTTON(7) +#define DIJOFS_BUTTON8 DIJOFS_BUTTON(8) +#define DIJOFS_BUTTON9 DIJOFS_BUTTON(9) +#define DIJOFS_BUTTON10 DIJOFS_BUTTON(10) +#define DIJOFS_BUTTON11 DIJOFS_BUTTON(11) +#define DIJOFS_BUTTON12 DIJOFS_BUTTON(12) +#define DIJOFS_BUTTON13 DIJOFS_BUTTON(13) +#define DIJOFS_BUTTON14 DIJOFS_BUTTON(14) +#define DIJOFS_BUTTON15 DIJOFS_BUTTON(15) +#define DIJOFS_BUTTON16 DIJOFS_BUTTON(16) +#define DIJOFS_BUTTON17 DIJOFS_BUTTON(17) +#define DIJOFS_BUTTON18 DIJOFS_BUTTON(18) +#define DIJOFS_BUTTON19 DIJOFS_BUTTON(19) +#define DIJOFS_BUTTON20 DIJOFS_BUTTON(20) +#define DIJOFS_BUTTON21 DIJOFS_BUTTON(21) +#define DIJOFS_BUTTON22 DIJOFS_BUTTON(22) +#define DIJOFS_BUTTON23 DIJOFS_BUTTON(23) +#define DIJOFS_BUTTON24 DIJOFS_BUTTON(24) +#define DIJOFS_BUTTON25 DIJOFS_BUTTON(25) +#define DIJOFS_BUTTON26 DIJOFS_BUTTON(26) +#define DIJOFS_BUTTON27 DIJOFS_BUTTON(27) +#define DIJOFS_BUTTON28 DIJOFS_BUTTON(28) +#define DIJOFS_BUTTON29 DIJOFS_BUTTON(29) +#define DIJOFS_BUTTON30 DIJOFS_BUTTON(30) +#define DIJOFS_BUTTON31 DIJOFS_BUTTON(31) + + +#endif /* DIJ_RINGZERO */ + +/**************************************************************************** + * + * IDirectInput + * + ****************************************************************************/ + +#ifndef DIJ_RINGZERO + +#define DIENUM_STOP 0 +#define DIENUM_CONTINUE 1 + +typedef BOOL (FAR PASCAL * LPDIENUMDEVICESCALLBACKA)(LPCDIDEVICEINSTANCEA, LPVOID); +typedef BOOL (FAR PASCAL * LPDIENUMDEVICESCALLBACKW)(LPCDIDEVICEINSTANCEW, LPVOID); +#ifdef UNICODE +#define LPDIENUMDEVICESCALLBACK LPDIENUMDEVICESCALLBACKW +#else +#define LPDIENUMDEVICESCALLBACK LPDIENUMDEVICESCALLBACKA +#endif // !UNICODE + +#define DIEDFL_ALLDEVICES 0x00000000 +#define DIEDFL_ATTACHEDONLY 0x00000001 +#if(DIRECTINPUT_VERSION >= 0x0500) +#define DIEDFL_FORCEFEEDBACK 0x00000100 +#endif /* DIRECTINPUT_VERSION >= 0x0500 */ + +#undef INTERFACE +#define INTERFACE IDirectInputW + +DECLARE_INTERFACE_(IDirectInputW, IUnknown) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef)(THIS) PURE; + STDMETHOD_(ULONG,Release)(THIS) PURE; + + /*** IDirectInputW methods ***/ + STDMETHOD(CreateDevice)(THIS_ REFGUID,LPDIRECTINPUTDEVICEW *,LPUNKNOWN) PURE; + STDMETHOD(EnumDevices)(THIS_ DWORD,LPDIENUMDEVICESCALLBACKW,LPVOID,DWORD) PURE; + STDMETHOD(GetDeviceStatus)(THIS_ REFGUID) PURE; + STDMETHOD(RunControlPanel)(THIS_ HWND,DWORD) PURE; + STDMETHOD(Initialize)(THIS_ HINSTANCE,DWORD) PURE; +}; + +typedef struct IDirectInputW *LPDIRECTINPUTW; + +#undef INTERFACE +#define INTERFACE IDirectInputA + +DECLARE_INTERFACE_(IDirectInputA, IUnknown) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef)(THIS) PURE; + STDMETHOD_(ULONG,Release)(THIS) PURE; + + /*** IDirectInputA methods ***/ + STDMETHOD(CreateDevice)(THIS_ REFGUID,LPDIRECTINPUTDEVICEA *,LPUNKNOWN) PURE; + STDMETHOD(EnumDevices)(THIS_ DWORD,LPDIENUMDEVICESCALLBACKA,LPVOID,DWORD) PURE; + STDMETHOD(GetDeviceStatus)(THIS_ REFGUID) PURE; + STDMETHOD(RunControlPanel)(THIS_ HWND,DWORD) PURE; + STDMETHOD(Initialize)(THIS_ HINSTANCE,DWORD) PURE; +}; + +typedef struct IDirectInputA *LPDIRECTINPUTA; + +#ifdef UNICODE +#define IID_IDirectInput IID_IDirectInputW +#define IDirectInput IDirectInputW +#define IDirectInputVtbl IDirectInputWVtbl +#else +#define IID_IDirectInput IID_IDirectInputA +#define IDirectInput IDirectInputA +#define IDirectInputVtbl IDirectInputAVtbl +#endif +typedef struct IDirectInput *LPDIRECTINPUT; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectInput_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectInput_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectInput_Release(p) (p)->lpVtbl->Release(p) +#define IDirectInput_CreateDevice(p,a,b,c) (p)->lpVtbl->CreateDevice(p,a,b,c) +#define IDirectInput_EnumDevices(p,a,b,c,d) (p)->lpVtbl->EnumDevices(p,a,b,c,d) +#define IDirectInput_GetDeviceStatus(p,a) (p)->lpVtbl->GetDeviceStatus(p,a) +#define IDirectInput_RunControlPanel(p,a,b) (p)->lpVtbl->RunControlPanel(p,a,b) +#define IDirectInput_Initialize(p,a,b) (p)->lpVtbl->Initialize(p,a,b) +#else +#define IDirectInput_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectInput_AddRef(p) (p)->AddRef() +#define IDirectInput_Release(p) (p)->Release() +#define IDirectInput_CreateDevice(p,a,b,c) (p)->CreateDevice(a,b,c) +#define IDirectInput_EnumDevices(p,a,b,c,d) (p)->EnumDevices(a,b,c,d) +#define IDirectInput_GetDeviceStatus(p,a) (p)->GetDeviceStatus(a) +#define IDirectInput_RunControlPanel(p,a,b) (p)->RunControlPanel(a,b) +#define IDirectInput_Initialize(p,a,b) (p)->Initialize(a,b) +#endif + +#undef INTERFACE +#define INTERFACE IDirectInput2W + +DECLARE_INTERFACE_(IDirectInput2W, IDirectInputW) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef)(THIS) PURE; + STDMETHOD_(ULONG,Release)(THIS) PURE; + + /*** IDirectInputW methods ***/ + STDMETHOD(CreateDevice)(THIS_ REFGUID,LPDIRECTINPUTDEVICEW *,LPUNKNOWN) PURE; + STDMETHOD(EnumDevices)(THIS_ DWORD,LPDIENUMDEVICESCALLBACKW,LPVOID,DWORD) PURE; + STDMETHOD(GetDeviceStatus)(THIS_ REFGUID) PURE; + STDMETHOD(RunControlPanel)(THIS_ HWND,DWORD) PURE; + STDMETHOD(Initialize)(THIS_ HINSTANCE,DWORD) PURE; + + /*** IDirectInput2W methods ***/ + STDMETHOD(FindDevice)(THIS_ REFGUID,LPCWSTR,LPGUID) PURE; +}; + +typedef struct IDirectInput2W *LPDIRECTINPUT2W; + +#undef INTERFACE +#define INTERFACE IDirectInput2A + +DECLARE_INTERFACE_(IDirectInput2A, IDirectInputA) +{ + /*** IUnknown methods ***/ + STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID * ppvObj) PURE; + STDMETHOD_(ULONG,AddRef)(THIS) PURE; + STDMETHOD_(ULONG,Release)(THIS) PURE; + + /*** IDirectInputA methods ***/ + STDMETHOD(CreateDevice)(THIS_ REFGUID,LPDIRECTINPUTDEVICEA *,LPUNKNOWN) PURE; + STDMETHOD(EnumDevices)(THIS_ DWORD,LPDIENUMDEVICESCALLBACKA,LPVOID,DWORD) PURE; + STDMETHOD(GetDeviceStatus)(THIS_ REFGUID) PURE; + STDMETHOD(RunControlPanel)(THIS_ HWND,DWORD) PURE; + STDMETHOD(Initialize)(THIS_ HINSTANCE,DWORD) PURE; + + /*** IDirectInput2A methods ***/ + STDMETHOD(FindDevice)(THIS_ REFGUID,LPCSTR,LPGUID) PURE; +}; + +typedef struct IDirectInput2A *LPDIRECTINPUT2A; + +#ifdef UNICODE +#define IID_IDirectInput2 IID_IDirectInput2W +#define IDirectInput2 IDirectInput2W +#define IDirectInput2Vtbl IDirectInput2WVtbl +#else +#define IID_IDirectInput2 IID_IDirectInput2A +#define IDirectInput2 IDirectInput2A +#define IDirectInput2Vtbl IDirectInput2AVtbl +#endif +typedef struct IDirectInput2 *LPDIRECTINPUT2; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectInput2_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectInput2_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectInput2_Release(p) (p)->lpVtbl->Release(p) +#define IDirectInput2_CreateDevice(p,a,b,c) (p)->lpVtbl->CreateDevice(p,a,b,c) +#define IDirectInput2_EnumDevices(p,a,b,c,d) (p)->lpVtbl->EnumDevices(p,a,b,c,d) +#define IDirectInput2_GetDeviceStatus(p,a) (p)->lpVtbl->GetDeviceStatus(p,a) +#define IDirectInput2_RunControlPanel(p,a,b) (p)->lpVtbl->RunControlPanel(p,a,b) +#define IDirectInput2_Initialize(p,a,b) (p)->lpVtbl->Initialize(p,a,b) +#define IDirectInput2_FindDevice(p,a,b,c) (p)->lpVtbl->FindDevice(p,a,b,c) +#else +#define IDirectInput2_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectInput2_AddRef(p) (p)->AddRef() +#define IDirectInput2_Release(p) (p)->Release() +#define IDirectInput2_CreateDevice(p,a,b,c) (p)->CreateDevice(a,b,c) +#define IDirectInput2_EnumDevices(p,a,b,c,d) (p)->EnumDevices(a,b,c,d) +#define IDirectInput2_GetDeviceStatus(p,a) (p)->GetDeviceStatus(a) +#define IDirectInput2_RunControlPanel(p,a,b) (p)->RunControlPanel(a,b) +#define IDirectInput2_Initialize(p,a,b) (p)->Initialize(a,b) +#define IDirectInput2_FindDevice(p,a,b,c) (p)->FindDevice(a,b,c) +#endif + +extern HRESULT WINAPI DirectInputCreateA(HINSTANCE hinst, DWORD dwVersion, LPDIRECTINPUTA *ppDI, LPUNKNOWN punkOuter); +extern HRESULT WINAPI DirectInputCreateW(HINSTANCE hinst, DWORD dwVersion, LPDIRECTINPUTW *ppDI, LPUNKNOWN punkOuter); +#ifdef UNICODE +#define DirectInputCreate DirectInputCreateW +#else +#define DirectInputCreate DirectInputCreateA +#endif // !UNICODE + +#endif /* DIJ_RINGZERO */ + + +/**************************************************************************** + * + * Return Codes + * + ****************************************************************************/ + +/* + * The operation completed successfully. + */ +#define DI_OK S_OK + +/* + * The device exists but is not currently attached. + */ +#define DI_NOTATTACHED S_FALSE + +/* + * The device buffer overflowed. Some input was lost. + */ +#define DI_BUFFEROVERFLOW S_FALSE + +/* + * The change in device properties had no effect. + */ +#define DI_PROPNOEFFECT S_FALSE + +/* + * The operation had no effect. + */ +#define DI_NOEFFECT S_FALSE + +/* + * The device is a polled device. As a result, device buffering + * will not collect any data and event notifications will not be + * signalled until GetDeviceState is called. + */ +#define DI_POLLEDDEVICE ((HRESULT)0x00000002L) + +/* + * The parameters of the effect were successfully updated by + * IDirectInputEffect::SetParameters, but the effect was not + * downloaded because the device is not exclusively acquired + * or because the DIEP_NODOWNLOAD flag was passed. + */ +#define DI_DOWNLOADSKIPPED ((HRESULT)0x00000003L) + +/* + * The parameters of the effect were successfully updated by + * IDirectInputEffect::SetParameters, but in order to change + * the parameters, the effect needed to be restarted. + */ +#define DI_EFFECTRESTARTED ((HRESULT)0x00000004L) + +/* + * The parameters of the effect were successfully updated by + * IDirectInputEffect::SetParameters, but some of them were + * beyond the capabilities of the device and were truncated. + */ +#define DI_TRUNCATED ((HRESULT)0x00000008L) + +/* + * Equal to DI_EFFECTRESTARTED | DI_TRUNCATED. + */ +#define DI_TRUNCATEDANDRESTARTED ((HRESULT)0x0000000CL) + +/* + * The application requires a newer version of DirectInput. + */ +#define DIERR_OLDDIRECTINPUTVERSION \ + MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, ERROR_OLD_WIN_VERSION) + +/* + * The application was written for an unsupported prerelease version + * of DirectInput. + */ +#define DIERR_BETADIRECTINPUTVERSION \ + MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, ERROR_RMODE_APP) + +/* + * The object could not be created due to an incompatible driver version + * or mismatched or incomplete driver components. + */ +#define DIERR_BADDRIVERVER \ + MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, ERROR_BAD_DRIVER_LEVEL) + +/* + * The device or device instance or effect is not registered with DirectInput. + */ +#define DIERR_DEVICENOTREG REGDB_E_CLASSNOTREG + +/* + * The requested object does not exist. + */ +#define DIERR_NOTFOUND \ + MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, ERROR_FILE_NOT_FOUND) + +/* + * The requested object does not exist. + */ +#define DIERR_OBJECTNOTFOUND \ + MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, ERROR_FILE_NOT_FOUND) + +/* + * An invalid parameter was passed to the returning function, + * or the object was not in a state that admitted the function + * to be called. + */ +#define DIERR_INVALIDPARAM E_INVALIDARG + +/* + * The specified interface is not supported by the object + */ +#define DIERR_NOINTERFACE E_NOINTERFACE + +/* + * An undetermined error occured inside the DInput subsystem + */ +#define DIERR_GENERIC E_FAIL + +/* + * The DInput subsystem couldn't allocate sufficient memory to complete the + * caller's request. + */ +#define DIERR_OUTOFMEMORY E_OUTOFMEMORY + +/* + * The function called is not supported at this time + */ +#define DIERR_UNSUPPORTED E_NOTIMPL + +/* + * This object has not been initialized + */ +#define DIERR_NOTINITIALIZED \ + MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, ERROR_NOT_READY) + +/* + * This object is already initialized + */ +#define DIERR_ALREADYINITIALIZED \ + MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, ERROR_ALREADY_INITIALIZED) + +/* + * This object does not support aggregation + */ +#define DIERR_NOAGGREGATION CLASS_E_NOAGGREGATION + +/* + * Another app has a higher priority level, preventing this call from + * succeeding. + */ +#define DIERR_OTHERAPPHASPRIO E_ACCESSDENIED + +/* + * Access to the device has been lost. It must be re-acquired. + */ +#define DIERR_INPUTLOST \ + MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, ERROR_READ_FAULT) + +/* + * The operation cannot be performed while the device is acquired. + */ +#define DIERR_ACQUIRED \ + MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, ERROR_BUSY) + +/* + * The operation cannot be performed unless the device is acquired. + */ +#define DIERR_NOTACQUIRED \ + MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, ERROR_INVALID_ACCESS) + +/* + * The specified property cannot be changed. + */ +#define DIERR_READONLY E_ACCESSDENIED + +/* + * The device already has an event notification associated with it. + */ +#define DIERR_HANDLEEXISTS E_ACCESSDENIED + +/* + * Data is not yet available. + */ +#ifndef E_PENDING +#define E_PENDING 0x80070007L +#endif + +/* + * Unable to IDirectInputJoyConfig_Acquire because the user + * does not have sufficient privileges to change the joystick + * configuration. + */ +#define DIERR_INSUFFICIENTPRIVS 0x80040200L + +/* + * The device is full. + */ +#define DIERR_DEVICEFULL 0x80040201L + +/* + * Not all the requested information fit into the buffer. + */ +#define DIERR_MOREDATA 0x80040202L + +/* + * The effect is not downloaded. + */ +#define DIERR_NOTDOWNLOADED 0x80040203L + +/* + * The device cannot be reinitialized because there are still effects + * attached to it. + */ +#define DIERR_HASEFFECTS 0x80040204L + +/* + * The operation cannot be performed unless the device is acquired + * in DISCL_EXCLUSIVE mode. + */ +#define DIERR_NOTEXCLUSIVEACQUIRED 0x80040205L + +/* + * The effect could not be downloaded because essential information + * is missing. For example, no axes have been associated with the + * effect, or no type-specific information has been created. + */ +#define DIERR_INCOMPLETEEFFECT 0x80040206L + +/* + * Attempted to read buffered device data from a device that is + * not buffered. + */ +#define DIERR_NOTBUFFERED 0x80040207L + +/* + * An attempt was made to modify parameters of an effect while it is + * playing. Not all hardware devices support altering the parameters + * of an effect while it is playing. + */ +#define DIERR_EFFECTPLAYING 0x80040208L + +#ifdef __cplusplus +}; +#endif + +#endif /* __DINPUT_INCLUDED__ */ + +/**************************************************************************** + * + * Definitions for non-IDirectInput (VJoyD) features defined more recently + * than the current sdk files + * + ****************************************************************************/ + +#ifdef _INC_MMSYSTEM +#ifndef MMNOJOY + +#ifndef __VJOYDX_INCLUDED__ +#define __VJOYDX_INCLUDED__ + +#ifdef __cplusplus +extern "C" { +#endif + +/* + * Flag to indicate that the dwReserved2 field of the JOYINFOEX structure + * contains mini-driver specific data to be passed by VJoyD to the mini- + * driver instead of doing a poll. + */ +#define JOY_PASSDRIVERDATA 0x10000000l + +/* + * Informs the joystick driver that the configuration has been changed + * and should be reloaded from the registery. + * dwFlags is reserved and should be set to zero + */ +WINMMAPI MMRESULT WINAPI joyConfigChanged( DWORD dwFlags ); + +/* + * Hardware Setting indicating that the device is a headtracker + */ +#define JOY_HWS_ISHEADTRACKER 0x02000000l + +/* + * Hardware Setting indicating that the VxD is used to replace + * the standard analog polling + */ +#define JOY_HWS_ISGAMEPORTDRIVER 0x04000000l + +/* + * Hardware Setting indicating that the driver needs a standard + * gameport in order to communicate with the device. + */ +#define JOY_HWS_ISANALOGPORTDRIVER 0x08000000l + +/* + * Hardware Setting indicating that VJoyD should not load this + * driver, it will be loaded externally and will register with + * VJoyD of it's own accord. + */ +#define JOY_HWS_AUTOLOAD 0x10000000l + +/* + * Hardware Setting indicating that the driver acquires any + * resources needed without needing a devnode through VJoyD. + */ +#define JOY_HWS_NODEVNODE 0x20000000l + +/* + * Hardware Setting indicating that the VxD can be used as + * a port 201h emulator. + */ +#define JOY_HWS_ISGAMEPORTEMULATOR 0x40000000l + + +/* + * Usage Setting indicating that the settings are volatile and + * should be removed if still present on a reboot. + */ +#define JOY_US_VOLATILE 0x00000008L + +#ifdef __cplusplus +}; +#endif + +#endif /* __VJOYDX_INCLUDED__ */ + +#endif /* not MMNOJOY */ +#endif /* _INC_MMSYSTEM */ + +/**************************************************************************** + * + * Definitions for non-IDirectInput (VJoyD) features defined more recently + * than the current ddk files + * + ****************************************************************************/ + +#ifndef DIJ_RINGZERO + +#ifdef _INC_MMDDK +#ifndef MMNOJOYDEV + +#ifndef __VJOYDXD_INCLUDED__ +#define __VJOYDXD_INCLUDED__ +/* + * Poll type in which the do_other field of the JOYOEMPOLLDATA + * structure contains mini-driver specific data passed from an app. + */ +#define JOY_OEMPOLL_PASSDRIVERDATA 7 + +#endif /* __VJOYDXD_INCLUDED__ */ + +#endif /* not MMNOJOYDEV */ +#endif /* _INC_MMDDK */ + +#endif /* DIJ_RINGZERO */ diff --git a/misc/builddeps/dp.win64/include/dsound.h b/misc/builddeps/dp.win64/include/dsound.h new file mode 100644 index 00000000..9f3d66f7 --- /dev/null +++ b/misc/builddeps/dp.win64/include/dsound.h @@ -0,0 +1,863 @@ +/*==========================================================================; + * + * Copyright (C) 1995,1996 Microsoft Corporation. All Rights Reserved. + * + * File: dsound.h + * Content: DirectSound include file + * + **************************************************************************/ + +#ifndef __DSOUND_INCLUDED__ +#define __DSOUND_INCLUDED__ + +#include + +#define COM_NO_WINDOWS_H +#include + +#define _FACDS 0x878 +#define MAKE_DSHRESULT(code) MAKE_HRESULT(1, _FACDS, code) + +#ifdef __cplusplus +extern "C" { +#endif // __cplusplus + +// Direct Sound Component GUID {47D4D946-62E8-11cf-93BC-444553540000} +DEFINE_GUID(CLSID_DirectSound, 0x47d4d946, 0x62e8, 0x11cf, 0x93, 0xbc, 0x44, 0x45, 0x53, 0x54, 0x0, 0x0); + +// DirectSound Capture Component GUID {B0210780-89CD-11d0-AF08-00A0C925CD16} +DEFINE_GUID(CLSID_DirectSoundCapture, 0xb0210780, 0x89cd, 0x11d0, 0xaf, 0x8, 0x0, 0xa0, 0xc9, 0x25, 0xcd, 0x16); + +// +// Structures +// + +#ifdef __cplusplus +// 'struct' not 'class' per the way DECLARE_INTERFACE_ is defined +struct IDirectSound; +struct IDirectSoundBuffer; +struct IDirectSound3DListener; +struct IDirectSound3DBuffer; +struct IDirectSoundCapture; +struct IDirectSoundCaptureBuffer; +struct IDirectSoundNotify; +#endif // __cplusplus + +typedef struct IDirectSound *LPDIRECTSOUND; +typedef struct IDirectSoundBuffer *LPDIRECTSOUNDBUFFER; +typedef struct IDirectSound3DListener *LPDIRECTSOUND3DLISTENER; +typedef struct IDirectSound3DBuffer *LPDIRECTSOUND3DBUFFER; +typedef struct IDirectSoundCapture *LPDIRECTSOUNDCAPTURE; +typedef struct IDirectSoundCaptureBuffer *LPDIRECTSOUNDCAPTUREBUFFER; +typedef struct IDirectSoundNotify *LPDIRECTSOUNDNOTIFY; + +typedef struct _DSCAPS +{ + DWORD dwSize; + DWORD dwFlags; + DWORD dwMinSecondarySampleRate; + DWORD dwMaxSecondarySampleRate; + DWORD dwPrimaryBuffers; + DWORD dwMaxHwMixingAllBuffers; + DWORD dwMaxHwMixingStaticBuffers; + DWORD dwMaxHwMixingStreamingBuffers; + DWORD dwFreeHwMixingAllBuffers; + DWORD dwFreeHwMixingStaticBuffers; + DWORD dwFreeHwMixingStreamingBuffers; + DWORD dwMaxHw3DAllBuffers; + DWORD dwMaxHw3DStaticBuffers; + DWORD dwMaxHw3DStreamingBuffers; + DWORD dwFreeHw3DAllBuffers; + DWORD dwFreeHw3DStaticBuffers; + DWORD dwFreeHw3DStreamingBuffers; + DWORD dwTotalHwMemBytes; + DWORD dwFreeHwMemBytes; + DWORD dwMaxContigFreeHwMemBytes; + DWORD dwUnlockTransferRateHwBuffers; + DWORD dwPlayCpuOverheadSwBuffers; + DWORD dwReserved1; + DWORD dwReserved2; +} DSCAPS, *LPDSCAPS; + +typedef const DSCAPS *LPCDSCAPS; + +typedef struct _DSBCAPS +{ + DWORD dwSize; + DWORD dwFlags; + DWORD dwBufferBytes; + DWORD dwUnlockTransferRate; + DWORD dwPlayCpuOverhead; +} DSBCAPS, *LPDSBCAPS; + +typedef const DSBCAPS *LPCDSBCAPS; + +typedef struct _DSBUFFERDESC +{ + DWORD dwSize; + DWORD dwFlags; + DWORD dwBufferBytes; + DWORD dwReserved; + LPWAVEFORMATEX lpwfxFormat; +} DSBUFFERDESC, *LPDSBUFFERDESC; + +typedef const DSBUFFERDESC *LPCDSBUFFERDESC; + +typedef struct _DS3DBUFFER +{ + DWORD dwSize; + D3DVECTOR vPosition; + D3DVECTOR vVelocity; + DWORD dwInsideConeAngle; + DWORD dwOutsideConeAngle; + D3DVECTOR vConeOrientation; + LONG lConeOutsideVolume; + D3DVALUE flMinDistance; + D3DVALUE flMaxDistance; + DWORD dwMode; +} DS3DBUFFER, *LPDS3DBUFFER; + +typedef const DS3DBUFFER *LPCDS3DBUFFER; + +typedef struct _DS3DLISTENER +{ + DWORD dwSize; + D3DVECTOR vPosition; + D3DVECTOR vVelocity; + D3DVECTOR vOrientFront; + D3DVECTOR vOrientTop; + D3DVALUE flDistanceFactor; + D3DVALUE flRolloffFactor; + D3DVALUE flDopplerFactor; +} DS3DLISTENER, *LPDS3DLISTENER; + +typedef const DS3DLISTENER *LPCDS3DLISTENER; + +typedef struct _DSCCAPS +{ + DWORD dwSize; + DWORD dwFlags; + DWORD dwFormats; + DWORD dwChannels; +} DSCCAPS, *LPDSCCAPS; + +typedef const DSCCAPS *LPCDSCCAPS; + +typedef struct _DSCBUFFERDESC +{ + DWORD dwSize; + DWORD dwFlags; + DWORD dwBufferBytes; + DWORD dwReserved; + LPWAVEFORMATEX lpwfxFormat; +} DSCBUFFERDESC, *LPDSCBUFFERDESC; + +typedef const DSCBUFFERDESC *LPCDSCBUFFERDESC; + +typedef struct _DSCBCAPS +{ + DWORD dwSize; + DWORD dwFlags; + DWORD dwBufferBytes; + DWORD dwReserved; +} DSCBCAPS, *LPDSCBCAPS; + +typedef const DSCBCAPS *LPCDSCBCAPS; + +typedef struct _DSBPOSITIONNOTIFY +{ + DWORD dwOffset; + HANDLE hEventNotify; +} DSBPOSITIONNOTIFY, *LPDSBPOSITIONNOTIFY; + +typedef const DSBPOSITIONNOTIFY *LPCDSBPOSITIONNOTIFY; + +// +// Compatibility typedefs +// + +typedef LPDIRECTSOUND *LPLPDIRECTSOUND; +typedef LPDIRECTSOUNDBUFFER *LPLPDIRECTSOUNDBUFFER; +typedef LPDIRECTSOUND3DLISTENER *LPLPDIRECTSOUND3DLISTENER; +typedef LPDIRECTSOUND3DBUFFER *LPLPDIRECTSOUND3DBUFFER; +typedef LPDIRECTSOUNDCAPTURE *LPLPDIRECTSOUNDCAPTURE; +typedef LPDIRECTSOUNDCAPTUREBUFFER *LPLPDIRECTSOUNDCAPTUREBUFFER; +typedef LPDIRECTSOUNDNOTIFY *LPLPDIRECTSOUNDNOTIFY; +typedef LPVOID *LPLPVOID; +//typedef const WAVEFORMATEX *LPCWAVEFORMATEX; + +// +// DirectSound API +// + +typedef BOOL (CALLBACK *LPDSENUMCALLBACKW)(LPGUID, LPCWSTR, LPCWSTR, LPVOID); +typedef BOOL (CALLBACK *LPDSENUMCALLBACKA)(LPGUID, LPCSTR, LPCSTR, LPVOID); + +extern HRESULT WINAPI DirectSoundCreate(LPGUID, LPDIRECTSOUND *, LPUNKNOWN); +extern HRESULT WINAPI DirectSoundEnumerateW(LPDSENUMCALLBACKW, LPVOID); +extern HRESULT WINAPI DirectSoundEnumerateA(LPDSENUMCALLBACKA, LPVOID); + +extern HRESULT WINAPI DirectSoundCaptureCreate(LPGUID, LPDIRECTSOUNDCAPTURE *, LPUNKNOWN); +extern HRESULT WINAPI DirectSoundCaptureEnumerateW(LPDSENUMCALLBACKW, LPVOID); +extern HRESULT WINAPI DirectSoundCaptureEnumerateA(LPDSENUMCALLBACKA, LPVOID); + +#ifdef UNICODE +#define LPDSENUMCALLBACK LPDSENUMCALLBACKW +#define DirectSoundEnumerate DirectSoundEnumerateW +#define DirectSoundCaptureEnumerate DirectSoundCaptureEnumerateW +#else // UNICODE +#define LPDSENUMCALLBACK LPDSENUMCALLBACKA +#define DirectSoundEnumerate DirectSoundEnumerateA +#define DirectSoundCaptureEnumerate DirectSoundCaptureEnumerateA +#endif // UNICODE + +// +// IDirectSound +// + +DEFINE_GUID(IID_IDirectSound, 0x279AFA83, 0x4981, 0x11CE, 0xA5, 0x21, 0x00, 0x20, 0xAF, 0x0B, 0xE5, 0x60); + +#undef INTERFACE +#define INTERFACE IDirectSound + +DECLARE_INTERFACE_(IDirectSound, IUnknown) +{ + // IUnknown methods + STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID FAR *) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + + // IDirectSound methods + STDMETHOD(CreateSoundBuffer) (THIS_ LPCDSBUFFERDESC, LPDIRECTSOUNDBUFFER *, LPUNKNOWN) PURE; + STDMETHOD(GetCaps) (THIS_ LPDSCAPS) PURE; + STDMETHOD(DuplicateSoundBuffer) (THIS_ LPDIRECTSOUNDBUFFER, LPDIRECTSOUNDBUFFER *) PURE; + STDMETHOD(SetCooperativeLevel) (THIS_ HWND, DWORD) PURE; + STDMETHOD(Compact) (THIS) PURE; + STDMETHOD(GetSpeakerConfig) (THIS_ LPDWORD) PURE; + STDMETHOD(SetSpeakerConfig) (THIS_ DWORD) PURE; + STDMETHOD(Initialize) (THIS_ LPGUID) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSound_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectSound_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectSound_Release(p) (p)->lpVtbl->Release(p) +#define IDirectSound_CreateSoundBuffer(p,a,b,c) (p)->lpVtbl->CreateSoundBuffer(p,a,b,c) +#define IDirectSound_GetCaps(p,a) (p)->lpVtbl->GetCaps(p,a) +#define IDirectSound_DuplicateSoundBuffer(p,a,b) (p)->lpVtbl->DuplicateSoundBuffer(p,a,b) +#define IDirectSound_SetCooperativeLevel(p,a,b) (p)->lpVtbl->SetCooperativeLevel(p,a,b) +#define IDirectSound_Compact(p) (p)->lpVtbl->Compact(p) +#define IDirectSound_GetSpeakerConfig(p,a) (p)->lpVtbl->GetSpeakerConfig(p,a) +#define IDirectSound_SetSpeakerConfig(p,b) (p)->lpVtbl->SetSpeakerConfig(p,b) +#define IDirectSound_Initialize(p,a) (p)->lpVtbl->Initialize(p,a) +#else // !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSound_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectSound_AddRef(p) (p)->AddRef() +#define IDirectSound_Release(p) (p)->Release() +#define IDirectSound_CreateSoundBuffer(p,a,b,c) (p)->CreateSoundBuffer(a,b,c) +#define IDirectSound_GetCaps(p,a) (p)->GetCaps(a) +#define IDirectSound_DuplicateSoundBuffer(p,a,b) (p)->DuplicateSoundBuffer(a,b) +#define IDirectSound_SetCooperativeLevel(p,a,b) (p)->SetCooperativeLevel(a,b) +#define IDirectSound_Compact(p) (p)->Compact() +#define IDirectSound_GetSpeakerConfig(p,a) (p)->GetSpeakerConfig(a) +#define IDirectSound_SetSpeakerConfig(p,b) (p)->SetSpeakerConfig(b) +#define IDirectSound_Initialize(p,a) (p)->Initialize(a) +#endif // !defined(__cplusplus) || defined(CINTERFACE) + +// +// IDirectSoundBuffer +// + +DEFINE_GUID(IID_IDirectSoundBuffer, 0x279AFA85, 0x4981, 0x11CE, 0xA5, 0x21, 0x00, 0x20, 0xAF, 0x0B, 0xE5, 0x60); + +#undef INTERFACE +#define INTERFACE IDirectSoundBuffer + +DECLARE_INTERFACE_(IDirectSoundBuffer, IUnknown) +{ + // IUnknown methods + STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID FAR *) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + + // IDirectSoundBuffer methods + STDMETHOD(GetCaps) (THIS_ LPDSBCAPS) PURE; + STDMETHOD(GetCurrentPosition) (THIS_ LPDWORD, LPDWORD) PURE; + STDMETHOD(GetFormat) (THIS_ LPWAVEFORMATEX, DWORD, LPDWORD) PURE; + STDMETHOD(GetVolume) (THIS_ LPLONG) PURE; + STDMETHOD(GetPan) (THIS_ LPLONG) PURE; + STDMETHOD(GetFrequency) (THIS_ LPDWORD) PURE; + STDMETHOD(GetStatus) (THIS_ LPDWORD) PURE; + STDMETHOD(Initialize) (THIS_ LPDIRECTSOUND, LPCDSBUFFERDESC) PURE; + STDMETHOD(Lock) (THIS_ DWORD, DWORD, LPVOID *, LPDWORD, LPVOID *, LPDWORD, DWORD) PURE; + STDMETHOD(Play) (THIS_ DWORD, DWORD, DWORD) PURE; + STDMETHOD(SetCurrentPosition) (THIS_ DWORD) PURE; + STDMETHOD(SetFormat) (THIS_ LPCWAVEFORMATEX) PURE; + STDMETHOD(SetVolume) (THIS_ LONG) PURE; + STDMETHOD(SetPan) (THIS_ LONG) PURE; + STDMETHOD(SetFrequency) (THIS_ DWORD) PURE; + STDMETHOD(Stop) (THIS) PURE; + STDMETHOD(Unlock) (THIS_ LPVOID, DWORD, LPVOID, DWORD) PURE; + STDMETHOD(Restore) (THIS) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSoundBuffer_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectSoundBuffer_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectSoundBuffer_Release(p) (p)->lpVtbl->Release(p) +#define IDirectSoundBuffer_GetCaps(p,a) (p)->lpVtbl->GetCaps(p,a) +#define IDirectSoundBuffer_GetCurrentPosition(p,a,b) (p)->lpVtbl->GetCurrentPosition(p,a,b) +#define IDirectSoundBuffer_GetFormat(p,a,b,c) (p)->lpVtbl->GetFormat(p,a,b,c) +#define IDirectSoundBuffer_GetVolume(p,a) (p)->lpVtbl->GetVolume(p,a) +#define IDirectSoundBuffer_GetPan(p,a) (p)->lpVtbl->GetPan(p,a) +#define IDirectSoundBuffer_GetFrequency(p,a) (p)->lpVtbl->GetFrequency(p,a) +#define IDirectSoundBuffer_GetStatus(p,a) (p)->lpVtbl->GetStatus(p,a) +#define IDirectSoundBuffer_Initialize(p,a,b) (p)->lpVtbl->Initialize(p,a,b) +#define IDirectSoundBuffer_Lock(p,a,b,c,d,e,f,g) (p)->lpVtbl->Lock(p,a,b,c,d,e,f,g) +#define IDirectSoundBuffer_Play(p,a,b,c) (p)->lpVtbl->Play(p,a,b,c) +#define IDirectSoundBuffer_SetCurrentPosition(p,a) (p)->lpVtbl->SetCurrentPosition(p,a) +#define IDirectSoundBuffer_SetFormat(p,a) (p)->lpVtbl->SetFormat(p,a) +#define IDirectSoundBuffer_SetVolume(p,a) (p)->lpVtbl->SetVolume(p,a) +#define IDirectSoundBuffer_SetPan(p,a) (p)->lpVtbl->SetPan(p,a) +#define IDirectSoundBuffer_SetFrequency(p,a) (p)->lpVtbl->SetFrequency(p,a) +#define IDirectSoundBuffer_Stop(p) (p)->lpVtbl->Stop(p) +#define IDirectSoundBuffer_Unlock(p,a,b,c,d) (p)->lpVtbl->Unlock(p,a,b,c,d) +#define IDirectSoundBuffer_Restore(p) (p)->lpVtbl->Restore(p) +#else // !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSoundBuffer_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectSoundBuffer_AddRef(p) (p)->AddRef() +#define IDirectSoundBuffer_Release(p) (p)->Release() +#define IDirectSoundBuffer_GetCaps(p,a) (p)->GetCaps(a) +#define IDirectSoundBuffer_GetCurrentPosition(p,a,b) (p)->GetCurrentPosition(a,b) +#define IDirectSoundBuffer_GetFormat(p,a,b,c) (p)->GetFormat(a,b,c) +#define IDirectSoundBuffer_GetVolume(p,a) (p)->GetVolume(a) +#define IDirectSoundBuffer_GetPan(p,a) (p)->GetPan(a) +#define IDirectSoundBuffer_GetFrequency(p,a) (p)->GetFrequency(a) +#define IDirectSoundBuffer_GetStatus(p,a) (p)->GetStatus(a) +#define IDirectSoundBuffer_Initialize(p,a,b) (p)->Initialize(a,b) +#define IDirectSoundBuffer_Lock(p,a,b,c,d,e,f,g) (p)->Lock(a,b,c,d,e,f,g) +#define IDirectSoundBuffer_Play(p,a,b,c) (p)->Play(a,b,c) +#define IDirectSoundBuffer_SetCurrentPosition(p,a) (p)->SetCurrentPosition(a) +#define IDirectSoundBuffer_SetFormat(p,a) (p)->SetFormat(a) +#define IDirectSoundBuffer_SetVolume(p,a) (p)->SetVolume(a) +#define IDirectSoundBuffer_SetPan(p,a) (p)->SetPan(a) +#define IDirectSoundBuffer_SetFrequency(p,a) (p)->SetFrequency(a) +#define IDirectSoundBuffer_Stop(p) (p)->Stop() +#define IDirectSoundBuffer_Unlock(p,a,b,c,d) (p)->Unlock(a,b,c,d) +#define IDirectSoundBuffer_Restore(p) (p)->Restore() +#endif // !defined(__cplusplus) || defined(CINTERFACE) + +// +// IDirectSound3DListener +// + +DEFINE_GUID(IID_IDirectSound3DListener, 0x279AFA84, 0x4981, 0x11CE, 0xA5, 0x21, 0x00, 0x20, 0xAF, 0x0B, 0xE5, 0x60); + +#undef INTERFACE +#define INTERFACE IDirectSound3DListener + +DECLARE_INTERFACE_(IDirectSound3DListener, IUnknown) +{ + // IUnknown methods + STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID FAR *) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + + // IDirectSound3D methods + STDMETHOD(GetAllParameters) (THIS_ LPDS3DLISTENER) PURE; + STDMETHOD(GetDistanceFactor) (THIS_ LPD3DVALUE) PURE; + STDMETHOD(GetDopplerFactor) (THIS_ LPD3DVALUE) PURE; + STDMETHOD(GetOrientation) (THIS_ LPD3DVECTOR, LPD3DVECTOR) PURE; + STDMETHOD(GetPosition) (THIS_ LPD3DVECTOR) PURE; + STDMETHOD(GetRolloffFactor) (THIS_ LPD3DVALUE) PURE; + STDMETHOD(GetVelocity) (THIS_ LPD3DVECTOR) PURE; + STDMETHOD(SetAllParameters) (THIS_ LPCDS3DLISTENER, DWORD) PURE; + STDMETHOD(SetDistanceFactor) (THIS_ D3DVALUE, DWORD) PURE; + STDMETHOD(SetDopplerFactor) (THIS_ D3DVALUE, DWORD) PURE; + STDMETHOD(SetOrientation) (THIS_ D3DVALUE, D3DVALUE, D3DVALUE, D3DVALUE, D3DVALUE, D3DVALUE, DWORD) PURE; + STDMETHOD(SetPosition) (THIS_ D3DVALUE, D3DVALUE, D3DVALUE, DWORD) PURE; + STDMETHOD(SetRolloffFactor) (THIS_ D3DVALUE, DWORD) PURE; + STDMETHOD(SetVelocity) (THIS_ D3DVALUE, D3DVALUE, D3DVALUE, DWORD) PURE; + STDMETHOD(CommitDeferredSettings) (THIS) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSound3DListener_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectSound3DListener_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectSound3DListener_Release(p) (p)->lpVtbl->Release(p) +#define IDirectSound3DListener_GetAllParameters(p,a) (p)->lpVtbl->GetAllParameters(p,a) +#define IDirectSound3DListener_GetDistanceFactor(p,a) (p)->lpVtbl->GetDistanceFactor(p,a) +#define IDirectSound3DListener_GetDopplerFactor(p,a) (p)->lpVtbl->GetDopplerFactor(p,a) +#define IDirectSound3DListener_GetOrientation(p,a,b) (p)->lpVtbl->GetOrientation(p,a,b) +#define IDirectSound3DListener_GetPosition(p,a) (p)->lpVtbl->GetPosition(p,a) +#define IDirectSound3DListener_GetRolloffFactor(p,a) (p)->lpVtbl->GetRolloffFactor(p,a) +#define IDirectSound3DListener_GetVelocity(p,a) (p)->lpVtbl->GetVelocity(p,a) +#define IDirectSound3DListener_SetAllParameters(p,a,b) (p)->lpVtbl->SetAllParameters(p,a,b) +#define IDirectSound3DListener_SetDistanceFactor(p,a,b) (p)->lpVtbl->SetDistanceFactor(p,a,b) +#define IDirectSound3DListener_SetDopplerFactor(p,a,b) (p)->lpVtbl->SetDopplerFactor(p,a,b) +#define IDirectSound3DListener_SetOrientation(p,a,b,c,d,e,f,g) (p)->lpVtbl->SetOrientation(p,a,b,c,d,e,f,g) +#define IDirectSound3DListener_SetPosition(p,a,b,c,d) (p)->lpVtbl->SetPosition(p,a,b,c,d) +#define IDirectSound3DListener_SetRolloffFactor(p,a,b) (p)->lpVtbl->SetRolloffFactor(p,a,b) +#define IDirectSound3DListener_SetVelocity(p,a,b,c,d) (p)->lpVtbl->SetVelocity(p,a,b,c,d) +#define IDirectSound3DListener_CommitDeferredSettings(p) (p)->lpVtbl->CommitDeferredSettings(p) +#else // !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSound3DListener_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectSound3DListener_AddRef(p) (p)->AddRef() +#define IDirectSound3DListener_Release(p) (p)->Release() +#define IDirectSound3DListener_GetAllParameters(p,a) (p)->GetAllParameters(a) +#define IDirectSound3DListener_GetDistanceFactor(p,a) (p)->GetDistanceFactor(a) +#define IDirectSound3DListener_GetDopplerFactor(p,a) (p)->GetDopplerFactor(a) +#define IDirectSound3DListener_GetOrientation(p,a,b) (p)->GetOrientation(a,b) +#define IDirectSound3DListener_GetPosition(p,a) (p)->GetPosition(a) +#define IDirectSound3DListener_GetRolloffFactor(p,a) (p)->GetRolloffFactor(a) +#define IDirectSound3DListener_GetVelocity(p,a) (p)->GetVelocity(a) +#define IDirectSound3DListener_SetAllParameters(p,a,b) (p)->SetAllParameters(a,b) +#define IDirectSound3DListener_SetDistanceFactor(p,a,b) (p)->SetDistanceFactor(a,b) +#define IDirectSound3DListener_SetDopplerFactor(p,a,b) (p)->SetDopplerFactor(a,b) +#define IDirectSound3DListener_SetOrientation(p,a,b,c,d,e,f,g) (p)->SetOrientation(a,b,c,d,e,f,g) +#define IDirectSound3DListener_SetPosition(p,a,b,c,d) (p)->SetPosition(a,b,c,d) +#define IDirectSound3DListener_SetRolloffFactor(p,a,b) (p)->SetRolloffFactor(a,b) +#define IDirectSound3DListener_SetVelocity(p,a,b,c,d) (p)->SetVelocity(a,b,c,d) +#define IDirectSound3DListener_CommitDeferredSettings(p) (p)->CommitDeferredSettings() +#endif // !defined(__cplusplus) || defined(CINTERFACE) + +// +// IDirectSound3DBuffer +// + +DEFINE_GUID(IID_IDirectSound3DBuffer, 0x279AFA86, 0x4981, 0x11CE, 0xA5, 0x21, 0x00, 0x20, 0xAF, 0x0B, 0xE5, 0x60); + +#undef INTERFACE +#define INTERFACE IDirectSound3DBuffer + +DECLARE_INTERFACE_(IDirectSound3DBuffer, IUnknown) +{ + // IUnknown methods + STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID *) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + + // IDirectSoundBuffer3D methods + STDMETHOD(GetAllParameters) (THIS_ LPDS3DBUFFER) PURE; + STDMETHOD(GetConeAngles) (THIS_ LPDWORD, LPDWORD) PURE; + STDMETHOD(GetConeOrientation) (THIS_ LPD3DVECTOR) PURE; + STDMETHOD(GetConeOutsideVolume) (THIS_ LPLONG) PURE; + STDMETHOD(GetMaxDistance) (THIS_ LPD3DVALUE) PURE; + STDMETHOD(GetMinDistance) (THIS_ LPD3DVALUE) PURE; + STDMETHOD(GetMode) (THIS_ LPDWORD) PURE; + STDMETHOD(GetPosition) (THIS_ LPD3DVECTOR) PURE; + STDMETHOD(GetVelocity) (THIS_ LPD3DVECTOR) PURE; + STDMETHOD(SetAllParameters) (THIS_ LPCDS3DBUFFER, DWORD) PURE; + STDMETHOD(SetConeAngles) (THIS_ DWORD, DWORD, DWORD) PURE; + STDMETHOD(SetConeOrientation) (THIS_ D3DVALUE, D3DVALUE, D3DVALUE, DWORD) PURE; + STDMETHOD(SetConeOutsideVolume) (THIS_ LONG, DWORD) PURE; + STDMETHOD(SetMaxDistance) (THIS_ D3DVALUE, DWORD) PURE; + STDMETHOD(SetMinDistance) (THIS_ D3DVALUE, DWORD) PURE; + STDMETHOD(SetMode) (THIS_ DWORD, DWORD) PURE; + STDMETHOD(SetPosition) (THIS_ D3DVALUE, D3DVALUE, D3DVALUE, DWORD) PURE; + STDMETHOD(SetVelocity) (THIS_ D3DVALUE, D3DVALUE, D3DVALUE, DWORD) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSound3DBuffer_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectSound3DBuffer_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectSound3DBuffer_Release(p) (p)->lpVtbl->Release(p) +#define IDirectSound3DBuffer_GetAllParameters(p,a) (p)->lpVtbl->GetAllParameters(p,a) +#define IDirectSound3DBuffer_GetConeAngles(p,a,b) (p)->lpVtbl->GetConeAngles(p,a,b) +#define IDirectSound3DBuffer_GetConeOrientation(p,a) (p)->lpVtbl->GetConeOrientation(p,a) +#define IDirectSound3DBuffer_GetConeOutsideVolume(p,a) (p)->lpVtbl->GetConeOutsideVolume(p,a) +#define IDirectSound3DBuffer_GetPosition(p,a) (p)->lpVtbl->GetPosition(p,a) +#define IDirectSound3DBuffer_GetMinDistance(p,a) (p)->lpVtbl->GetMinDistance(p,a) +#define IDirectSound3DBuffer_GetMaxDistance(p,a) (p)->lpVtbl->GetMaxDistance(p,a) +#define IDirectSound3DBuffer_GetMode(p,a) (p)->lpVtbl->GetMode(p,a) +#define IDirectSound3DBuffer_GetVelocity(p,a) (p)->lpVtbl->GetVelocity(p,a) +#define IDirectSound3DBuffer_SetAllParameters(p,a,b) (p)->lpVtbl->SetAllParameters(p,a,b) +#define IDirectSound3DBuffer_SetConeAngles(p,a,b,c) (p)->lpVtbl->SetConeAngles(p,a,b,c) +#define IDirectSound3DBuffer_SetConeOrientation(p,a,b,c,d) (p)->lpVtbl->SetConeOrientation(p,a,b,c,d) +#define IDirectSound3DBuffer_SetConeOutsideVolume(p,a,b)(p)->lpVtbl->SetConeOutsideVolume(p,a,b) +#define IDirectSound3DBuffer_SetPosition(p,a,b,c,d) (p)->lpVtbl->SetPosition(p,a,b,c,d) +#define IDirectSound3DBuffer_SetMinDistance(p,a,b) (p)->lpVtbl->SetMinDistance(p,a,b) +#define IDirectSound3DBuffer_SetMaxDistance(p,a,b) (p)->lpVtbl->SetMaxDistance(p,a,b) +#define IDirectSound3DBuffer_SetMode(p,a,b) (p)->lpVtbl->SetMode(p,a,b) +#define IDirectSound3DBuffer_SetVelocity(p,a,b,c,d) (p)->lpVtbl->SetVelocity(p,a,b,c,d) +#else // !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSound3DBuffer_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectSound3DBuffer_AddRef(p) (p)->AddRef() +#define IDirectSound3DBuffer_Release(p) (p)->Release() +#define IDirectSound3DBuffer_GetAllParameters(p,a) (p)->GetAllParameters(a) +#define IDirectSound3DBuffer_GetConeAngles(p,a,b) (p)->GetConeAngles(a,b) +#define IDirectSound3DBuffer_GetConeOrientation(p,a) (p)->GetConeOrientation(a) +#define IDirectSound3DBuffer_GetConeOutsideVolume(p,a) (p)->GetConeOutsideVolume(a) +#define IDirectSound3DBuffer_GetPosition(p,a) (p)->GetPosition(a) +#define IDirectSound3DBuffer_GetMinDistance(p,a) (p)->GetMinDistance(a) +#define IDirectSound3DBuffer_GetMaxDistance(p,a) (p)->GetMaxDistance(a) +#define IDirectSound3DBuffer_GetMode(p,a) (p)->GetMode(a) +#define IDirectSound3DBuffer_GetVelocity(p,a) (p)->GetVelocity(a) +#define IDirectSound3DBuffer_SetAllParameters(p,a,b) (p)->SetAllParameters(a,b) +#define IDirectSound3DBuffer_SetConeAngles(p,a,b,c) (p)->SetConeAngles(a,b,c) +#define IDirectSound3DBuffer_SetConeOrientation(p,a,b,c,d) (p)->SetConeOrientation(a,b,c,d) +#define IDirectSound3DBuffer_SetConeOutsideVolume(p,a,b)(p)->SetConeOutsideVolume(a,b) +#define IDirectSound3DBuffer_SetPosition(p,a,b,c,d) (p)->SetPosition(a,b,c,d) +#define IDirectSound3DBuffer_SetMinDistance(p,a,b) (p)->SetMinDistance(a,b) +#define IDirectSound3DBuffer_SetMaxDistance(p,a,b) (p)->SetMaxDistance(a,b) +#define IDirectSound3DBuffer_SetMode(p,a,b) (p)->SetMode(a,b) +#define IDirectSound3DBuffer_SetVelocity(p,a,b,c,d) (p)->SetVelocity(a,b,c,d) +#endif // !defined(__cplusplus) || defined(CINTERFACE) + +// +// IDirectSoundCapture +// + +DEFINE_GUID(IID_IDirectSoundCapture, 0xb0210781, 0x89cd, 0x11d0, 0xaf, 0x8, 0x0, 0xa0, 0xc9, 0x25, 0xcd, 0x16); + +#undef INTERFACE +#define INTERFACE IDirectSoundCapture + +DECLARE_INTERFACE_(IDirectSoundCapture, IUnknown) +{ + // IUnknown methods + STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID *) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + + // IDirectSoundCapture methods + STDMETHOD(CreateCaptureBuffer) (THIS_ LPCDSCBUFFERDESC, LPDIRECTSOUNDCAPTUREBUFFER *, LPUNKNOWN) PURE; + STDMETHOD(GetCaps) (THIS_ LPDSCCAPS ) PURE; + STDMETHOD(Initialize) (THIS_ LPGUID) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSoundCapture_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectSoundCapture_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectSoundCapture_Release(p) (p)->lpVtbl->Release(p) +#define IDirectSoundCapture_CreateCaptureBuffer(p,a,b,c) (p)->lpVtbl->CreateCaptureBuffer(p,a,b,c) +#define IDirectSoundCapture_GetCaps(p,a) (p)->lpVtbl->GetCaps(p,a) +#define IDirectSoundCapture_Initialize(p,a) (p)->lpVtbl->Initialize(p,a) +#else // !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSoundCapture_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectSoundCapture_AddRef(p) (p)->AddRef() +#define IDirectSoundCapture_Release(p) (p)->Release() +#define IDirectSoundCapture_CreateCaptureBuffer(p,a,b,c) (p)->CreateCaptureBuffer(a,b,c) +#define IDirectSoundCapture_GetCaps(p,a) (p)->GetCaps(a) +#define IDirectSoundCapture_Initialize(p,a) (p)->Initialize(a) +#endif // !defined(__cplusplus) || defined(CINTERFACE) + +// +// IDirectSoundCaptureBuffer +// + +DEFINE_GUID(IID_IDirectSoundCaptureBuffer, 0xb0210782, 0x89cd, 0x11d0, 0xaf, 0x8, 0x0, 0xa0, 0xc9, 0x25, 0xcd, 0x16); + +#undef INTERFACE +#define INTERFACE IDirectSoundCaptureBuffer + +DECLARE_INTERFACE_(IDirectSoundCaptureBuffer, IUnknown) +{ + // IUnknown methods + STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID *) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + + // IDirectSoundCaptureBuffer methods + STDMETHOD(GetCaps) (THIS_ LPDSCBCAPS ) PURE; + STDMETHOD(GetCurrentPosition) (THIS_ LPDWORD, LPDWORD ) PURE; + STDMETHOD(GetFormat) (THIS_ LPWAVEFORMATEX, DWORD, LPDWORD ) PURE; + STDMETHOD(GetStatus) (THIS_ LPDWORD ) PURE; + STDMETHOD(Initialize) (THIS_ LPDIRECTSOUNDCAPTURE, LPCDSCBUFFERDESC) PURE; + STDMETHOD(Lock) (THIS_ DWORD, DWORD, LPVOID *, LPDWORD, LPVOID *, LPDWORD, DWORD) PURE; + STDMETHOD(Start) (THIS_ DWORD) PURE; + STDMETHOD(Stop) (THIS) PURE; + STDMETHOD(Unlock) (THIS_ LPVOID, DWORD, LPVOID, DWORD) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSoundCaptureBuffer_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectSoundCaptureBuffer_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectSoundCaptureBuffer_Release(p) (p)->lpVtbl->Release(p) +#define IDirectSoundCaptureBuffer_GetCaps(p,a) (p)->lpVtbl->GetCaps(p,a) +#define IDirectSoundCaptureBuffer_GetCurrentPosition(p,a,b) (p)->lpVtbl->GetCurrentPosition(p,a,b) +#define IDirectSoundCaptureBuffer_GetFormat(p,a,b,c) (p)->lpVtbl->GetFormat(p,a,b,c) +#define IDirectSoundCaptureBuffer_GetStatus(p,a) (p)->lpVtbl->GetStatus(p,a) +#define IDirectSoundCaptureBuffer_Initialize(p,a,b) (p)->lpVtbl->Initialize(p,a,b) +#define IDirectSoundCaptureBuffer_Lock(p,a,b,c,d,e,f,g) (p)->lpVtbl->Lock(p,a,b,c,d,e,f,g) +#define IDirectSoundCaptureBuffer_Start(p,a) (p)->lpVtbl->Start(p,a) +#define IDirectSoundCaptureBuffer_Stop(p) (p)->lpVtbl->Stop(p) +#define IDirectSoundCaptureBuffer_Unlock(p,a,b,c,d) (p)->lpVtbl->Unlock(p,a,b,c,d) +#else // !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSoundCaptureBuffer_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectSoundCaptureBuffer_AddRef(p) (p)->AddRef() +#define IDirectSoundCaptureBuffer_Release(p) (p)->Release() +#define IDirectSoundCaptureBuffer_GetCaps(p,a) (p)->GetCaps(a) +#define IDirectSoundCaptureBuffer_GetCurrentPosition(p,a,b) (p)->GetCurrentPosition(a,b) +#define IDirectSoundCaptureBuffer_GetFormat(p,a,b,c) (p)->GetFormat(a,b,c) +#define IDirectSoundCaptureBuffer_GetStatus(p,a) (p)->GetStatus(a) +#define IDirectSoundCaptureBuffer_Initialize(p,a,b) (p)->Initialize(a,b) +#define IDirectSoundCaptureBuffer_Lock(p,a,b,c,d,e,f,g) (p)->Lock(a,b,c,d,e,f,g) +#define IDirectSoundCaptureBuffer_Start(p,a) (p)->Start(a) +#define IDirectSoundCaptureBuffer_Stop(p) (p)->Stop() +#define IDirectSoundCaptureBuffer_Unlock(p,a,b,c,d) (p)->Unlock(a,b,c,d) +#endif // !defined(__cplusplus) || defined(CINTERFACE) + +// +// IDirectSoundNotify +// + +DEFINE_GUID(IID_IDirectSoundNotify, 0xb0210783, 0x89cd, 0x11d0, 0xaf, 0x8, 0x0, 0xa0, 0xc9, 0x25, 0xcd, 0x16); + +#undef INTERFACE +#define INTERFACE IDirectSoundNotify + +DECLARE_INTERFACE_(IDirectSoundNotify, IUnknown) +{ + // IUnknown methods + STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID *) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + + // IDirectSoundNotify methods + STDMETHOD(SetNotificationPositions) (THIS_ DWORD, LPCDSBPOSITIONNOTIFY) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSoundNotify_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IDirectSoundNotify_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IDirectSoundNotify_Release(p) (p)->lpVtbl->Release(p) +#define IDirectSoundNotify_SetNotificationPositions(p,a,b) (p)->lpVtbl->SetNotificationPositions(p,a,b) +#else // !defined(__cplusplus) || defined(CINTERFACE) +#define IDirectSoundNotify_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IDirectSoundNotify_AddRef(p) (p)->AddRef() +#define IDirectSoundNotify_Release(p) (p)->Release() +#define IDirectSoundNotify_SetNotificationPositions(p,a,b) (p)->SetNotificationPositions(a,b) +#endif // !defined(__cplusplus) || defined(CINTERFACE) + +// +// IKsPropertySet +// + +#ifndef _IKsPropertySet_ +#define _IKsPropertySet_ + +#ifdef __cplusplus +// 'struct' not 'class' per the way DECLARE_INTERFACE_ is defined +struct IKsPropertySet; +#endif // __cplusplus + +typedef struct IKsPropertySet *LPKSPROPERTYSET; + +#define KSPROPERTY_SUPPORT_GET 0x00000001 +#define KSPROPERTY_SUPPORT_SET 0x00000002 + +DEFINE_GUID(IID_IKsPropertySet, 0x31efac30, 0x515c, 0x11d0, 0xa9, 0xaa, 0x00, 0xaa, 0x00, 0x61, 0xbe, 0x93); + +#undef INTERFACE +#define INTERFACE IKsPropertySet + +DECLARE_INTERFACE_(IKsPropertySet, IUnknown) +{ + // IUnknown methods + STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID *) PURE; + STDMETHOD_(ULONG,AddRef) (THIS) PURE; + STDMETHOD_(ULONG,Release) (THIS) PURE; + + // IKsPropertySet methods + STDMETHOD(Get) (THIS_ REFGUID, ULONG, LPVOID, ULONG, LPVOID, ULONG, PULONG) PURE; + STDMETHOD(Set) (THIS_ REFGUID, ULONG, LPVOID, ULONG, LPVOID, ULONG) PURE; + STDMETHOD(QuerySupport) (THIS_ REFGUID, ULONG, PULONG) PURE; +}; + +#if !defined(__cplusplus) || defined(CINTERFACE) +#define IKsPropertySet_QueryInterface(p,a,b) (p)->lpVtbl->QueryInterface(p,a,b) +#define IKsPropertySet_AddRef(p) (p)->lpVtbl->AddRef(p) +#define IKsPropertySet_Release(p) (p)->lpVtbl->Release(p) +#define IKsPropertySet_Get(p,a,b,c,d,e,f,g) (p)->lpVtbl->Get(p,a,b,c,d,e,f,g) +#define IKsPropertySet_Set(p,a,b,c,d,e,f) (p)->lpVtbl->Set(p,a,b,c,d,e,f) +#define IKsPropertySet_QuerySupport(p,a,b,c) (p)->lpVtbl->QuerySupport(p,a,b,c) +#else // !defined(__cplusplus) || defined(CINTERFACE) +#define IKsPropertySet_QueryInterface(p,a,b) (p)->QueryInterface(a,b) +#define IKsPropertySet_AddRef(p) (p)->AddRef() +#define IKsPropertySet_Release(p) (p)->Release() +#define IKsPropertySet_Get(p,a,b,c,d,e,f,g) (p)->Get(a,b,c,d,e,f,g) +#define IKsPropertySet_Set(p,a,b,c,d,e,f) (p)->Set(a,b,c,d,e,f) +#define IKsPropertySet_QuerySupport(p,a,b,c) (p)->QuerySupport(a,b,c) +#endif // !defined(__cplusplus) || defined(CINTERFACE) + +#endif // _IKsPropertySet_ + +// +// Return Codes +// + +#define DS_OK 0 + +// The call failed because resources (such as a priority level) +// were already being used by another caller. +#define DSERR_ALLOCATED MAKE_DSHRESULT(10) + +// The control (vol,pan,etc.) requested by the caller is not available. +#define DSERR_CONTROLUNAVAIL MAKE_DSHRESULT(30) + +// An invalid parameter was passed to the returning function +#define DSERR_INVALIDPARAM E_INVALIDARG + +// This call is not valid for the current state of this object +#define DSERR_INVALIDCALL MAKE_DSHRESULT(50) + +// An undetermined error occured inside the DirectSound subsystem +#define DSERR_GENERIC E_FAIL + +// The caller does not have the priority level required for the function to +// succeed. +#define DSERR_PRIOLEVELNEEDED MAKE_DSHRESULT(70) + +// Not enough free memory is available to complete the operation +#define DSERR_OUTOFMEMORY E_OUTOFMEMORY + +// The specified WAVE format is not supported +#define DSERR_BADFORMAT MAKE_DSHRESULT(100) + +// The function called is not supported at this time +#define DSERR_UNSUPPORTED E_NOTIMPL + +// No sound driver is available for use +#define DSERR_NODRIVER MAKE_DSHRESULT(120) + +// This object is already initialized +#define DSERR_ALREADYINITIALIZED MAKE_DSHRESULT(130) + +// This object does not support aggregation +#define DSERR_NOAGGREGATION CLASS_E_NOAGGREGATION + +// The buffer memory has been lost, and must be restored. +#define DSERR_BUFFERLOST MAKE_DSHRESULT(150) + +// Another app has a higher priority level, preventing this call from +// succeeding. +#define DSERR_OTHERAPPHASPRIO MAKE_DSHRESULT(160) + +// This object has not been initialized +#define DSERR_UNINITIALIZED MAKE_DSHRESULT(170) + +// The requested COM interface is not available +#define DSERR_NOINTERFACE E_NOINTERFACE + +// +// Flags +// + +#define DSCAPS_PRIMARYMONO 0x00000001 +#define DSCAPS_PRIMARYSTEREO 0x00000002 +#define DSCAPS_PRIMARY8BIT 0x00000004 +#define DSCAPS_PRIMARY16BIT 0x00000008 +#define DSCAPS_CONTINUOUSRATE 0x00000010 +#define DSCAPS_EMULDRIVER 0x00000020 +#define DSCAPS_CERTIFIED 0x00000040 +#define DSCAPS_SECONDARYMONO 0x00000100 +#define DSCAPS_SECONDARYSTEREO 0x00000200 +#define DSCAPS_SECONDARY8BIT 0x00000400 +#define DSCAPS_SECONDARY16BIT 0x00000800 + +#define DSBPLAY_LOOPING 0x00000001 + +#define DSBSTATUS_PLAYING 0x00000001 +#define DSBSTATUS_BUFFERLOST 0x00000002 +#define DSBSTATUS_LOOPING 0x00000004 + +#define DSBLOCK_FROMWRITECURSOR 0x00000001 +#define DSBLOCK_ENTIREBUFFER 0x00000002 + +#define DSSCL_NORMAL 0x00000001 +#define DSSCL_PRIORITY 0x00000002 +#define DSSCL_EXCLUSIVE 0x00000003 +#define DSSCL_WRITEPRIMARY 0x00000004 + +#define DS3DMODE_NORMAL 0x00000000 +#define DS3DMODE_HEADRELATIVE 0x00000001 +#define DS3DMODE_DISABLE 0x00000002 + +#define DS3D_IMMEDIATE 0x00000000 +#define DS3D_DEFERRED 0x00000001 + +#define DS3D_MINDISTANCEFACTOR 0.0f +#define DS3D_MAXDISTANCEFACTOR 10.0f +#define DS3D_DEFAULTDISTANCEFACTOR 1.0f + +#define DS3D_MINROLLOFFFACTOR 0.0f +#define DS3D_MAXROLLOFFFACTOR 10.0f +#define DS3D_DEFAULTROLLOFFFACTOR 1.0f + +#define DS3D_MINDOPPLERFACTOR 0.0f +#define DS3D_MAXDOPPLERFACTOR 10.0f +#define DS3D_DEFAULTDOPPLERFACTOR 1.0f + +#define DS3D_DEFAULTMINDISTANCE 1.0f +#define DS3D_DEFAULTMAXDISTANCE 1000000000.0f + +#define DS3D_MINCONEANGLE 0 +#define DS3D_MAXCONEANGLE 360 +#define DS3D_DEFAULTCONEANGLE 360 + +#define DS3D_DEFAULTCONEOUTSIDEVOLUME 0 + +#define DSBCAPS_PRIMARYBUFFER 0x00000001 +#define DSBCAPS_STATIC 0x00000002 +#define DSBCAPS_LOCHARDWARE 0x00000004 +#define DSBCAPS_LOCSOFTWARE 0x00000008 +#define DSBCAPS_CTRL3D 0x00000010 +#define DSBCAPS_CTRLFREQUENCY 0x00000020 +#define DSBCAPS_CTRLPAN 0x00000040 +#define DSBCAPS_CTRLVOLUME 0x00000080 +#define DSBCAPS_CTRLPOSITIONNOTIFY 0x00000100 +#define DSBCAPS_CTRLDEFAULT 0x000000E0 +#define DSBCAPS_CTRLALL 0x000001F0 +#define DSBCAPS_STICKYFOCUS 0x00004000 +#define DSBCAPS_GLOBALFOCUS 0x00008000 +#define DSBCAPS_GETCURRENTPOSITION2 0x00010000 +#define DSBCAPS_MUTE3DATMAXDISTANCE 0x00020000 + +#define DSCBCAPS_WAVEMAPPED 0x80000000 + +#define DSSPEAKER_HEADPHONE 0x00000001 +#define DSSPEAKER_MONO 0x00000002 +#define DSSPEAKER_QUAD 0x00000003 +#define DSSPEAKER_STEREO 0x00000004 +#define DSSPEAKER_SURROUND 0x00000005 + +#define DSSPEAKER_GEOMETRY_MIN 0x00000005 // 5 degrees +#define DSSPEAKER_GEOMETRY_NARROW 0x0000000A // 10 degrees +#define DSSPEAKER_GEOMETRY_WIDE 0x00000014 // 20 degrees +#define DSSPEAKER_GEOMETRY_MAX 0x000000B4 // 180 degrees + +#define DSSPEAKER_COMBINED(c, g) ((DWORD)(((BYTE)(c)) | ((DWORD)((BYTE)(g))) << 16)) +#define DSSPEAKER_CONFIG(a) ((BYTE)(a)) +#define DSSPEAKER_GEOMETRY(a) ((BYTE)(((DWORD)(a) >> 16) & 0x00FF)) + +#define DSCCAPS_EMULDRIVER 0x00000020 + +#define DSCBLOCK_ENTIREBUFFER 0x00000001 + +#define DSCBSTATUS_CAPTURING 0x00000001 +#define DSCBSTATUS_LOOPING 0x00000002 + +#define DSCBSTART_LOOPING 0x00000001 + +#define DSBFREQUENCY_MIN 100 +#define DSBFREQUENCY_MAX 100000 +#define DSBFREQUENCY_ORIGINAL 0 + +#define DSBPAN_LEFT -10000 +#define DSBPAN_CENTER 0 +#define DSBPAN_RIGHT 10000 + +#define DSBVOLUME_MIN -10000 +#define DSBVOLUME_MAX 0 + +#define DSBSIZE_MIN 4 +#define DSBSIZE_MAX 0x0FFFFFFF + +#define DSBPN_OFFSETSTOP 0xFFFFFFFF + +#ifdef __cplusplus +}; +#endif // __cplusplus + +#endif // __DSOUND_INCLUDED__ diff --git a/misc/builddeps/dp.win64/include/gmp.h b/misc/builddeps/dp.win64/include/gmp.h new file mode 100644 index 00000000..02b9d9f6 --- /dev/null +++ b/misc/builddeps/dp.win64/include/gmp.h @@ -0,0 +1,2280 @@ +/* Definitions for GNU multiple precision functions. -*- mode: c -*- + +Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1999, 2000, 2001, 2002, 2003, +2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. + +This file is part of the GNU MP Library. + +The GNU MP Library is free software; you can redistribute it and/or modify +it under the terms of the GNU Lesser General Public License as published by +the Free Software Foundation; either version 3 of the License, or (at your +option) any later version. + +The GNU MP Library is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public +License for more details. + +You should have received a copy of the GNU Lesser General Public License +along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */ + +#ifndef __GMP_H__ + +#if defined (__cplusplus) +#include /* for std::istream, std::ostream, std::string */ +#include +#endif + + +/* Instantiated by configure. */ +#if ! defined (__GMP_WITHIN_CONFIGURE) +#define __GMP_HAVE_HOST_CPU_FAMILY_power 0 +#define __GMP_HAVE_HOST_CPU_FAMILY_powerpc 0 +#define GMP_LIMB_BITS 64 +#define GMP_NAIL_BITS 0 +#endif +#define GMP_NUMB_BITS (GMP_LIMB_BITS - GMP_NAIL_BITS) +#define GMP_NUMB_MASK ((~ __GMP_CAST (mp_limb_t, 0)) >> GMP_NAIL_BITS) +#define GMP_NUMB_MAX GMP_NUMB_MASK +#define GMP_NAIL_MASK (~ GMP_NUMB_MASK) + + +/* The following (everything under ifndef __GNU_MP__) must be identical in + gmp.h and mp.h to allow both to be included in an application or during + the library build. */ +#ifndef __GNU_MP__ +#define __GNU_MP__ 5 + +#define __need_size_t /* tell gcc stddef.h we only want size_t */ +#if defined (__cplusplus) +#include /* for size_t */ +#else +#include /* for size_t */ +#endif +#undef __need_size_t + +/* Instantiated by configure. */ +#if ! defined (__GMP_WITHIN_CONFIGURE) +#define _LONG_LONG_LIMB 1 +#define __GMP_LIBGMP_DLL 1 +#endif + + +/* __STDC__ - some ANSI compilers define this only to 0, hence the use of + "defined" and not "__STDC__-0". In particular Sun workshop C 5.0 + sets __STDC__ to 0, but requires "##" for token pasting. + + _AIX - gnu ansidecl.h asserts that all known AIX compilers are ANSI but + don't always define __STDC__. + + __DECC - current versions of DEC C (5.9 for instance) for alpha are ANSI, + but don't define __STDC__ in their default mode. Don't know if old + versions might have been K&R, but let's not worry about that unless + someone is still using one. + + _mips - gnu ansidecl.h says the RISC/OS MIPS compiler is ANSI in SVR4 + mode, but doesn't define __STDC__. + + _MSC_VER - Microsoft C is ANSI, but __STDC__ is undefined unless the /Za + option is given (in which case it's 1). + + _WIN32 - tested for by gnu ansidecl.h, no doubt on the assumption that + all w32 compilers are ansi. + + Note: This same set of tests is used by gen-psqr.c and + demos/expr/expr-impl.h, so if anything needs adding, then be sure to + update those too. */ + +#if defined (__STDC__) \ + || defined (__cplusplus) \ + || defined (_AIX) \ + || defined (__DECC) \ + || (defined (__mips) && defined (_SYSTYPE_SVR4)) \ + || defined (_MSC_VER) \ + || defined (_WIN32) +#define __GMP_HAVE_CONST 1 +#define __GMP_HAVE_PROTOTYPES 1 +#define __GMP_HAVE_TOKEN_PASTE 1 +#else +#define __GMP_HAVE_CONST 0 +#define __GMP_HAVE_PROTOTYPES 0 +#define __GMP_HAVE_TOKEN_PASTE 0 +#endif + + +#if __GMP_HAVE_CONST +#define __gmp_const const +#define __gmp_signed signed +#else +#define __gmp_const +#define __gmp_signed +#endif + + +/* __GMP_DECLSPEC supports Windows DLL versions of libgmp, and is empty in + all other circumstances. + + When compiling objects for libgmp, __GMP_DECLSPEC is an export directive, + or when compiling for an application it's an import directive. The two + cases are differentiated by __GMP_WITHIN_GMP defined by the GMP Makefiles + (and not defined from an application). + + __GMP_DECLSPEC_XX is similarly used for libgmpxx. __GMP_WITHIN_GMPXX + indicates when building libgmpxx, and in that case libgmpxx functions are + exports, but libgmp functions which might get called are imports. + + libmp.la uses __GMP_DECLSPEC, just as if it were libgmp.la. libgmp and + libmp don't call each other, so there's no conflict or confusion. + + Libtool DLL_EXPORT define is not used. + + There's no attempt to support GMP built both static and DLL. Doing so + would mean applications would have to tell us which of the two is going + to be used when linking, and that seems very tedious and error prone if + using GMP by hand, and equally tedious from a package since autoconf and + automake don't give much help. + + __GMP_DECLSPEC is required on all documented global functions and + variables, the various internals in gmp-impl.h etc can be left unadorned. + But internals used by the test programs or speed measuring programs + should have __GMP_DECLSPEC, and certainly constants or variables must + have it or the wrong address will be resolved. + + In gcc __declspec can go at either the start or end of a prototype. + + In Microsoft C __declspec must go at the start, or after the type like + void __declspec(...) *foo()". There's no __dllexport or anything to + guard against someone foolish #defining dllexport. _export used to be + available, but no longer. + + In Borland C _export still exists, but needs to go after the type, like + "void _export foo();". Would have to change the __GMP_DECLSPEC syntax to + make use of that. Probably more trouble than it's worth. */ + +#if defined (__GNUC__) +#define __GMP_DECLSPEC_EXPORT __declspec(__dllexport__) +#define __GMP_DECLSPEC_IMPORT __declspec(__dllimport__) +#endif +#if defined (_MSC_VER) || defined (__BORLANDC__) +#define __GMP_DECLSPEC_EXPORT __declspec(dllexport) +#define __GMP_DECLSPEC_IMPORT __declspec(dllimport) +#endif +#ifdef __WATCOMC__ +#define __GMP_DECLSPEC_EXPORT __export +#define __GMP_DECLSPEC_IMPORT __import +#endif +#ifdef __IBMC__ +#define __GMP_DECLSPEC_EXPORT _Export +#define __GMP_DECLSPEC_IMPORT _Import +#endif + +#if __GMP_LIBGMP_DLL +#if __GMP_WITHIN_GMP +/* compiling to go into a DLL libgmp */ +#define __GMP_DECLSPEC __GMP_DECLSPEC_EXPORT +#else +/* compiling to go into an application which will link to a DLL libgmp */ +#define __GMP_DECLSPEC __GMP_DECLSPEC_IMPORT +#endif +#else +/* all other cases */ +#define __GMP_DECLSPEC +#endif + + +#ifdef __GMP_SHORT_LIMB +typedef unsigned int mp_limb_t; +typedef int mp_limb_signed_t; +#else +#ifdef _LONG_LONG_LIMB +typedef unsigned long long int mp_limb_t; +typedef long long int mp_limb_signed_t; +#else +typedef unsigned long int mp_limb_t; +typedef long int mp_limb_signed_t; +#endif +#endif +typedef unsigned long int mp_bitcnt_t; + +/* For reference, note that the name __mpz_struct gets into C++ mangled + function names, which means although the "__" suggests an internal, we + must leave this name for binary compatibility. */ +typedef struct +{ + int _mp_alloc; /* Number of *limbs* allocated and pointed + to by the _mp_d field. */ + int _mp_size; /* abs(_mp_size) is the number of limbs the + last field points to. If _mp_size is + negative this is a negative number. */ + mp_limb_t *_mp_d; /* Pointer to the limbs. */ +} __mpz_struct; + +#endif /* __GNU_MP__ */ + + +typedef __mpz_struct MP_INT; /* gmp 1 source compatibility */ +typedef __mpz_struct mpz_t[1]; + +typedef mp_limb_t * mp_ptr; +typedef __gmp_const mp_limb_t * mp_srcptr; +#if defined (_CRAY) && ! defined (_CRAYMPP) +/* plain `int' is much faster (48 bits) */ +#define __GMP_MP_SIZE_T_INT 1 +typedef int mp_size_t; +typedef int mp_exp_t; +#else +#define __GMP_MP_SIZE_T_INT 0 +typedef long int mp_size_t; +typedef long int mp_exp_t; +#endif + +typedef struct +{ + __mpz_struct _mp_num; + __mpz_struct _mp_den; +} __mpq_struct; + +typedef __mpq_struct MP_RAT; /* gmp 1 source compatibility */ +typedef __mpq_struct mpq_t[1]; + +typedef struct +{ + int _mp_prec; /* Max precision, in number of `mp_limb_t's. + Set by mpf_init and modified by + mpf_set_prec. The area pointed to by the + _mp_d field contains `prec' + 1 limbs. */ + int _mp_size; /* abs(_mp_size) is the number of limbs the + last field points to. If _mp_size is + negative this is a negative number. */ + mp_exp_t _mp_exp; /* Exponent, in the base of `mp_limb_t'. */ + mp_limb_t *_mp_d; /* Pointer to the limbs. */ +} __mpf_struct; + +/* typedef __mpf_struct MP_FLOAT; */ +typedef __mpf_struct mpf_t[1]; + +/* Available random number generation algorithms. */ +typedef enum +{ + GMP_RAND_ALG_DEFAULT = 0, + GMP_RAND_ALG_LC = GMP_RAND_ALG_DEFAULT /* Linear congruential. */ +} gmp_randalg_t; + +/* Random state struct. */ +typedef struct +{ + mpz_t _mp_seed; /* _mp_d member points to state of the generator. */ + gmp_randalg_t _mp_alg; /* Currently unused. */ + union { + void *_mp_lc; /* Pointer to function pointers structure. */ + } _mp_algdata; +} __gmp_randstate_struct; +typedef __gmp_randstate_struct gmp_randstate_t[1]; + +/* Types for function declarations in gmp files. */ +/* ??? Should not pollute user name space with these ??? */ +typedef __gmp_const __mpz_struct *mpz_srcptr; +typedef __mpz_struct *mpz_ptr; +typedef __gmp_const __mpf_struct *mpf_srcptr; +typedef __mpf_struct *mpf_ptr; +typedef __gmp_const __mpq_struct *mpq_srcptr; +typedef __mpq_struct *mpq_ptr; + + +/* This is not wanted in mp.h, so put it outside the __GNU_MP__ common + section. */ +#if __GMP_LIBGMP_DLL +#if __GMP_WITHIN_GMPXX +/* compiling to go into a DLL libgmpxx */ +#define __GMP_DECLSPEC_XX __GMP_DECLSPEC_EXPORT +#else +/* compiling to go into a application which will link to a DLL libgmpxx */ +#define __GMP_DECLSPEC_XX __GMP_DECLSPEC_IMPORT +#endif +#else +/* all other cases */ +#define __GMP_DECLSPEC_XX +#endif + + +#if __GMP_HAVE_PROTOTYPES +#define __GMP_PROTO(x) x +#else +#define __GMP_PROTO(x) () +#endif + +#ifndef __MPN +#if __GMP_HAVE_TOKEN_PASTE +#define __MPN(x) __gmpn_##x +#else +#define __MPN(x) __gmpn_/**/x +#endif +#endif + +/* For reference, "defined(EOF)" cannot be used here. In g++ 2.95.4, + defines EOF but not FILE. */ +#if defined (FILE) \ + || defined (H_STDIO) \ + || defined (_H_STDIO) /* AIX */ \ + || defined (_STDIO_H) /* glibc, Sun, SCO */ \ + || defined (_STDIO_H_) /* BSD, OSF */ \ + || defined (__STDIO_H) /* Borland */ \ + || defined (__STDIO_H__) /* IRIX */ \ + || defined (_STDIO_INCLUDED) /* HPUX */ \ + || defined (__dj_include_stdio_h_) /* DJGPP */ \ + || defined (_FILE_DEFINED) /* Microsoft */ \ + || defined (__STDIO__) /* Apple MPW MrC */ \ + || defined (_MSL_STDIO_H) /* Metrowerks */ \ + || defined (_STDIO_H_INCLUDED) /* QNX4 */ \ + || defined (_ISO_STDIO_ISO_H) /* Sun C++ */ +#define _GMP_H_HAVE_FILE 1 +#endif + +/* In ISO C, if a prototype involving "struct obstack *" is given without + that structure defined, then the struct is scoped down to just the + prototype, causing a conflict if it's subsequently defined for real. So + only give prototypes if we've got obstack.h. */ +#if defined (_OBSTACK_H) /* glibc */ +#define _GMP_H_HAVE_OBSTACK 1 +#endif + +/* The prototypes for gmp_vprintf etc are provided only if va_list is + available, via an application having included or . + Usually va_list is a typedef so can't be tested directly, but C99 + specifies that va_start is a macro (and it was normally a macro on past + systems too), so look for that. + + will define some sort of va_list for vprintf and vfprintf, but + let's not bother trying to use that since it's not standard and since + application uses for gmp_vprintf etc will almost certainly require the + whole or anyway. */ + +#ifdef va_start +#define _GMP_H_HAVE_VA_LIST 1 +#endif + +/* Test for gcc >= maj.min, as per __GNUC_PREREQ in glibc */ +#if defined (__GNUC__) && defined (__GNUC_MINOR__) +#define __GMP_GNUC_PREREQ(maj, min) \ + ((__GNUC__ << 16) + __GNUC_MINOR__ >= ((maj) << 16) + (min)) +#else +#define __GMP_GNUC_PREREQ(maj, min) 0 +#endif + +/* "pure" is in gcc 2.96 and up, see "(gcc)Function Attributes". Basically + it means a function does nothing but examine its arguments and memory + (global or via arguments) to generate a return value, but changes nothing + and has no side-effects. __GMP_NO_ATTRIBUTE_CONST_PURE lets + tune/common.c etc turn this off when trying to write timing loops. */ +#if __GMP_GNUC_PREREQ (2,96) && ! defined (__GMP_NO_ATTRIBUTE_CONST_PURE) +#define __GMP_ATTRIBUTE_PURE __attribute__ ((__pure__)) +#else +#define __GMP_ATTRIBUTE_PURE +#endif + + +/* __GMP_CAST allows us to use static_cast in C++, so our macros are clean + to "g++ -Wold-style-cast". + + Casts in "extern inline" code within an extern "C" block don't induce + these warnings, so __GMP_CAST only needs to be used on documented + macros. */ + +#ifdef __cplusplus +#define __GMP_CAST(type, expr) (static_cast (expr)) +#else +#define __GMP_CAST(type, expr) ((type) (expr)) +#endif + + +/* An empty "throw ()" means the function doesn't throw any C++ exceptions, + this can save some stack frame info in applications. + + Currently it's given only on functions which never divide-by-zero etc, + don't allocate memory, and are expected to never need to allocate memory. + This leaves open the possibility of a C++ throw from a future GMP + exceptions scheme. + + mpz_set_ui etc are omitted to leave open the lazy allocation scheme + described in doc/tasks.html. mpz_get_d etc are omitted to leave open + exceptions for float overflows. + + Note that __GMP_NOTHROW must be given on any inlines the same as on their + prototypes (for g++ at least, where they're used together). Note also + that g++ 3.0 demands that __GMP_NOTHROW is before other attributes like + __GMP_ATTRIBUTE_PURE. */ + +#if defined (__cplusplus) +#define __GMP_NOTHROW throw () +#else +#define __GMP_NOTHROW +#endif + + +/* PORTME: What other compilers have a useful "extern inline"? "static + inline" would be an acceptable substitute if the compiler (or linker) + discards unused statics. */ + + /* gcc has __inline__ in all modes, including strict ansi. Give a prototype + for an inline too, so as to correctly specify "dllimport" on windows, in + case the function is called rather than inlined. + GCC 4.3 and above with -std=c99 or -std=gnu99 implements ISO C99 + inline semantics, unless -fgnu89-inline is used. */ +#ifdef __GNUC__ +#if (defined __GNUC_STDC_INLINE__) || (__GNUC__ == 4 && __GNUC_MINOR__ == 2) +#define __GMP_EXTERN_INLINE extern __inline__ __attribute__ ((__gnu_inline__)) +#else +#define __GMP_EXTERN_INLINE extern __inline__ +#endif +#define __GMP_INLINE_PROTOTYPES 1 +#endif + +/* DEC C (eg. version 5.9) supports "static __inline foo()", even in -std1 + strict ANSI mode. Inlining is done even when not optimizing (ie. -O0 + mode, which is the default), but an unnecessary local copy of foo is + emitted unless -O is used. "extern __inline" is accepted, but the + "extern" appears to be ignored, ie. it becomes a plain global function + but which is inlined within its file. Don't know if all old versions of + DEC C supported __inline, but as a start let's do the right thing for + current versions. */ +#ifdef __DECC +#define __GMP_EXTERN_INLINE static __inline +#endif + +/* SCO OpenUNIX 8 cc supports "static inline foo()" but not in -Xc strict + ANSI mode (__STDC__ is 1 in that mode). Inlining only actually takes + place under -O. Without -O "foo" seems to be emitted whether it's used + or not, which is wasteful. "extern inline foo()" isn't useful, the + "extern" is apparently ignored, so foo is inlined if possible but also + emitted as a global, which causes multiple definition errors when + building a shared libgmp. */ +#ifdef __SCO_VERSION__ +#if __SCO_VERSION__ > 400000000 && __STDC__ != 1 \ + && ! defined (__GMP_EXTERN_INLINE) +#define __GMP_EXTERN_INLINE static inline +#endif +#endif + +/* Microsoft's C compiler accepts __inline */ +#ifdef _MSC_VER +#define __GMP_EXTERN_INLINE __inline +#endif + +/* Recent enough Sun C compilers want "inline" */ +#if defined (__SUNPRO_C) && __SUNPRO_C >= 0x560 \ + && ! defined (__GMP_EXTERN_INLINE) +#define __GMP_EXTERN_INLINE inline +#endif + +/* Somewhat older Sun C compilers want "static inline" */ +#if defined (__SUNPRO_C) && __SUNPRO_C >= 0x540 \ + && ! defined (__GMP_EXTERN_INLINE) +#define __GMP_EXTERN_INLINE static inline +#endif + + +/* C++ always has "inline" and since it's a normal feature the linker should + discard duplicate non-inlined copies, or if it doesn't then that's a + problem for everyone, not just GMP. */ +#if defined (__cplusplus) && ! defined (__GMP_EXTERN_INLINE) +#define __GMP_EXTERN_INLINE inline +#endif + +/* Don't do any inlining within a configure run, since if the compiler ends + up emitting copies of the code into the object file it can end up + demanding the various support routines (like mpn_popcount) for linking, + making the "alloca" test and perhaps others fail. And on hppa ia64 a + pre-release gcc 3.2 was seen not respecting the "extern" in "extern + __inline__", triggering this problem too. */ +#if defined (__GMP_WITHIN_CONFIGURE) && ! __GMP_WITHIN_CONFIGURE_INLINE +#undef __GMP_EXTERN_INLINE +#endif + +/* By default, don't give a prototype when there's going to be an inline + version. Note in particular that Cray C++ objects to the combination of + prototype and inline. */ +#ifdef __GMP_EXTERN_INLINE +#ifndef __GMP_INLINE_PROTOTYPES +#define __GMP_INLINE_PROTOTYPES 0 +#endif +#else +#define __GMP_INLINE_PROTOTYPES 1 +#endif + + +#define __GMP_ABS(x) ((x) >= 0 ? (x) : -(x)) +#define __GMP_MAX(h,i) ((h) > (i) ? (h) : (i)) + +/* __GMP_USHRT_MAX is not "~ (unsigned short) 0" because short is promoted + to int by "~". */ +#define __GMP_UINT_MAX (~ (unsigned) 0) +#define __GMP_ULONG_MAX (~ (unsigned long) 0) +#define __GMP_USHRT_MAX ((unsigned short) ~0) + + +/* __builtin_expect is in gcc 3.0, and not in 2.95. */ +#if __GMP_GNUC_PREREQ (3,0) +#define __GMP_LIKELY(cond) __builtin_expect ((cond) != 0, 1) +#define __GMP_UNLIKELY(cond) __builtin_expect ((cond) != 0, 0) +#else +#define __GMP_LIKELY(cond) (cond) +#define __GMP_UNLIKELY(cond) (cond) +#endif + +#ifdef _CRAY +#define __GMP_CRAY_Pragma(str) _Pragma (str) +#else +#define __GMP_CRAY_Pragma(str) +#endif + + +/* Allow direct user access to numerator and denominator of a mpq_t object. */ +#define mpq_numref(Q) (&((Q)->_mp_num)) +#define mpq_denref(Q) (&((Q)->_mp_den)) + + +#if defined (__cplusplus) +extern "C" { +using std::FILE; +#endif + +#define mp_set_memory_functions __gmp_set_memory_functions +__GMP_DECLSPEC void mp_set_memory_functions __GMP_PROTO ((void *(*) (size_t), + void *(*) (void *, size_t, size_t), + void (*) (void *, size_t))) __GMP_NOTHROW; + +#define mp_get_memory_functions __gmp_get_memory_functions +__GMP_DECLSPEC void mp_get_memory_functions __GMP_PROTO ((void *(**) (size_t), + void *(**) (void *, size_t, size_t), + void (**) (void *, size_t))) __GMP_NOTHROW; + +#define mp_bits_per_limb __gmp_bits_per_limb +__GMP_DECLSPEC extern __gmp_const int mp_bits_per_limb; + +#define gmp_errno __gmp_errno +__GMP_DECLSPEC extern int gmp_errno; + +#define gmp_version __gmp_version +__GMP_DECLSPEC extern __gmp_const char * __gmp_const gmp_version; + + +/**************** Random number routines. ****************/ + +/* obsolete */ +#define gmp_randinit __gmp_randinit +__GMP_DECLSPEC void gmp_randinit __GMP_PROTO ((gmp_randstate_t, gmp_randalg_t, ...)); + +#define gmp_randinit_default __gmp_randinit_default +__GMP_DECLSPEC void gmp_randinit_default __GMP_PROTO ((gmp_randstate_t)); + +#define gmp_randinit_lc_2exp __gmp_randinit_lc_2exp +__GMP_DECLSPEC void gmp_randinit_lc_2exp __GMP_PROTO ((gmp_randstate_t, + mpz_srcptr, unsigned long int, + mp_bitcnt_t)); + +#define gmp_randinit_lc_2exp_size __gmp_randinit_lc_2exp_size +__GMP_DECLSPEC int gmp_randinit_lc_2exp_size __GMP_PROTO ((gmp_randstate_t, mp_bitcnt_t)); + +#define gmp_randinit_mt __gmp_randinit_mt +__GMP_DECLSPEC void gmp_randinit_mt __GMP_PROTO ((gmp_randstate_t)); + +#define gmp_randinit_set __gmp_randinit_set +__GMP_DECLSPEC void gmp_randinit_set __GMP_PROTO ((gmp_randstate_t, __gmp_const __gmp_randstate_struct *)); + +#define gmp_randseed __gmp_randseed +__GMP_DECLSPEC void gmp_randseed __GMP_PROTO ((gmp_randstate_t, mpz_srcptr)); + +#define gmp_randseed_ui __gmp_randseed_ui +__GMP_DECLSPEC void gmp_randseed_ui __GMP_PROTO ((gmp_randstate_t, unsigned long int)); + +#define gmp_randclear __gmp_randclear +__GMP_DECLSPEC void gmp_randclear __GMP_PROTO ((gmp_randstate_t)); + +#define gmp_urandomb_ui __gmp_urandomb_ui +__GMP_DECLSPEC unsigned long gmp_urandomb_ui __GMP_PROTO ((gmp_randstate_t, unsigned long)); + +#define gmp_urandomm_ui __gmp_urandomm_ui +__GMP_DECLSPEC unsigned long gmp_urandomm_ui __GMP_PROTO ((gmp_randstate_t, unsigned long)); + + +/**************** Formatted output routines. ****************/ + +#define gmp_asprintf __gmp_asprintf +__GMP_DECLSPEC int gmp_asprintf __GMP_PROTO ((char **, __gmp_const char *, ...)); + +#define gmp_fprintf __gmp_fprintf +#ifdef _GMP_H_HAVE_FILE +__GMP_DECLSPEC int gmp_fprintf __GMP_PROTO ((FILE *, __gmp_const char *, ...)); +#endif + +#define gmp_obstack_printf __gmp_obstack_printf +#if defined (_GMP_H_HAVE_OBSTACK) +__GMP_DECLSPEC int gmp_obstack_printf __GMP_PROTO ((struct obstack *, __gmp_const char *, ...)); +#endif + +#define gmp_obstack_vprintf __gmp_obstack_vprintf +#if defined (_GMP_H_HAVE_OBSTACK) && defined (_GMP_H_HAVE_VA_LIST) +__GMP_DECLSPEC int gmp_obstack_vprintf __GMP_PROTO ((struct obstack *, __gmp_const char *, va_list)); +#endif + +#define gmp_printf __gmp_printf +__GMP_DECLSPEC int gmp_printf __GMP_PROTO ((__gmp_const char *, ...)); + +#define gmp_snprintf __gmp_snprintf +__GMP_DECLSPEC int gmp_snprintf __GMP_PROTO ((char *, size_t, __gmp_const char *, ...)); + +#define gmp_sprintf __gmp_sprintf +__GMP_DECLSPEC int gmp_sprintf __GMP_PROTO ((char *, __gmp_const char *, ...)); + +#define gmp_vasprintf __gmp_vasprintf +#if defined (_GMP_H_HAVE_VA_LIST) +__GMP_DECLSPEC int gmp_vasprintf __GMP_PROTO ((char **, __gmp_const char *, va_list)); +#endif + +#define gmp_vfprintf __gmp_vfprintf +#if defined (_GMP_H_HAVE_FILE) && defined (_GMP_H_HAVE_VA_LIST) +__GMP_DECLSPEC int gmp_vfprintf __GMP_PROTO ((FILE *, __gmp_const char *, va_list)); +#endif + +#define gmp_vprintf __gmp_vprintf +#if defined (_GMP_H_HAVE_VA_LIST) +__GMP_DECLSPEC int gmp_vprintf __GMP_PROTO ((__gmp_const char *, va_list)); +#endif + +#define gmp_vsnprintf __gmp_vsnprintf +#if defined (_GMP_H_HAVE_VA_LIST) +__GMP_DECLSPEC int gmp_vsnprintf __GMP_PROTO ((char *, size_t, __gmp_const char *, va_list)); +#endif + +#define gmp_vsprintf __gmp_vsprintf +#if defined (_GMP_H_HAVE_VA_LIST) +__GMP_DECLSPEC int gmp_vsprintf __GMP_PROTO ((char *, __gmp_const char *, va_list)); +#endif + + +/**************** Formatted input routines. ****************/ + +#define gmp_fscanf __gmp_fscanf +#ifdef _GMP_H_HAVE_FILE +__GMP_DECLSPEC int gmp_fscanf __GMP_PROTO ((FILE *, __gmp_const char *, ...)); +#endif + +#define gmp_scanf __gmp_scanf +__GMP_DECLSPEC int gmp_scanf __GMP_PROTO ((__gmp_const char *, ...)); + +#define gmp_sscanf __gmp_sscanf +__GMP_DECLSPEC int gmp_sscanf __GMP_PROTO ((__gmp_const char *, __gmp_const char *, ...)); + +#define gmp_vfscanf __gmp_vfscanf +#if defined (_GMP_H_HAVE_FILE) && defined (_GMP_H_HAVE_VA_LIST) +__GMP_DECLSPEC int gmp_vfscanf __GMP_PROTO ((FILE *, __gmp_const char *, va_list)); +#endif + +#define gmp_vscanf __gmp_vscanf +#if defined (_GMP_H_HAVE_VA_LIST) +__GMP_DECLSPEC int gmp_vscanf __GMP_PROTO ((__gmp_const char *, va_list)); +#endif + +#define gmp_vsscanf __gmp_vsscanf +#if defined (_GMP_H_HAVE_VA_LIST) +__GMP_DECLSPEC int gmp_vsscanf __GMP_PROTO ((__gmp_const char *, __gmp_const char *, va_list)); +#endif + + +/**************** Integer (i.e. Z) routines. ****************/ + +#define _mpz_realloc __gmpz_realloc +#define mpz_realloc __gmpz_realloc +__GMP_DECLSPEC void *_mpz_realloc __GMP_PROTO ((mpz_ptr, mp_size_t)); + +#define mpz_abs __gmpz_abs +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_abs) +__GMP_DECLSPEC void mpz_abs __GMP_PROTO ((mpz_ptr, mpz_srcptr)); +#endif + +#define mpz_add __gmpz_add +__GMP_DECLSPEC void mpz_add __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_add_ui __gmpz_add_ui +__GMP_DECLSPEC void mpz_add_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_addmul __gmpz_addmul +__GMP_DECLSPEC void mpz_addmul __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_addmul_ui __gmpz_addmul_ui +__GMP_DECLSPEC void mpz_addmul_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_and __gmpz_and +__GMP_DECLSPEC void mpz_and __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_array_init __gmpz_array_init +__GMP_DECLSPEC void mpz_array_init __GMP_PROTO ((mpz_ptr, mp_size_t, mp_size_t)); + +#define mpz_bin_ui __gmpz_bin_ui +__GMP_DECLSPEC void mpz_bin_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_bin_uiui __gmpz_bin_uiui +__GMP_DECLSPEC void mpz_bin_uiui __GMP_PROTO ((mpz_ptr, unsigned long int, unsigned long int)); + +#define mpz_cdiv_q __gmpz_cdiv_q +__GMP_DECLSPEC void mpz_cdiv_q __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_cdiv_q_2exp __gmpz_cdiv_q_2exp +__GMP_DECLSPEC void mpz_cdiv_q_2exp __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long)); + +#define mpz_cdiv_q_ui __gmpz_cdiv_q_ui +__GMP_DECLSPEC unsigned long int mpz_cdiv_q_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_cdiv_qr __gmpz_cdiv_qr +__GMP_DECLSPEC void mpz_cdiv_qr __GMP_PROTO ((mpz_ptr, mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_cdiv_qr_ui __gmpz_cdiv_qr_ui +__GMP_DECLSPEC unsigned long int mpz_cdiv_qr_ui __GMP_PROTO ((mpz_ptr, mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_cdiv_r __gmpz_cdiv_r +__GMP_DECLSPEC void mpz_cdiv_r __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_cdiv_r_2exp __gmpz_cdiv_r_2exp +__GMP_DECLSPEC void mpz_cdiv_r_2exp __GMP_PROTO ((mpz_ptr, mpz_srcptr, mp_bitcnt_t)); + +#define mpz_cdiv_r_ui __gmpz_cdiv_r_ui +__GMP_DECLSPEC unsigned long int mpz_cdiv_r_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_cdiv_ui __gmpz_cdiv_ui +__GMP_DECLSPEC unsigned long int mpz_cdiv_ui __GMP_PROTO ((mpz_srcptr, unsigned long int)) __GMP_ATTRIBUTE_PURE; + +#define mpz_clear __gmpz_clear +__GMP_DECLSPEC void mpz_clear __GMP_PROTO ((mpz_ptr)); + +#define mpz_clears __gmpz_clears +__GMP_DECLSPEC void mpz_clears __GMP_PROTO ((mpz_ptr, ...)); + +#define mpz_clrbit __gmpz_clrbit +__GMP_DECLSPEC void mpz_clrbit __GMP_PROTO ((mpz_ptr, mp_bitcnt_t)); + +#define mpz_cmp __gmpz_cmp +__GMP_DECLSPEC int mpz_cmp __GMP_PROTO ((mpz_srcptr, mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_cmp_d __gmpz_cmp_d +__GMP_DECLSPEC int mpz_cmp_d __GMP_PROTO ((mpz_srcptr, double)) __GMP_ATTRIBUTE_PURE; + +#define _mpz_cmp_si __gmpz_cmp_si +__GMP_DECLSPEC int _mpz_cmp_si __GMP_PROTO ((mpz_srcptr, signed long int)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define _mpz_cmp_ui __gmpz_cmp_ui +__GMP_DECLSPEC int _mpz_cmp_ui __GMP_PROTO ((mpz_srcptr, unsigned long int)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_cmpabs __gmpz_cmpabs +__GMP_DECLSPEC int mpz_cmpabs __GMP_PROTO ((mpz_srcptr, mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_cmpabs_d __gmpz_cmpabs_d +__GMP_DECLSPEC int mpz_cmpabs_d __GMP_PROTO ((mpz_srcptr, double)) __GMP_ATTRIBUTE_PURE; + +#define mpz_cmpabs_ui __gmpz_cmpabs_ui +__GMP_DECLSPEC int mpz_cmpabs_ui __GMP_PROTO ((mpz_srcptr, unsigned long int)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_com __gmpz_com +__GMP_DECLSPEC void mpz_com __GMP_PROTO ((mpz_ptr, mpz_srcptr)); + +#define mpz_combit __gmpz_combit +__GMP_DECLSPEC void mpz_combit __GMP_PROTO ((mpz_ptr, mp_bitcnt_t)); + +#define mpz_congruent_p __gmpz_congruent_p +__GMP_DECLSPEC int mpz_congruent_p __GMP_PROTO ((mpz_srcptr, mpz_srcptr, mpz_srcptr)) __GMP_ATTRIBUTE_PURE; + +#define mpz_congruent_2exp_p __gmpz_congruent_2exp_p +__GMP_DECLSPEC int mpz_congruent_2exp_p __GMP_PROTO ((mpz_srcptr, mpz_srcptr, mp_bitcnt_t)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_congruent_ui_p __gmpz_congruent_ui_p +__GMP_DECLSPEC int mpz_congruent_ui_p __GMP_PROTO ((mpz_srcptr, unsigned long, unsigned long)) __GMP_ATTRIBUTE_PURE; + +#define mpz_divexact __gmpz_divexact +__GMP_DECLSPEC void mpz_divexact __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_divexact_ui __gmpz_divexact_ui +__GMP_DECLSPEC void mpz_divexact_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long)); + +#define mpz_divisible_p __gmpz_divisible_p +__GMP_DECLSPEC int mpz_divisible_p __GMP_PROTO ((mpz_srcptr, mpz_srcptr)) __GMP_ATTRIBUTE_PURE; + +#define mpz_divisible_ui_p __gmpz_divisible_ui_p +__GMP_DECLSPEC int mpz_divisible_ui_p __GMP_PROTO ((mpz_srcptr, unsigned long)) __GMP_ATTRIBUTE_PURE; + +#define mpz_divisible_2exp_p __gmpz_divisible_2exp_p +__GMP_DECLSPEC int mpz_divisible_2exp_p __GMP_PROTO ((mpz_srcptr, mp_bitcnt_t)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_dump __gmpz_dump +__GMP_DECLSPEC void mpz_dump __GMP_PROTO ((mpz_srcptr)); + +#define mpz_export __gmpz_export +__GMP_DECLSPEC void *mpz_export __GMP_PROTO ((void *, size_t *, int, size_t, int, size_t, mpz_srcptr)); + +#define mpz_fac_ui __gmpz_fac_ui +__GMP_DECLSPEC void mpz_fac_ui __GMP_PROTO ((mpz_ptr, unsigned long int)); + +#define mpz_fdiv_q __gmpz_fdiv_q +__GMP_DECLSPEC void mpz_fdiv_q __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_fdiv_q_2exp __gmpz_fdiv_q_2exp +__GMP_DECLSPEC void mpz_fdiv_q_2exp __GMP_PROTO ((mpz_ptr, mpz_srcptr, mp_bitcnt_t)); + +#define mpz_fdiv_q_ui __gmpz_fdiv_q_ui +__GMP_DECLSPEC unsigned long int mpz_fdiv_q_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_fdiv_qr __gmpz_fdiv_qr +__GMP_DECLSPEC void mpz_fdiv_qr __GMP_PROTO ((mpz_ptr, mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_fdiv_qr_ui __gmpz_fdiv_qr_ui +__GMP_DECLSPEC unsigned long int mpz_fdiv_qr_ui __GMP_PROTO ((mpz_ptr, mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_fdiv_r __gmpz_fdiv_r +__GMP_DECLSPEC void mpz_fdiv_r __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_fdiv_r_2exp __gmpz_fdiv_r_2exp +__GMP_DECLSPEC void mpz_fdiv_r_2exp __GMP_PROTO ((mpz_ptr, mpz_srcptr, mp_bitcnt_t)); + +#define mpz_fdiv_r_ui __gmpz_fdiv_r_ui +__GMP_DECLSPEC unsigned long int mpz_fdiv_r_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_fdiv_ui __gmpz_fdiv_ui +__GMP_DECLSPEC unsigned long int mpz_fdiv_ui __GMP_PROTO ((mpz_srcptr, unsigned long int)) __GMP_ATTRIBUTE_PURE; + +#define mpz_fib_ui __gmpz_fib_ui +__GMP_DECLSPEC void mpz_fib_ui __GMP_PROTO ((mpz_ptr, unsigned long int)); + +#define mpz_fib2_ui __gmpz_fib2_ui +__GMP_DECLSPEC void mpz_fib2_ui __GMP_PROTO ((mpz_ptr, mpz_ptr, unsigned long int)); + +#define mpz_fits_sint_p __gmpz_fits_sint_p +__GMP_DECLSPEC int mpz_fits_sint_p __GMP_PROTO ((mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_fits_slong_p __gmpz_fits_slong_p +__GMP_DECLSPEC int mpz_fits_slong_p __GMP_PROTO ((mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_fits_sshort_p __gmpz_fits_sshort_p +__GMP_DECLSPEC int mpz_fits_sshort_p __GMP_PROTO ((mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_fits_uint_p __gmpz_fits_uint_p +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_fits_uint_p) +__GMP_DECLSPEC int mpz_fits_uint_p __GMP_PROTO ((mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; +#endif + +#define mpz_fits_ulong_p __gmpz_fits_ulong_p +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_fits_ulong_p) +__GMP_DECLSPEC int mpz_fits_ulong_p __GMP_PROTO ((mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; +#endif + +#define mpz_fits_ushort_p __gmpz_fits_ushort_p +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_fits_ushort_p) +__GMP_DECLSPEC int mpz_fits_ushort_p __GMP_PROTO ((mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; +#endif + +#define mpz_gcd __gmpz_gcd +__GMP_DECLSPEC void mpz_gcd __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_gcd_ui __gmpz_gcd_ui +__GMP_DECLSPEC unsigned long int mpz_gcd_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_gcdext __gmpz_gcdext +__GMP_DECLSPEC void mpz_gcdext __GMP_PROTO ((mpz_ptr, mpz_ptr, mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_get_d __gmpz_get_d +__GMP_DECLSPEC double mpz_get_d __GMP_PROTO ((mpz_srcptr)) __GMP_ATTRIBUTE_PURE; + +#define mpz_get_d_2exp __gmpz_get_d_2exp +__GMP_DECLSPEC double mpz_get_d_2exp __GMP_PROTO ((signed long int *, mpz_srcptr)); + +#define mpz_get_si __gmpz_get_si +__GMP_DECLSPEC /* signed */ long int mpz_get_si __GMP_PROTO ((mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_get_str __gmpz_get_str +__GMP_DECLSPEC char *mpz_get_str __GMP_PROTO ((char *, int, mpz_srcptr)); + +#define mpz_get_ui __gmpz_get_ui +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_get_ui) +__GMP_DECLSPEC unsigned long int mpz_get_ui __GMP_PROTO ((mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; +#endif + +#define mpz_getlimbn __gmpz_getlimbn +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_getlimbn) +__GMP_DECLSPEC mp_limb_t mpz_getlimbn __GMP_PROTO ((mpz_srcptr, mp_size_t)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; +#endif + +#define mpz_hamdist __gmpz_hamdist +__GMP_DECLSPEC mp_bitcnt_t mpz_hamdist __GMP_PROTO ((mpz_srcptr, mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_import __gmpz_import +__GMP_DECLSPEC void mpz_import __GMP_PROTO ((mpz_ptr, size_t, int, size_t, int, size_t, __gmp_const void *)); + +#define mpz_init __gmpz_init +__GMP_DECLSPEC void mpz_init __GMP_PROTO ((mpz_ptr)); + +#define mpz_init2 __gmpz_init2 +__GMP_DECLSPEC void mpz_init2 __GMP_PROTO ((mpz_ptr, mp_bitcnt_t)); + +#define mpz_inits __gmpz_inits +__GMP_DECLSPEC void mpz_inits __GMP_PROTO ((mpz_ptr, ...)); + +#define mpz_init_set __gmpz_init_set +__GMP_DECLSPEC void mpz_init_set __GMP_PROTO ((mpz_ptr, mpz_srcptr)); + +#define mpz_init_set_d __gmpz_init_set_d +__GMP_DECLSPEC void mpz_init_set_d __GMP_PROTO ((mpz_ptr, double)); + +#define mpz_init_set_si __gmpz_init_set_si +__GMP_DECLSPEC void mpz_init_set_si __GMP_PROTO ((mpz_ptr, signed long int)); + +#define mpz_init_set_str __gmpz_init_set_str +__GMP_DECLSPEC int mpz_init_set_str __GMP_PROTO ((mpz_ptr, __gmp_const char *, int)); + +#define mpz_init_set_ui __gmpz_init_set_ui +__GMP_DECLSPEC void mpz_init_set_ui __GMP_PROTO ((mpz_ptr, unsigned long int)); + +#define mpz_inp_raw __gmpz_inp_raw +#ifdef _GMP_H_HAVE_FILE +__GMP_DECLSPEC size_t mpz_inp_raw __GMP_PROTO ((mpz_ptr, FILE *)); +#endif + +#define mpz_inp_str __gmpz_inp_str +#ifdef _GMP_H_HAVE_FILE +__GMP_DECLSPEC size_t mpz_inp_str __GMP_PROTO ((mpz_ptr, FILE *, int)); +#endif + +#define mpz_invert __gmpz_invert +__GMP_DECLSPEC int mpz_invert __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_ior __gmpz_ior +__GMP_DECLSPEC void mpz_ior __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_jacobi __gmpz_jacobi +__GMP_DECLSPEC int mpz_jacobi __GMP_PROTO ((mpz_srcptr, mpz_srcptr)) __GMP_ATTRIBUTE_PURE; + +#define mpz_kronecker mpz_jacobi /* alias */ + +#define mpz_kronecker_si __gmpz_kronecker_si +__GMP_DECLSPEC int mpz_kronecker_si __GMP_PROTO ((mpz_srcptr, long)) __GMP_ATTRIBUTE_PURE; + +#define mpz_kronecker_ui __gmpz_kronecker_ui +__GMP_DECLSPEC int mpz_kronecker_ui __GMP_PROTO ((mpz_srcptr, unsigned long)) __GMP_ATTRIBUTE_PURE; + +#define mpz_si_kronecker __gmpz_si_kronecker +__GMP_DECLSPEC int mpz_si_kronecker __GMP_PROTO ((long, mpz_srcptr)) __GMP_ATTRIBUTE_PURE; + +#define mpz_ui_kronecker __gmpz_ui_kronecker +__GMP_DECLSPEC int mpz_ui_kronecker __GMP_PROTO ((unsigned long, mpz_srcptr)) __GMP_ATTRIBUTE_PURE; + +#define mpz_lcm __gmpz_lcm +__GMP_DECLSPEC void mpz_lcm __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_lcm_ui __gmpz_lcm_ui +__GMP_DECLSPEC void mpz_lcm_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long)); + +#define mpz_legendre mpz_jacobi /* alias */ + +#define mpz_lucnum_ui __gmpz_lucnum_ui +__GMP_DECLSPEC void mpz_lucnum_ui __GMP_PROTO ((mpz_ptr, unsigned long int)); + +#define mpz_lucnum2_ui __gmpz_lucnum2_ui +__GMP_DECLSPEC void mpz_lucnum2_ui __GMP_PROTO ((mpz_ptr, mpz_ptr, unsigned long int)); + +#define mpz_millerrabin __gmpz_millerrabin +__GMP_DECLSPEC int mpz_millerrabin __GMP_PROTO ((mpz_srcptr, int)) __GMP_ATTRIBUTE_PURE; + +#define mpz_mod __gmpz_mod +__GMP_DECLSPEC void mpz_mod __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_mod_ui mpz_fdiv_r_ui /* same as fdiv_r because divisor unsigned */ + +#define mpz_mul __gmpz_mul +__GMP_DECLSPEC void mpz_mul __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_mul_2exp __gmpz_mul_2exp +__GMP_DECLSPEC void mpz_mul_2exp __GMP_PROTO ((mpz_ptr, mpz_srcptr, mp_bitcnt_t)); + +#define mpz_mul_si __gmpz_mul_si +__GMP_DECLSPEC void mpz_mul_si __GMP_PROTO ((mpz_ptr, mpz_srcptr, long int)); + +#define mpz_mul_ui __gmpz_mul_ui +__GMP_DECLSPEC void mpz_mul_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_neg __gmpz_neg +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_neg) +__GMP_DECLSPEC void mpz_neg __GMP_PROTO ((mpz_ptr, mpz_srcptr)); +#endif + +#define mpz_nextprime __gmpz_nextprime +__GMP_DECLSPEC void mpz_nextprime __GMP_PROTO ((mpz_ptr, mpz_srcptr)); + +#define mpz_out_raw __gmpz_out_raw +#ifdef _GMP_H_HAVE_FILE +__GMP_DECLSPEC size_t mpz_out_raw __GMP_PROTO ((FILE *, mpz_srcptr)); +#endif + +#define mpz_out_str __gmpz_out_str +#ifdef _GMP_H_HAVE_FILE +__GMP_DECLSPEC size_t mpz_out_str __GMP_PROTO ((FILE *, int, mpz_srcptr)); +#endif + +#define mpz_perfect_power_p __gmpz_perfect_power_p +__GMP_DECLSPEC int mpz_perfect_power_p __GMP_PROTO ((mpz_srcptr)) __GMP_ATTRIBUTE_PURE; + +#define mpz_perfect_square_p __gmpz_perfect_square_p +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_perfect_square_p) +__GMP_DECLSPEC int mpz_perfect_square_p __GMP_PROTO ((mpz_srcptr)) __GMP_ATTRIBUTE_PURE; +#endif + +#define mpz_popcount __gmpz_popcount +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_popcount) +__GMP_DECLSPEC mp_bitcnt_t mpz_popcount __GMP_PROTO ((mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; +#endif + +#define mpz_pow_ui __gmpz_pow_ui +__GMP_DECLSPEC void mpz_pow_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_powm __gmpz_powm +__GMP_DECLSPEC void mpz_powm __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_powm_sec __gmpz_powm_sec +__GMP_DECLSPEC void mpz_powm_sec __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_powm_ui __gmpz_powm_ui +__GMP_DECLSPEC void mpz_powm_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int, mpz_srcptr)); + +#define mpz_probab_prime_p __gmpz_probab_prime_p +__GMP_DECLSPEC int mpz_probab_prime_p __GMP_PROTO ((mpz_srcptr, int)) __GMP_ATTRIBUTE_PURE; + +#define mpz_random __gmpz_random +__GMP_DECLSPEC void mpz_random __GMP_PROTO ((mpz_ptr, mp_size_t)); + +#define mpz_random2 __gmpz_random2 +__GMP_DECLSPEC void mpz_random2 __GMP_PROTO ((mpz_ptr, mp_size_t)); + +#define mpz_realloc2 __gmpz_realloc2 +__GMP_DECLSPEC void mpz_realloc2 __GMP_PROTO ((mpz_ptr, mp_bitcnt_t)); + +#define mpz_remove __gmpz_remove +__GMP_DECLSPEC unsigned long int mpz_remove __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_root __gmpz_root +__GMP_DECLSPEC int mpz_root __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_rootrem __gmpz_rootrem +__GMP_DECLSPEC void mpz_rootrem __GMP_PROTO ((mpz_ptr,mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_rrandomb __gmpz_rrandomb +__GMP_DECLSPEC void mpz_rrandomb __GMP_PROTO ((mpz_ptr, gmp_randstate_t, mp_bitcnt_t)); + +#define mpz_scan0 __gmpz_scan0 +__GMP_DECLSPEC mp_bitcnt_t mpz_scan0 __GMP_PROTO ((mpz_srcptr, mp_bitcnt_t)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_scan1 __gmpz_scan1 +__GMP_DECLSPEC mp_bitcnt_t mpz_scan1 __GMP_PROTO ((mpz_srcptr, mp_bitcnt_t)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_set __gmpz_set +__GMP_DECLSPEC void mpz_set __GMP_PROTO ((mpz_ptr, mpz_srcptr)); + +#define mpz_set_d __gmpz_set_d +__GMP_DECLSPEC void mpz_set_d __GMP_PROTO ((mpz_ptr, double)); + +#define mpz_set_f __gmpz_set_f +__GMP_DECLSPEC void mpz_set_f __GMP_PROTO ((mpz_ptr, mpf_srcptr)); + +#define mpz_set_q __gmpz_set_q +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_set_q) +__GMP_DECLSPEC void mpz_set_q __GMP_PROTO ((mpz_ptr, mpq_srcptr)); +#endif + +#define mpz_set_si __gmpz_set_si +__GMP_DECLSPEC void mpz_set_si __GMP_PROTO ((mpz_ptr, signed long int)); + +#define mpz_set_str __gmpz_set_str +__GMP_DECLSPEC int mpz_set_str __GMP_PROTO ((mpz_ptr, __gmp_const char *, int)); + +#define mpz_set_ui __gmpz_set_ui +__GMP_DECLSPEC void mpz_set_ui __GMP_PROTO ((mpz_ptr, unsigned long int)); + +#define mpz_setbit __gmpz_setbit +__GMP_DECLSPEC void mpz_setbit __GMP_PROTO ((mpz_ptr, mp_bitcnt_t)); + +#define mpz_size __gmpz_size +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_size) +__GMP_DECLSPEC size_t mpz_size __GMP_PROTO ((mpz_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; +#endif + +#define mpz_sizeinbase __gmpz_sizeinbase +__GMP_DECLSPEC size_t mpz_sizeinbase __GMP_PROTO ((mpz_srcptr, int)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_sqrt __gmpz_sqrt +__GMP_DECLSPEC void mpz_sqrt __GMP_PROTO ((mpz_ptr, mpz_srcptr)); + +#define mpz_sqrtrem __gmpz_sqrtrem +__GMP_DECLSPEC void mpz_sqrtrem __GMP_PROTO ((mpz_ptr, mpz_ptr, mpz_srcptr)); + +#define mpz_sub __gmpz_sub +__GMP_DECLSPEC void mpz_sub __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_sub_ui __gmpz_sub_ui +__GMP_DECLSPEC void mpz_sub_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_ui_sub __gmpz_ui_sub +__GMP_DECLSPEC void mpz_ui_sub __GMP_PROTO ((mpz_ptr, unsigned long int, mpz_srcptr)); + +#define mpz_submul __gmpz_submul +__GMP_DECLSPEC void mpz_submul __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_submul_ui __gmpz_submul_ui +__GMP_DECLSPEC void mpz_submul_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_swap __gmpz_swap +__GMP_DECLSPEC void mpz_swap __GMP_PROTO ((mpz_ptr, mpz_ptr)) __GMP_NOTHROW; + +#define mpz_tdiv_ui __gmpz_tdiv_ui +__GMP_DECLSPEC unsigned long int mpz_tdiv_ui __GMP_PROTO ((mpz_srcptr, unsigned long int)) __GMP_ATTRIBUTE_PURE; + +#define mpz_tdiv_q __gmpz_tdiv_q +__GMP_DECLSPEC void mpz_tdiv_q __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_tdiv_q_2exp __gmpz_tdiv_q_2exp +__GMP_DECLSPEC void mpz_tdiv_q_2exp __GMP_PROTO ((mpz_ptr, mpz_srcptr, mp_bitcnt_t)); + +#define mpz_tdiv_q_ui __gmpz_tdiv_q_ui +__GMP_DECLSPEC unsigned long int mpz_tdiv_q_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_tdiv_qr __gmpz_tdiv_qr +__GMP_DECLSPEC void mpz_tdiv_qr __GMP_PROTO ((mpz_ptr, mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_tdiv_qr_ui __gmpz_tdiv_qr_ui +__GMP_DECLSPEC unsigned long int mpz_tdiv_qr_ui __GMP_PROTO ((mpz_ptr, mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_tdiv_r __gmpz_tdiv_r +__GMP_DECLSPEC void mpz_tdiv_r __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + +#define mpz_tdiv_r_2exp __gmpz_tdiv_r_2exp +__GMP_DECLSPEC void mpz_tdiv_r_2exp __GMP_PROTO ((mpz_ptr, mpz_srcptr, mp_bitcnt_t)); + +#define mpz_tdiv_r_ui __gmpz_tdiv_r_ui +__GMP_DECLSPEC unsigned long int mpz_tdiv_r_ui __GMP_PROTO ((mpz_ptr, mpz_srcptr, unsigned long int)); + +#define mpz_tstbit __gmpz_tstbit +__GMP_DECLSPEC int mpz_tstbit __GMP_PROTO ((mpz_srcptr, mp_bitcnt_t)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpz_ui_pow_ui __gmpz_ui_pow_ui +__GMP_DECLSPEC void mpz_ui_pow_ui __GMP_PROTO ((mpz_ptr, unsigned long int, unsigned long int)); + +#define mpz_urandomb __gmpz_urandomb +__GMP_DECLSPEC void mpz_urandomb __GMP_PROTO ((mpz_ptr, gmp_randstate_t, mp_bitcnt_t)); + +#define mpz_urandomm __gmpz_urandomm +__GMP_DECLSPEC void mpz_urandomm __GMP_PROTO ((mpz_ptr, gmp_randstate_t, mpz_srcptr)); + +#define mpz_xor __gmpz_xor +#define mpz_eor __gmpz_xor +__GMP_DECLSPEC void mpz_xor __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); + + +/**************** Rational (i.e. Q) routines. ****************/ + +#define mpq_abs __gmpq_abs +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpq_abs) +__GMP_DECLSPEC void mpq_abs __GMP_PROTO ((mpq_ptr, mpq_srcptr)); +#endif + +#define mpq_add __gmpq_add +__GMP_DECLSPEC void mpq_add __GMP_PROTO ((mpq_ptr, mpq_srcptr, mpq_srcptr)); + +#define mpq_canonicalize __gmpq_canonicalize +__GMP_DECLSPEC void mpq_canonicalize __GMP_PROTO ((mpq_ptr)); + +#define mpq_clear __gmpq_clear +__GMP_DECLSPEC void mpq_clear __GMP_PROTO ((mpq_ptr)); + +#define mpq_clears __gmpq_clears +__GMP_DECLSPEC void mpq_clears __GMP_PROTO ((mpq_ptr, ...)); + +#define mpq_cmp __gmpq_cmp +__GMP_DECLSPEC int mpq_cmp __GMP_PROTO ((mpq_srcptr, mpq_srcptr)) __GMP_ATTRIBUTE_PURE; + +#define _mpq_cmp_si __gmpq_cmp_si +__GMP_DECLSPEC int _mpq_cmp_si __GMP_PROTO ((mpq_srcptr, long, unsigned long)) __GMP_ATTRIBUTE_PURE; + +#define _mpq_cmp_ui __gmpq_cmp_ui +__GMP_DECLSPEC int _mpq_cmp_ui __GMP_PROTO ((mpq_srcptr, unsigned long int, unsigned long int)) __GMP_ATTRIBUTE_PURE; + +#define mpq_div __gmpq_div +__GMP_DECLSPEC void mpq_div __GMP_PROTO ((mpq_ptr, mpq_srcptr, mpq_srcptr)); + +#define mpq_div_2exp __gmpq_div_2exp +__GMP_DECLSPEC void mpq_div_2exp __GMP_PROTO ((mpq_ptr, mpq_srcptr, mp_bitcnt_t)); + +#define mpq_equal __gmpq_equal +__GMP_DECLSPEC int mpq_equal __GMP_PROTO ((mpq_srcptr, mpq_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpq_get_num __gmpq_get_num +__GMP_DECLSPEC void mpq_get_num __GMP_PROTO ((mpz_ptr, mpq_srcptr)); + +#define mpq_get_den __gmpq_get_den +__GMP_DECLSPEC void mpq_get_den __GMP_PROTO ((mpz_ptr, mpq_srcptr)); + +#define mpq_get_d __gmpq_get_d +__GMP_DECLSPEC double mpq_get_d __GMP_PROTO ((mpq_srcptr)) __GMP_ATTRIBUTE_PURE; + +#define mpq_get_str __gmpq_get_str +__GMP_DECLSPEC char *mpq_get_str __GMP_PROTO ((char *, int, mpq_srcptr)); + +#define mpq_init __gmpq_init +__GMP_DECLSPEC void mpq_init __GMP_PROTO ((mpq_ptr)); + +#define mpq_inits __gmpq_inits +__GMP_DECLSPEC void mpq_inits __GMP_PROTO ((mpq_ptr, ...)); + +#define mpq_inp_str __gmpq_inp_str +#ifdef _GMP_H_HAVE_FILE +__GMP_DECLSPEC size_t mpq_inp_str __GMP_PROTO ((mpq_ptr, FILE *, int)); +#endif + +#define mpq_inv __gmpq_inv +__GMP_DECLSPEC void mpq_inv __GMP_PROTO ((mpq_ptr, mpq_srcptr)); + +#define mpq_mul __gmpq_mul +__GMP_DECLSPEC void mpq_mul __GMP_PROTO ((mpq_ptr, mpq_srcptr, mpq_srcptr)); + +#define mpq_mul_2exp __gmpq_mul_2exp +__GMP_DECLSPEC void mpq_mul_2exp __GMP_PROTO ((mpq_ptr, mpq_srcptr, mp_bitcnt_t)); + +#define mpq_neg __gmpq_neg +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpq_neg) +__GMP_DECLSPEC void mpq_neg __GMP_PROTO ((mpq_ptr, mpq_srcptr)); +#endif + +#define mpq_out_str __gmpq_out_str +#ifdef _GMP_H_HAVE_FILE +__GMP_DECLSPEC size_t mpq_out_str __GMP_PROTO ((FILE *, int, mpq_srcptr)); +#endif + +#define mpq_set __gmpq_set +__GMP_DECLSPEC void mpq_set __GMP_PROTO ((mpq_ptr, mpq_srcptr)); + +#define mpq_set_d __gmpq_set_d +__GMP_DECLSPEC void mpq_set_d __GMP_PROTO ((mpq_ptr, double)); + +#define mpq_set_den __gmpq_set_den +__GMP_DECLSPEC void mpq_set_den __GMP_PROTO ((mpq_ptr, mpz_srcptr)); + +#define mpq_set_f __gmpq_set_f +__GMP_DECLSPEC void mpq_set_f __GMP_PROTO ((mpq_ptr, mpf_srcptr)); + +#define mpq_set_num __gmpq_set_num +__GMP_DECLSPEC void mpq_set_num __GMP_PROTO ((mpq_ptr, mpz_srcptr)); + +#define mpq_set_si __gmpq_set_si +__GMP_DECLSPEC void mpq_set_si __GMP_PROTO ((mpq_ptr, signed long int, unsigned long int)); + +#define mpq_set_str __gmpq_set_str +__GMP_DECLSPEC int mpq_set_str __GMP_PROTO ((mpq_ptr, __gmp_const char *, int)); + +#define mpq_set_ui __gmpq_set_ui +__GMP_DECLSPEC void mpq_set_ui __GMP_PROTO ((mpq_ptr, unsigned long int, unsigned long int)); + +#define mpq_set_z __gmpq_set_z +__GMP_DECLSPEC void mpq_set_z __GMP_PROTO ((mpq_ptr, mpz_srcptr)); + +#define mpq_sub __gmpq_sub +__GMP_DECLSPEC void mpq_sub __GMP_PROTO ((mpq_ptr, mpq_srcptr, mpq_srcptr)); + +#define mpq_swap __gmpq_swap +__GMP_DECLSPEC void mpq_swap __GMP_PROTO ((mpq_ptr, mpq_ptr)) __GMP_NOTHROW; + + +/**************** Float (i.e. F) routines. ****************/ + +#define mpf_abs __gmpf_abs +__GMP_DECLSPEC void mpf_abs __GMP_PROTO ((mpf_ptr, mpf_srcptr)); + +#define mpf_add __gmpf_add +__GMP_DECLSPEC void mpf_add __GMP_PROTO ((mpf_ptr, mpf_srcptr, mpf_srcptr)); + +#define mpf_add_ui __gmpf_add_ui +__GMP_DECLSPEC void mpf_add_ui __GMP_PROTO ((mpf_ptr, mpf_srcptr, unsigned long int)); +#define mpf_ceil __gmpf_ceil +__GMP_DECLSPEC void mpf_ceil __GMP_PROTO ((mpf_ptr, mpf_srcptr)); + +#define mpf_clear __gmpf_clear +__GMP_DECLSPEC void mpf_clear __GMP_PROTO ((mpf_ptr)); + +#define mpf_clears __gmpf_clears +__GMP_DECLSPEC void mpf_clears __GMP_PROTO ((mpf_ptr, ...)); + +#define mpf_cmp __gmpf_cmp +__GMP_DECLSPEC int mpf_cmp __GMP_PROTO ((mpf_srcptr, mpf_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_cmp_d __gmpf_cmp_d +__GMP_DECLSPEC int mpf_cmp_d __GMP_PROTO ((mpf_srcptr, double)) __GMP_ATTRIBUTE_PURE; + +#define mpf_cmp_si __gmpf_cmp_si +__GMP_DECLSPEC int mpf_cmp_si __GMP_PROTO ((mpf_srcptr, signed long int)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_cmp_ui __gmpf_cmp_ui +__GMP_DECLSPEC int mpf_cmp_ui __GMP_PROTO ((mpf_srcptr, unsigned long int)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_div __gmpf_div +__GMP_DECLSPEC void mpf_div __GMP_PROTO ((mpf_ptr, mpf_srcptr, mpf_srcptr)); + +#define mpf_div_2exp __gmpf_div_2exp +__GMP_DECLSPEC void mpf_div_2exp __GMP_PROTO ((mpf_ptr, mpf_srcptr, mp_bitcnt_t)); + +#define mpf_div_ui __gmpf_div_ui +__GMP_DECLSPEC void mpf_div_ui __GMP_PROTO ((mpf_ptr, mpf_srcptr, unsigned long int)); + +#define mpf_dump __gmpf_dump +__GMP_DECLSPEC void mpf_dump __GMP_PROTO ((mpf_srcptr)); + +#define mpf_eq __gmpf_eq +__GMP_DECLSPEC int mpf_eq __GMP_PROTO ((mpf_srcptr, mpf_srcptr, unsigned long int)) __GMP_ATTRIBUTE_PURE; + +#define mpf_fits_sint_p __gmpf_fits_sint_p +__GMP_DECLSPEC int mpf_fits_sint_p __GMP_PROTO ((mpf_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_fits_slong_p __gmpf_fits_slong_p +__GMP_DECLSPEC int mpf_fits_slong_p __GMP_PROTO ((mpf_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_fits_sshort_p __gmpf_fits_sshort_p +__GMP_DECLSPEC int mpf_fits_sshort_p __GMP_PROTO ((mpf_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_fits_uint_p __gmpf_fits_uint_p +__GMP_DECLSPEC int mpf_fits_uint_p __GMP_PROTO ((mpf_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_fits_ulong_p __gmpf_fits_ulong_p +__GMP_DECLSPEC int mpf_fits_ulong_p __GMP_PROTO ((mpf_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_fits_ushort_p __gmpf_fits_ushort_p +__GMP_DECLSPEC int mpf_fits_ushort_p __GMP_PROTO ((mpf_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_floor __gmpf_floor +__GMP_DECLSPEC void mpf_floor __GMP_PROTO ((mpf_ptr, mpf_srcptr)); + +#define mpf_get_d __gmpf_get_d +__GMP_DECLSPEC double mpf_get_d __GMP_PROTO ((mpf_srcptr)) __GMP_ATTRIBUTE_PURE; + +#define mpf_get_d_2exp __gmpf_get_d_2exp +__GMP_DECLSPEC double mpf_get_d_2exp __GMP_PROTO ((signed long int *, mpf_srcptr)); + +#define mpf_get_default_prec __gmpf_get_default_prec +__GMP_DECLSPEC mp_bitcnt_t mpf_get_default_prec __GMP_PROTO ((void)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_get_prec __gmpf_get_prec +__GMP_DECLSPEC mp_bitcnt_t mpf_get_prec __GMP_PROTO ((mpf_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_get_si __gmpf_get_si +__GMP_DECLSPEC long mpf_get_si __GMP_PROTO ((mpf_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_get_str __gmpf_get_str +__GMP_DECLSPEC char *mpf_get_str __GMP_PROTO ((char *, mp_exp_t *, int, size_t, mpf_srcptr)); + +#define mpf_get_ui __gmpf_get_ui +__GMP_DECLSPEC unsigned long mpf_get_ui __GMP_PROTO ((mpf_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_init __gmpf_init +__GMP_DECLSPEC void mpf_init __GMP_PROTO ((mpf_ptr)); + +#define mpf_init2 __gmpf_init2 +__GMP_DECLSPEC void mpf_init2 __GMP_PROTO ((mpf_ptr, mp_bitcnt_t)); + +#define mpf_inits __gmpf_inits +__GMP_DECLSPEC void mpf_inits __GMP_PROTO ((mpf_ptr, ...)); + +#define mpf_init_set __gmpf_init_set +__GMP_DECLSPEC void mpf_init_set __GMP_PROTO ((mpf_ptr, mpf_srcptr)); + +#define mpf_init_set_d __gmpf_init_set_d +__GMP_DECLSPEC void mpf_init_set_d __GMP_PROTO ((mpf_ptr, double)); + +#define mpf_init_set_si __gmpf_init_set_si +__GMP_DECLSPEC void mpf_init_set_si __GMP_PROTO ((mpf_ptr, signed long int)); + +#define mpf_init_set_str __gmpf_init_set_str +__GMP_DECLSPEC int mpf_init_set_str __GMP_PROTO ((mpf_ptr, __gmp_const char *, int)); + +#define mpf_init_set_ui __gmpf_init_set_ui +__GMP_DECLSPEC void mpf_init_set_ui __GMP_PROTO ((mpf_ptr, unsigned long int)); + +#define mpf_inp_str __gmpf_inp_str +#ifdef _GMP_H_HAVE_FILE +__GMP_DECLSPEC size_t mpf_inp_str __GMP_PROTO ((mpf_ptr, FILE *, int)); +#endif + +#define mpf_integer_p __gmpf_integer_p +__GMP_DECLSPEC int mpf_integer_p __GMP_PROTO ((mpf_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_mul __gmpf_mul +__GMP_DECLSPEC void mpf_mul __GMP_PROTO ((mpf_ptr, mpf_srcptr, mpf_srcptr)); + +#define mpf_mul_2exp __gmpf_mul_2exp +__GMP_DECLSPEC void mpf_mul_2exp __GMP_PROTO ((mpf_ptr, mpf_srcptr, mp_bitcnt_t)); + +#define mpf_mul_ui __gmpf_mul_ui +__GMP_DECLSPEC void mpf_mul_ui __GMP_PROTO ((mpf_ptr, mpf_srcptr, unsigned long int)); + +#define mpf_neg __gmpf_neg +__GMP_DECLSPEC void mpf_neg __GMP_PROTO ((mpf_ptr, mpf_srcptr)); + +#define mpf_out_str __gmpf_out_str +#ifdef _GMP_H_HAVE_FILE +__GMP_DECLSPEC size_t mpf_out_str __GMP_PROTO ((FILE *, int, size_t, mpf_srcptr)); +#endif + +#define mpf_pow_ui __gmpf_pow_ui +__GMP_DECLSPEC void mpf_pow_ui __GMP_PROTO ((mpf_ptr, mpf_srcptr, unsigned long int)); + +#define mpf_random2 __gmpf_random2 +__GMP_DECLSPEC void mpf_random2 __GMP_PROTO ((mpf_ptr, mp_size_t, mp_exp_t)); + +#define mpf_reldiff __gmpf_reldiff +__GMP_DECLSPEC void mpf_reldiff __GMP_PROTO ((mpf_ptr, mpf_srcptr, mpf_srcptr)); + +#define mpf_set __gmpf_set +__GMP_DECLSPEC void mpf_set __GMP_PROTO ((mpf_ptr, mpf_srcptr)); + +#define mpf_set_d __gmpf_set_d +__GMP_DECLSPEC void mpf_set_d __GMP_PROTO ((mpf_ptr, double)); + +#define mpf_set_default_prec __gmpf_set_default_prec +__GMP_DECLSPEC void mpf_set_default_prec __GMP_PROTO ((mp_bitcnt_t)) __GMP_NOTHROW; + +#define mpf_set_prec __gmpf_set_prec +__GMP_DECLSPEC void mpf_set_prec __GMP_PROTO ((mpf_ptr, mp_bitcnt_t)); + +#define mpf_set_prec_raw __gmpf_set_prec_raw +__GMP_DECLSPEC void mpf_set_prec_raw __GMP_PROTO ((mpf_ptr, mp_bitcnt_t)) __GMP_NOTHROW; + +#define mpf_set_q __gmpf_set_q +__GMP_DECLSPEC void mpf_set_q __GMP_PROTO ((mpf_ptr, mpq_srcptr)); + +#define mpf_set_si __gmpf_set_si +__GMP_DECLSPEC void mpf_set_si __GMP_PROTO ((mpf_ptr, signed long int)); + +#define mpf_set_str __gmpf_set_str +__GMP_DECLSPEC int mpf_set_str __GMP_PROTO ((mpf_ptr, __gmp_const char *, int)); + +#define mpf_set_ui __gmpf_set_ui +__GMP_DECLSPEC void mpf_set_ui __GMP_PROTO ((mpf_ptr, unsigned long int)); + +#define mpf_set_z __gmpf_set_z +__GMP_DECLSPEC void mpf_set_z __GMP_PROTO ((mpf_ptr, mpz_srcptr)); + +#define mpf_size __gmpf_size +__GMP_DECLSPEC size_t mpf_size __GMP_PROTO ((mpf_srcptr)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpf_sqrt __gmpf_sqrt +__GMP_DECLSPEC void mpf_sqrt __GMP_PROTO ((mpf_ptr, mpf_srcptr)); + +#define mpf_sqrt_ui __gmpf_sqrt_ui +__GMP_DECLSPEC void mpf_sqrt_ui __GMP_PROTO ((mpf_ptr, unsigned long int)); + +#define mpf_sub __gmpf_sub +__GMP_DECLSPEC void mpf_sub __GMP_PROTO ((mpf_ptr, mpf_srcptr, mpf_srcptr)); + +#define mpf_sub_ui __gmpf_sub_ui +__GMP_DECLSPEC void mpf_sub_ui __GMP_PROTO ((mpf_ptr, mpf_srcptr, unsigned long int)); + +#define mpf_swap __gmpf_swap +__GMP_DECLSPEC void mpf_swap __GMP_PROTO ((mpf_ptr, mpf_ptr)) __GMP_NOTHROW; + +#define mpf_trunc __gmpf_trunc +__GMP_DECLSPEC void mpf_trunc __GMP_PROTO ((mpf_ptr, mpf_srcptr)); + +#define mpf_ui_div __gmpf_ui_div +__GMP_DECLSPEC void mpf_ui_div __GMP_PROTO ((mpf_ptr, unsigned long int, mpf_srcptr)); + +#define mpf_ui_sub __gmpf_ui_sub +__GMP_DECLSPEC void mpf_ui_sub __GMP_PROTO ((mpf_ptr, unsigned long int, mpf_srcptr)); + +#define mpf_urandomb __gmpf_urandomb +__GMP_DECLSPEC void mpf_urandomb __GMP_PROTO ((mpf_t, gmp_randstate_t, mp_bitcnt_t)); + + +/************ Low level positive-integer (i.e. N) routines. ************/ + +/* This is ugly, but we need to make user calls reach the prefixed function. */ + +#define mpn_add __MPN(add) +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_add) +__GMP_DECLSPEC mp_limb_t mpn_add __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr,mp_size_t)); +#endif + +#define mpn_add_1 __MPN(add_1) +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_add_1) +__GMP_DECLSPEC mp_limb_t mpn_add_1 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t)) __GMP_NOTHROW; +#endif + +#define mpn_add_n __MPN(add_n) +__GMP_DECLSPEC mp_limb_t mpn_add_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); + +#define mpn_addmul_1 __MPN(addmul_1) +__GMP_DECLSPEC mp_limb_t mpn_addmul_1 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t)); + +#define mpn_cmp __MPN(cmp) +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_cmp) +__GMP_DECLSPEC int mpn_cmp __GMP_PROTO ((mp_srcptr, mp_srcptr, mp_size_t)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; +#endif + +#define mpn_divexact_by3(dst,src,size) \ + mpn_divexact_by3c (dst, src, size, __GMP_CAST (mp_limb_t, 0)) + +#define mpn_divexact_by3c __MPN(divexact_by3c) +__GMP_DECLSPEC mp_limb_t mpn_divexact_by3c __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t)); + +#define mpn_divmod_1(qp,np,nsize,dlimb) \ + mpn_divrem_1 (qp, __GMP_CAST (mp_size_t, 0), np, nsize, dlimb) + +#define mpn_divrem __MPN(divrem) +__GMP_DECLSPEC mp_limb_t mpn_divrem __GMP_PROTO ((mp_ptr, mp_size_t, mp_ptr, mp_size_t, mp_srcptr, mp_size_t)); + +#define mpn_divrem_1 __MPN(divrem_1) +__GMP_DECLSPEC mp_limb_t mpn_divrem_1 __GMP_PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t)); + +#define mpn_divrem_2 __MPN(divrem_2) +__GMP_DECLSPEC mp_limb_t mpn_divrem_2 __GMP_PROTO ((mp_ptr, mp_size_t, mp_ptr, mp_size_t, mp_srcptr)); + +#define mpn_gcd __MPN(gcd) +__GMP_DECLSPEC mp_size_t mpn_gcd __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_ptr, mp_size_t)); + +#define mpn_gcd_1 __MPN(gcd_1) +__GMP_DECLSPEC mp_limb_t mpn_gcd_1 __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t)) __GMP_ATTRIBUTE_PURE; + +#define mpn_gcdext_1 __MPN(gcdext_1) +__GMP_DECLSPEC mp_limb_t mpn_gcdext_1 __GMP_PROTO ((mp_limb_signed_t *, mp_limb_signed_t *, mp_limb_t, mp_limb_t)); + +#define mpn_gcdext __MPN(gcdext) +__GMP_DECLSPEC mp_size_t mpn_gcdext __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t *, mp_ptr, mp_size_t, mp_ptr, mp_size_t)); + +#define mpn_get_str __MPN(get_str) +__GMP_DECLSPEC size_t mpn_get_str __GMP_PROTO ((unsigned char *, int, mp_ptr, mp_size_t)); + +#define mpn_hamdist __MPN(hamdist) +__GMP_DECLSPEC mp_bitcnt_t mpn_hamdist __GMP_PROTO ((mp_srcptr, mp_srcptr, mp_size_t)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpn_lshift __MPN(lshift) +__GMP_DECLSPEC mp_limb_t mpn_lshift __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, unsigned int)); + +#define mpn_mod_1 __MPN(mod_1) +__GMP_DECLSPEC mp_limb_t mpn_mod_1 __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t)) __GMP_ATTRIBUTE_PURE; + +#define mpn_mul __MPN(mul) +__GMP_DECLSPEC mp_limb_t mpn_mul __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t)); + +#define mpn_mul_1 __MPN(mul_1) +__GMP_DECLSPEC mp_limb_t mpn_mul_1 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t)); + +#define mpn_mul_n __MPN(mul_n) +__GMP_DECLSPEC void mpn_mul_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); + +#define mpn_sqr __MPN(sqr) +__GMP_DECLSPEC void mpn_sqr __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t)); + +#define mpn_neg __MPN(neg) +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_neg) +__GMP_DECLSPEC mp_limb_t mpn_neg __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t)); +#endif + +#define mpn_com __MPN(com) +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_com) +__GMP_DECLSPEC void mpn_com __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t)); +#endif + +#define mpn_perfect_square_p __MPN(perfect_square_p) +__GMP_DECLSPEC int mpn_perfect_square_p __GMP_PROTO ((mp_srcptr, mp_size_t)) __GMP_ATTRIBUTE_PURE; + +#define mpn_perfect_power_p __MPN(perfect_power_p) +__GMP_DECLSPEC int mpn_perfect_power_p __GMP_PROTO ((mp_srcptr, mp_size_t)) __GMP_ATTRIBUTE_PURE; + +#define mpn_popcount __MPN(popcount) +__GMP_DECLSPEC mp_bitcnt_t mpn_popcount __GMP_PROTO ((mp_srcptr, mp_size_t)) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; + +#define mpn_pow_1 __MPN(pow_1) +__GMP_DECLSPEC mp_size_t mpn_pow_1 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_ptr)); + +/* undocumented now, but retained here for upward compatibility */ +#define mpn_preinv_mod_1 __MPN(preinv_mod_1) +__GMP_DECLSPEC mp_limb_t mpn_preinv_mod_1 __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t)) __GMP_ATTRIBUTE_PURE; + +#define mpn_random __MPN(random) +__GMP_DECLSPEC void mpn_random __GMP_PROTO ((mp_ptr, mp_size_t)); + +#define mpn_random2 __MPN(random2) +__GMP_DECLSPEC void mpn_random2 __GMP_PROTO ((mp_ptr, mp_size_t)); + +#define mpn_rshift __MPN(rshift) +__GMP_DECLSPEC mp_limb_t mpn_rshift __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, unsigned int)); + +#define mpn_scan0 __MPN(scan0) +__GMP_DECLSPEC mp_bitcnt_t mpn_scan0 __GMP_PROTO ((mp_srcptr, mp_bitcnt_t)) __GMP_ATTRIBUTE_PURE; + +#define mpn_scan1 __MPN(scan1) +__GMP_DECLSPEC mp_bitcnt_t mpn_scan1 __GMP_PROTO ((mp_srcptr, mp_bitcnt_t)) __GMP_ATTRIBUTE_PURE; + +#define mpn_set_str __MPN(set_str) +__GMP_DECLSPEC mp_size_t mpn_set_str __GMP_PROTO ((mp_ptr, __gmp_const unsigned char *, size_t, int)); + +#define mpn_sqrtrem __MPN(sqrtrem) +__GMP_DECLSPEC mp_size_t mpn_sqrtrem __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t)); + +#define mpn_sub __MPN(sub) +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_sub) +__GMP_DECLSPEC mp_limb_t mpn_sub __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr,mp_size_t)); +#endif + +#define mpn_sub_1 __MPN(sub_1) +#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_sub_1) +__GMP_DECLSPEC mp_limb_t mpn_sub_1 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t)) __GMP_NOTHROW; +#endif + +#define mpn_sub_n __MPN(sub_n) +__GMP_DECLSPEC mp_limb_t mpn_sub_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); + +#define mpn_submul_1 __MPN(submul_1) +__GMP_DECLSPEC mp_limb_t mpn_submul_1 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t)); + +#define mpn_tdiv_qr __MPN(tdiv_qr) +__GMP_DECLSPEC void mpn_tdiv_qr __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t)); + +#define mpn_and_n __MPN(and_n) +__GMP_DECLSPEC void mpn_and_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); +#define mpn_andn_n __MPN(andn_n) +__GMP_DECLSPEC void mpn_andn_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); +#define mpn_nand_n __MPN(nand_n) +__GMP_DECLSPEC void mpn_nand_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); +#define mpn_ior_n __MPN(ior_n) +__GMP_DECLSPEC void mpn_ior_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); +#define mpn_iorn_n __MPN(iorn_n) +__GMP_DECLSPEC void mpn_iorn_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); +#define mpn_nior_n __MPN(nior_n) +__GMP_DECLSPEC void mpn_nior_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); +#define mpn_xor_n __MPN(xor_n) +__GMP_DECLSPEC void mpn_xor_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); +#define mpn_xnor_n __MPN(xnor_n) +__GMP_DECLSPEC void mpn_xnor_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); + +#define mpn_copyi __MPN(copyi) +__GMP_DECLSPEC void mpn_copyi __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t)); +#define mpn_copyd __MPN(copyd) +__GMP_DECLSPEC void mpn_copyd __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t)); +#define mpn_zero __MPN(zero) +__GMP_DECLSPEC void mpn_zero __GMP_PROTO ((mp_ptr, mp_size_t)); + +/**************** mpz inlines ****************/ + +/* The following are provided as inlines where possible, but always exist as + library functions too, for binary compatibility. + + Within gmp itself this inlining generally isn't relied on, since it + doesn't get done for all compilers, whereas if something is worth + inlining then it's worth arranging always. + + There are two styles of inlining here. When the same bit of code is + wanted for the inline as for the library version, then __GMP_FORCE_foo + arranges for that code to be emitted and the __GMP_EXTERN_INLINE + directive suppressed, eg. mpz_fits_uint_p. When a different bit of code + is wanted for the inline than for the library version, then + __GMP_FORCE_foo arranges the inline to be suppressed, eg. mpz_abs. */ + +#if defined (__GMP_EXTERN_INLINE) && ! defined (__GMP_FORCE_mpz_abs) +__GMP_EXTERN_INLINE void +mpz_abs (mpz_ptr __gmp_w, mpz_srcptr __gmp_u) +{ + if (__gmp_w != __gmp_u) + mpz_set (__gmp_w, __gmp_u); + __gmp_w->_mp_size = __GMP_ABS (__gmp_w->_mp_size); +} +#endif + +#if GMP_NAIL_BITS == 0 +#define __GMPZ_FITS_UTYPE_P(z,maxval) \ + mp_size_t __gmp_n = z->_mp_size; \ + mp_ptr __gmp_p = z->_mp_d; \ + return (__gmp_n == 0 || (__gmp_n == 1 && __gmp_p[0] <= maxval)); +#else +#define __GMPZ_FITS_UTYPE_P(z,maxval) \ + mp_size_t __gmp_n = z->_mp_size; \ + mp_ptr __gmp_p = z->_mp_d; \ + return (__gmp_n == 0 || (__gmp_n == 1 && __gmp_p[0] <= maxval) \ + || (__gmp_n == 2 && __gmp_p[1] <= ((mp_limb_t) maxval >> GMP_NUMB_BITS))); +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_fits_uint_p) +#if ! defined (__GMP_FORCE_mpz_fits_uint_p) +__GMP_EXTERN_INLINE +#endif +int +mpz_fits_uint_p (mpz_srcptr __gmp_z) __GMP_NOTHROW +{ + __GMPZ_FITS_UTYPE_P (__gmp_z, __GMP_UINT_MAX); +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_fits_ulong_p) +#if ! defined (__GMP_FORCE_mpz_fits_ulong_p) +__GMP_EXTERN_INLINE +#endif +int +mpz_fits_ulong_p (mpz_srcptr __gmp_z) __GMP_NOTHROW +{ + __GMPZ_FITS_UTYPE_P (__gmp_z, __GMP_ULONG_MAX); +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_fits_ushort_p) +#if ! defined (__GMP_FORCE_mpz_fits_ushort_p) +__GMP_EXTERN_INLINE +#endif +int +mpz_fits_ushort_p (mpz_srcptr __gmp_z) __GMP_NOTHROW +{ + __GMPZ_FITS_UTYPE_P (__gmp_z, __GMP_USHRT_MAX); +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_get_ui) +#if ! defined (__GMP_FORCE_mpz_get_ui) +__GMP_EXTERN_INLINE +#endif +unsigned long +mpz_get_ui (mpz_srcptr __gmp_z) __GMP_NOTHROW +{ + mp_ptr __gmp_p = __gmp_z->_mp_d; + mp_size_t __gmp_n = __gmp_z->_mp_size; + mp_limb_t __gmp_l = __gmp_p[0]; + /* This is a "#if" rather than a plain "if" so as to avoid gcc warnings + about "<< GMP_NUMB_BITS" exceeding the type size, and to avoid Borland + C++ 6.0 warnings about condition always true for something like + "__GMP_ULONG_MAX < GMP_NUMB_MASK". */ +#if GMP_NAIL_BITS == 0 || defined (_LONG_LONG_LIMB) + /* limb==long and no nails, or limb==longlong, one limb is enough */ + return (__gmp_n != 0 ? __gmp_l : 0); +#else + /* limb==long and nails, need two limbs when available */ + __gmp_n = __GMP_ABS (__gmp_n); + if (__gmp_n <= 1) + return (__gmp_n != 0 ? __gmp_l : 0); + else + return __gmp_l + (__gmp_p[1] << GMP_NUMB_BITS); +#endif +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_getlimbn) +#if ! defined (__GMP_FORCE_mpz_getlimbn) +__GMP_EXTERN_INLINE +#endif +mp_limb_t +mpz_getlimbn (mpz_srcptr __gmp_z, mp_size_t __gmp_n) __GMP_NOTHROW +{ + mp_limb_t __gmp_result = 0; + if (__GMP_LIKELY (__gmp_n >= 0 && __gmp_n < __GMP_ABS (__gmp_z->_mp_size))) + __gmp_result = __gmp_z->_mp_d[__gmp_n]; + return __gmp_result; +} +#endif + +#if defined (__GMP_EXTERN_INLINE) && ! defined (__GMP_FORCE_mpz_neg) +__GMP_EXTERN_INLINE void +mpz_neg (mpz_ptr __gmp_w, mpz_srcptr __gmp_u) +{ + if (__gmp_w != __gmp_u) + mpz_set (__gmp_w, __gmp_u); + __gmp_w->_mp_size = - __gmp_w->_mp_size; +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_perfect_square_p) +#if ! defined (__GMP_FORCE_mpz_perfect_square_p) +__GMP_EXTERN_INLINE +#endif +int +mpz_perfect_square_p (mpz_srcptr __gmp_a) +{ + mp_size_t __gmp_asize; + int __gmp_result; + + __gmp_asize = __gmp_a->_mp_size; + __gmp_result = (__gmp_asize >= 0); /* zero is a square, negatives are not */ + if (__GMP_LIKELY (__gmp_asize > 0)) + __gmp_result = mpn_perfect_square_p (__gmp_a->_mp_d, __gmp_asize); + return __gmp_result; +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_popcount) +#if ! defined (__GMP_FORCE_mpz_popcount) +__GMP_EXTERN_INLINE +#endif +mp_bitcnt_t +mpz_popcount (mpz_srcptr __gmp_u) __GMP_NOTHROW +{ + mp_size_t __gmp_usize; + mp_bitcnt_t __gmp_result; + + __gmp_usize = __gmp_u->_mp_size; + __gmp_result = (__gmp_usize < 0 ? __GMP_ULONG_MAX : 0); + if (__GMP_LIKELY (__gmp_usize > 0)) + __gmp_result = mpn_popcount (__gmp_u->_mp_d, __gmp_usize); + return __gmp_result; +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_set_q) +#if ! defined (__GMP_FORCE_mpz_set_q) +__GMP_EXTERN_INLINE +#endif +void +mpz_set_q (mpz_ptr __gmp_w, mpq_srcptr __gmp_u) +{ + mpz_tdiv_q (__gmp_w, mpq_numref (__gmp_u), mpq_denref (__gmp_u)); +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_size) +#if ! defined (__GMP_FORCE_mpz_size) +__GMP_EXTERN_INLINE +#endif +size_t +mpz_size (mpz_srcptr __gmp_z) __GMP_NOTHROW +{ + return __GMP_ABS (__gmp_z->_mp_size); +} +#endif + + +/**************** mpq inlines ****************/ + +#if defined (__GMP_EXTERN_INLINE) && ! defined (__GMP_FORCE_mpq_abs) +__GMP_EXTERN_INLINE void +mpq_abs (mpq_ptr __gmp_w, mpq_srcptr __gmp_u) +{ + if (__gmp_w != __gmp_u) + mpq_set (__gmp_w, __gmp_u); + __gmp_w->_mp_num._mp_size = __GMP_ABS (__gmp_w->_mp_num._mp_size); +} +#endif + +#if defined (__GMP_EXTERN_INLINE) && ! defined (__GMP_FORCE_mpq_neg) +__GMP_EXTERN_INLINE void +mpq_neg (mpq_ptr __gmp_w, mpq_srcptr __gmp_u) +{ + if (__gmp_w != __gmp_u) + mpq_set (__gmp_w, __gmp_u); + __gmp_w->_mp_num._mp_size = - __gmp_w->_mp_num._mp_size; +} +#endif + + +/**************** mpn inlines ****************/ + +/* The comments with __GMPN_ADD_1 below apply here too. + + The test for FUNCTION returning 0 should predict well. If it's assumed + {yp,ysize} will usually have a random number of bits then the high limb + won't be full and a carry out will occur a good deal less than 50% of the + time. + + ysize==0 isn't a documented feature, but is used internally in a few + places. + + Producing cout last stops it using up a register during the main part of + the calculation, though gcc (as of 3.0) on an "if (mpn_add (...))" + doesn't seem able to move the true and false legs of the conditional up + to the two places cout is generated. */ + +#define __GMPN_AORS(cout, wp, xp, xsize, yp, ysize, FUNCTION, TEST) \ + do { \ + mp_size_t __gmp_i; \ + mp_limb_t __gmp_x; \ + \ + /* ASSERT ((ysize) >= 0); */ \ + /* ASSERT ((xsize) >= (ysize)); */ \ + /* ASSERT (MPN_SAME_OR_SEPARATE2_P (wp, xsize, xp, xsize)); */ \ + /* ASSERT (MPN_SAME_OR_SEPARATE2_P (wp, xsize, yp, ysize)); */ \ + \ + __gmp_i = (ysize); \ + if (__gmp_i != 0) \ + { \ + if (FUNCTION (wp, xp, yp, __gmp_i)) \ + { \ + do \ + { \ + if (__gmp_i >= (xsize)) \ + { \ + (cout) = 1; \ + goto __gmp_done; \ + } \ + __gmp_x = (xp)[__gmp_i]; \ + } \ + while (TEST); \ + } \ + } \ + if ((wp) != (xp)) \ + __GMPN_COPY_REST (wp, xp, xsize, __gmp_i); \ + (cout) = 0; \ + __gmp_done: \ + ; \ + } while (0) + +#define __GMPN_ADD(cout, wp, xp, xsize, yp, ysize) \ + __GMPN_AORS (cout, wp, xp, xsize, yp, ysize, mpn_add_n, \ + (((wp)[__gmp_i++] = (__gmp_x + 1) & GMP_NUMB_MASK) == 0)) +#define __GMPN_SUB(cout, wp, xp, xsize, yp, ysize) \ + __GMPN_AORS (cout, wp, xp, xsize, yp, ysize, mpn_sub_n, \ + (((wp)[__gmp_i++] = (__gmp_x - 1) & GMP_NUMB_MASK), __gmp_x == 0)) + + +/* The use of __gmp_i indexing is designed to ensure a compile time src==dst + remains nice and clear to the compiler, so that __GMPN_COPY_REST can + disappear, and the load/add/store gets a chance to become a + read-modify-write on CISC CPUs. + + Alternatives: + + Using a pair of pointers instead of indexing would be possible, but gcc + isn't able to recognise compile-time src==dst in that case, even when the + pointers are incremented more or less together. Other compilers would + very likely have similar difficulty. + + gcc could use "if (__builtin_constant_p(src==dst) && src==dst)" or + similar to detect a compile-time src==dst. This works nicely on gcc + 2.95.x, it's not good on gcc 3.0 where __builtin_constant_p(p==p) seems + to be always false, for a pointer p. But the current code form seems + good enough for src==dst anyway. + + gcc on x86 as usual doesn't give particularly good flags handling for the + carry/borrow detection. It's tempting to want some multi instruction asm + blocks to help it, and this was tried, but in truth there's only a few + instructions to save and any gain is all too easily lost by register + juggling setting up for the asm. */ + +#if GMP_NAIL_BITS == 0 +#define __GMPN_AORS_1(cout, dst, src, n, v, OP, CB) \ + do { \ + mp_size_t __gmp_i; \ + mp_limb_t __gmp_x, __gmp_r; \ + \ + /* ASSERT ((n) >= 1); */ \ + /* ASSERT (MPN_SAME_OR_SEPARATE_P (dst, src, n)); */ \ + \ + __gmp_x = (src)[0]; \ + __gmp_r = __gmp_x OP (v); \ + (dst)[0] = __gmp_r; \ + if (CB (__gmp_r, __gmp_x, (v))) \ + { \ + (cout) = 1; \ + for (__gmp_i = 1; __gmp_i < (n);) \ + { \ + __gmp_x = (src)[__gmp_i]; \ + __gmp_r = __gmp_x OP 1; \ + (dst)[__gmp_i] = __gmp_r; \ + ++__gmp_i; \ + if (!CB (__gmp_r, __gmp_x, 1)) \ + { \ + if ((src) != (dst)) \ + __GMPN_COPY_REST (dst, src, n, __gmp_i); \ + (cout) = 0; \ + break; \ + } \ + } \ + } \ + else \ + { \ + if ((src) != (dst)) \ + __GMPN_COPY_REST (dst, src, n, 1); \ + (cout) = 0; \ + } \ + } while (0) +#endif + +#if GMP_NAIL_BITS >= 1 +#define __GMPN_AORS_1(cout, dst, src, n, v, OP, CB) \ + do { \ + mp_size_t __gmp_i; \ + mp_limb_t __gmp_x, __gmp_r; \ + \ + /* ASSERT ((n) >= 1); */ \ + /* ASSERT (MPN_SAME_OR_SEPARATE_P (dst, src, n)); */ \ + \ + __gmp_x = (src)[0]; \ + __gmp_r = __gmp_x OP (v); \ + (dst)[0] = __gmp_r & GMP_NUMB_MASK; \ + if (__gmp_r >> GMP_NUMB_BITS != 0) \ + { \ + (cout) = 1; \ + for (__gmp_i = 1; __gmp_i < (n);) \ + { \ + __gmp_x = (src)[__gmp_i]; \ + __gmp_r = __gmp_x OP 1; \ + (dst)[__gmp_i] = __gmp_r & GMP_NUMB_MASK; \ + ++__gmp_i; \ + if (__gmp_r >> GMP_NUMB_BITS == 0) \ + { \ + if ((src) != (dst)) \ + __GMPN_COPY_REST (dst, src, n, __gmp_i); \ + (cout) = 0; \ + break; \ + } \ + } \ + } \ + else \ + { \ + if ((src) != (dst)) \ + __GMPN_COPY_REST (dst, src, n, 1); \ + (cout) = 0; \ + } \ + } while (0) +#endif + +#define __GMPN_ADDCB(r,x,y) ((r) < (y)) +#define __GMPN_SUBCB(r,x,y) ((x) < (y)) + +#define __GMPN_ADD_1(cout, dst, src, n, v) \ + __GMPN_AORS_1(cout, dst, src, n, v, +, __GMPN_ADDCB) +#define __GMPN_SUB_1(cout, dst, src, n, v) \ + __GMPN_AORS_1(cout, dst, src, n, v, -, __GMPN_SUBCB) + + +/* Compare {xp,size} and {yp,size}, setting "result" to positive, zero or + negative. size==0 is allowed. On random data usually only one limb will + need to be examined to get a result, so it's worth having it inline. */ +#define __GMPN_CMP(result, xp, yp, size) \ + do { \ + mp_size_t __gmp_i; \ + mp_limb_t __gmp_x, __gmp_y; \ + \ + /* ASSERT ((size) >= 0); */ \ + \ + (result) = 0; \ + __gmp_i = (size); \ + while (--__gmp_i >= 0) \ + { \ + __gmp_x = (xp)[__gmp_i]; \ + __gmp_y = (yp)[__gmp_i]; \ + if (__gmp_x != __gmp_y) \ + { \ + /* Cannot use __gmp_x - __gmp_y, may overflow an "int" */ \ + (result) = (__gmp_x > __gmp_y ? 1 : -1); \ + break; \ + } \ + } \ + } while (0) + + +#if defined (__GMPN_COPY) && ! defined (__GMPN_COPY_REST) +#define __GMPN_COPY_REST(dst, src, size, start) \ + do { \ + /* ASSERT ((start) >= 0); */ \ + /* ASSERT ((start) <= (size)); */ \ + __GMPN_COPY ((dst)+(start), (src)+(start), (size)-(start)); \ + } while (0) +#endif + +/* Copy {src,size} to {dst,size}, starting at "start". This is designed to + keep the indexing dst[j] and src[j] nice and simple for __GMPN_ADD_1, + __GMPN_ADD, etc. */ +#if ! defined (__GMPN_COPY_REST) +#define __GMPN_COPY_REST(dst, src, size, start) \ + do { \ + mp_size_t __gmp_j; \ + /* ASSERT ((size) >= 0); */ \ + /* ASSERT ((start) >= 0); */ \ + /* ASSERT ((start) <= (size)); */ \ + /* ASSERT (MPN_SAME_OR_SEPARATE_P (dst, src, size)); */ \ + __GMP_CRAY_Pragma ("_CRI ivdep"); \ + for (__gmp_j = (start); __gmp_j < (size); __gmp_j++) \ + (dst)[__gmp_j] = (src)[__gmp_j]; \ + } while (0) +#endif + +/* Enhancement: Use some of the smarter code from gmp-impl.h. Maybe use + mpn_copyi if there's a native version, and if we don't mind demanding + binary compatibility for it (on targets which use it). */ + +#if ! defined (__GMPN_COPY) +#define __GMPN_COPY(dst, src, size) __GMPN_COPY_REST (dst, src, size, 0) +#endif + + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_add) +#if ! defined (__GMP_FORCE_mpn_add) +__GMP_EXTERN_INLINE +#endif +mp_limb_t +mpn_add (mp_ptr __gmp_wp, mp_srcptr __gmp_xp, mp_size_t __gmp_xsize, mp_srcptr __gmp_yp, mp_size_t __gmp_ysize) +{ + mp_limb_t __gmp_c; + __GMPN_ADD (__gmp_c, __gmp_wp, __gmp_xp, __gmp_xsize, __gmp_yp, __gmp_ysize); + return __gmp_c; +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_add_1) +#if ! defined (__GMP_FORCE_mpn_add_1) +__GMP_EXTERN_INLINE +#endif +mp_limb_t +mpn_add_1 (mp_ptr __gmp_dst, mp_srcptr __gmp_src, mp_size_t __gmp_size, mp_limb_t __gmp_n) __GMP_NOTHROW +{ + mp_limb_t __gmp_c; + __GMPN_ADD_1 (__gmp_c, __gmp_dst, __gmp_src, __gmp_size, __gmp_n); + return __gmp_c; +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_cmp) +#if ! defined (__GMP_FORCE_mpn_cmp) +__GMP_EXTERN_INLINE +#endif +int +mpn_cmp (mp_srcptr __gmp_xp, mp_srcptr __gmp_yp, mp_size_t __gmp_size) __GMP_NOTHROW +{ + int __gmp_result; + __GMPN_CMP (__gmp_result, __gmp_xp, __gmp_yp, __gmp_size); + return __gmp_result; +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_sub) +#if ! defined (__GMP_FORCE_mpn_sub) +__GMP_EXTERN_INLINE +#endif +mp_limb_t +mpn_sub (mp_ptr __gmp_wp, mp_srcptr __gmp_xp, mp_size_t __gmp_xsize, mp_srcptr __gmp_yp, mp_size_t __gmp_ysize) +{ + mp_limb_t __gmp_c; + __GMPN_SUB (__gmp_c, __gmp_wp, __gmp_xp, __gmp_xsize, __gmp_yp, __gmp_ysize); + return __gmp_c; +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_sub_1) +#if ! defined (__GMP_FORCE_mpn_sub_1) +__GMP_EXTERN_INLINE +#endif +mp_limb_t +mpn_sub_1 (mp_ptr __gmp_dst, mp_srcptr __gmp_src, mp_size_t __gmp_size, mp_limb_t __gmp_n) __GMP_NOTHROW +{ + mp_limb_t __gmp_c; + __GMPN_SUB_1 (__gmp_c, __gmp_dst, __gmp_src, __gmp_size, __gmp_n); + return __gmp_c; +} +#endif + +#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_neg) +#if ! defined (__GMP_FORCE_mpn_neg) +__GMP_EXTERN_INLINE +#endif +mp_limb_t +mpn_neg (mp_ptr __gmp_rp, mp_srcptr __gmp_up, mp_size_t __gmp_n) +{ + mp_limb_t __gmp_ul, __gmp_cy; + __gmp_cy = 0; + do { + __gmp_ul = *__gmp_up++; + *__gmp_rp++ = -__gmp_ul - __gmp_cy; + __gmp_cy |= __gmp_ul != 0; + } while (--__gmp_n != 0); + return __gmp_cy; +} +#endif + +#if defined (__cplusplus) +} +#endif + + +/* Allow faster testing for negative, zero, and positive. */ +#define mpz_sgn(Z) ((Z)->_mp_size < 0 ? -1 : (Z)->_mp_size > 0) +#define mpf_sgn(F) ((F)->_mp_size < 0 ? -1 : (F)->_mp_size > 0) +#define mpq_sgn(Q) ((Q)->_mp_num._mp_size < 0 ? -1 : (Q)->_mp_num._mp_size > 0) + +/* When using GCC, optimize certain common comparisons. */ +#if defined (__GNUC__) && __GNUC__ >= 2 +#define mpz_cmp_ui(Z,UI) \ + (__builtin_constant_p (UI) && (UI) == 0 \ + ? mpz_sgn (Z) : _mpz_cmp_ui (Z,UI)) +#define mpz_cmp_si(Z,SI) \ + (__builtin_constant_p (SI) && (SI) == 0 ? mpz_sgn (Z) \ + : __builtin_constant_p (SI) && (SI) > 0 \ + ? _mpz_cmp_ui (Z, __GMP_CAST (unsigned long int, SI)) \ + : _mpz_cmp_si (Z,SI)) +#define mpq_cmp_ui(Q,NUI,DUI) \ + (__builtin_constant_p (NUI) && (NUI) == 0 \ + ? mpq_sgn (Q) : _mpq_cmp_ui (Q,NUI,DUI)) +#define mpq_cmp_si(q,n,d) \ + (__builtin_constant_p ((n) >= 0) && (n) >= 0 \ + ? mpq_cmp_ui (q, __GMP_CAST (unsigned long, n), d) \ + : _mpq_cmp_si (q, n, d)) +#else +#define mpz_cmp_ui(Z,UI) _mpz_cmp_ui (Z,UI) +#define mpz_cmp_si(Z,UI) _mpz_cmp_si (Z,UI) +#define mpq_cmp_ui(Q,NUI,DUI) _mpq_cmp_ui (Q,NUI,DUI) +#define mpq_cmp_si(q,n,d) _mpq_cmp_si(q,n,d) +#endif + + +/* Using "&" rather than "&&" means these can come out branch-free. Every + mpz_t has at least one limb allocated, so fetching the low limb is always + allowed. */ +#define mpz_odd_p(z) (((z)->_mp_size != 0) & __GMP_CAST (int, (z)->_mp_d[0])) +#define mpz_even_p(z) (! mpz_odd_p (z)) + + +/**************** C++ routines ****************/ + +#ifdef __cplusplus +__GMP_DECLSPEC_XX std::ostream& operator<< (std::ostream &, mpz_srcptr); +__GMP_DECLSPEC_XX std::ostream& operator<< (std::ostream &, mpq_srcptr); +__GMP_DECLSPEC_XX std::ostream& operator<< (std::ostream &, mpf_srcptr); +__GMP_DECLSPEC_XX std::istream& operator>> (std::istream &, mpz_ptr); +__GMP_DECLSPEC_XX std::istream& operator>> (std::istream &, mpq_ptr); +__GMP_DECLSPEC_XX std::istream& operator>> (std::istream &, mpf_ptr); +#endif + + +/* Source-level compatibility with GMP 2 and earlier. */ +#define mpn_divmod(qp,np,nsize,dp,dsize) \ + mpn_divrem (qp, __GMP_CAST (mp_size_t, 0), np, nsize, dp, dsize) + +/* Source-level compatibility with GMP 1. */ +#define mpz_mdiv mpz_fdiv_q +#define mpz_mdivmod mpz_fdiv_qr +#define mpz_mmod mpz_fdiv_r +#define mpz_mdiv_ui mpz_fdiv_q_ui +#define mpz_mdivmod_ui(q,r,n,d) \ + (((r) == 0) ? mpz_fdiv_q_ui (q,n,d) : mpz_fdiv_qr_ui (q,r,n,d)) +#define mpz_mmod_ui(r,n,d) \ + (((r) == 0) ? mpz_fdiv_ui (n,d) : mpz_fdiv_r_ui (r,n,d)) + +/* Useful synonyms, but not quite compatible with GMP 1. */ +#define mpz_div mpz_fdiv_q +#define mpz_divmod mpz_fdiv_qr +#define mpz_div_ui mpz_fdiv_q_ui +#define mpz_divmod_ui mpz_fdiv_qr_ui +#define mpz_div_2exp mpz_fdiv_q_2exp +#define mpz_mod_2exp mpz_fdiv_r_2exp + +enum +{ + GMP_ERROR_NONE = 0, + GMP_ERROR_UNSUPPORTED_ARGUMENT = 1, + GMP_ERROR_DIVISION_BY_ZERO = 2, + GMP_ERROR_SQRT_OF_NEGATIVE = 4, + GMP_ERROR_INVALID_ARGUMENT = 8 +}; + +/* Define CC and CFLAGS which were used to build this version of GMP */ +#define __GMP_CC "x86_64-w64-mingw32-gcc" +#define __GMP_CFLAGS "-O2 -pedantic -m64 -std=gnu99 -mtune=k8 -march=k8" + +/* Major version number is the value of __GNU_MP__ too, above and in mp.h. */ +#define __GNU_MP_VERSION 5 +#define __GNU_MP_VERSION_MINOR 0 +#define __GNU_MP_VERSION_PATCHLEVEL 1 +#define __GMP_MP_RELEASE (__GNU_MP_VERSION * 10000 + __GNU_MP_VERSION_MINOR * 100 + __GNU_MP_VERSION_PATCHLEVEL) + +#define __GMP_H__ +#endif /* __GMP_H__ */ diff --git a/misc/builddeps/dp.win64/lib/libgmp.dll.a b/misc/builddeps/dp.win64/lib/libgmp.dll.a new file mode 100755 index 00000000..1744e9b6 Binary files /dev/null and b/misc/builddeps/dp.win64/lib/libgmp.dll.a differ diff --git a/misc/builddeps/dp.win64/lib/libgmp.la b/misc/builddeps/dp.win64/lib/libgmp.la new file mode 100755 index 00000000..1240f174 --- /dev/null +++ b/misc/builddeps/dp.win64/lib/libgmp.la @@ -0,0 +1,41 @@ +# libgmp.la - a libtool library file +# Generated by ltmain.sh (GNU libtool) 2.2.6b +# +# Please DO NOT delete this file! +# It is necessary for linking the library. + +# The name that we can dlopen(3). +dlname='../bin/libgmp-10.dll' + +# Names of this library. +library_names='libgmp.dll.a' + +# The name of the static archive. +old_library='' + +# Linker flags that can not go in dependency_libs. +inherited_linker_flags='' + +# Libraries that this one depends upon. +dependency_libs='' + +# Names of additional weak libraries provided by this library +weak_library_names='' + +# Version information for libgmp. +current=10 +age=0 +revision=1 + +# Is this an already installed library? +installed=yes + +# Should we warn about portability when linking against -modules? +shouldnotlink=no + +# Files to dlopen/dlpreopen +dlopen='' +dlpreopen='' + +# Directory that this library needs to be installed in: +libdir='/tmp/gmp/lib' diff --git a/misc/builddeps/dp.win64/share/info/dir b/misc/builddeps/dp.win64/share/info/dir new file mode 100644 index 00000000..e54d6902 --- /dev/null +++ b/misc/builddeps/dp.win64/share/info/dir @@ -0,0 +1,18 @@ +This is the file .../info/dir, which contains the +topmost node of the Info hierarchy, called (dir)Top. +The first time you invoke Info you start off looking at this node. + +File: dir, Node: Top This is the top of the INFO tree + + This (the Directory node) gives a menu of major topics. + Typing "q" exits, "?" lists all Info commands, "d" returns here, + "h" gives a primer for first-timers, + "mEmacs" visits the Emacs manual, etc. + + In Emacs, you can click mouse button 2 on a menu item or cross reference + to select it. + +* Menu: + +GNU libraries +* gmp: (gmp). GNU Multiple Precision Arithmetic Library. diff --git a/misc/builddeps/dp.win64/share/info/gmp.info b/misc/builddeps/dp.win64/share/info/gmp.info new file mode 100644 index 00000000..d65ab795 --- /dev/null +++ b/misc/builddeps/dp.win64/share/info/gmp.info @@ -0,0 +1,178 @@ +This is ../../gmp/doc/gmp.info, produced by makeinfo version 4.8 from +../../gmp/doc/gmp.texi. + + This manual describes how to install and use the GNU multiple +precision arithmetic library, version 5.0.1. + + Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, +2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free +Software Foundation, Inc. + + Permission is granted to copy, distribute and/or modify this +document under the terms of the GNU Free Documentation License, Version +1.3 or any later version published by the Free Software Foundation; +with no Invariant Sections, with the Front-Cover Texts being "A GNU +Manual", and with the Back-Cover Texts being "You have freedom to copy +and modify this GNU Manual, like GNU software". A copy of the license +is included in *Note GNU Free Documentation License::. + +INFO-DIR-SECTION GNU libraries +START-INFO-DIR-ENTRY +* gmp: (gmp). GNU Multiple Precision Arithmetic Library. +END-INFO-DIR-ENTRY + + +Indirect: +gmp.info-1: 981 +gmp.info-2: 300864 + +Tag Table: +(Indirect) +Node: Top981 +Node: Copying3211 +Node: Introduction to GMP5062 +Node: Installing GMP7773 +Node: Build Options8505 +Node: ABI and ISA24573 +Node: Notes for Package Builds34251 +Node: Notes for Particular Systems37338 +Node: Known Build Problems43895 +Node: Performance optimization47429 +Node: GMP Basics48563 +Node: Headers and Libraries49211 +Node: Nomenclature and Types50635 +Node: Function Classes52632 +Node: Variable Conventions54325 +Node: Parameter Conventions55934 +Node: Memory Management57990 +Node: Reentrancy59118 +Node: Useful Macros and Constants60991 +Node: Compatibility with older versions61989 +Node: Demonstration Programs62950 +Node: Efficiency64815 +Node: Debugging72439 +Node: Profiling78997 +Node: Autoconf82988 +Node: Emacs84767 +Node: Reporting Bugs85373 +Node: Integer Functions87916 +Node: Initializing Integers88692 +Node: Assigning Integers90839 +Node: Simultaneous Integer Init & Assign92426 +Node: Converting Integers94051 +Node: Integer Arithmetic96973 +Node: Integer Division98559 +Node: Integer Exponentiation104869 +Node: Integer Roots106309 +Node: Number Theoretic Functions107983 +Node: Integer Comparisons114126 +Node: Integer Logic and Bit Fiddling115504 +Node: I/O of Integers118051 +Node: Integer Random Numbers120935 +Node: Integer Import and Export123546 +Node: Miscellaneous Integer Functions127556 +Node: Integer Special Functions129416 +Node: Rational Number Functions132503 +Node: Initializing Rationals133696 +Node: Rational Conversions136157 +Node: Rational Arithmetic137888 +Node: Comparing Rationals139192 +Node: Applying Integer Functions140559 +Node: I/O of Rationals142042 +Node: Floating-point Functions143902 +Node: Initializing Floats146787 +Node: Assigning Floats150874 +Node: Simultaneous Float Init & Assign153441 +Node: Converting Floats154969 +Node: Float Arithmetic158217 +Node: Float Comparison160230 +Node: I/O of Floats161811 +Node: Miscellaneous Float Functions164409 +Node: Low-level Functions166303 +Node: Random Number Functions190437 +Node: Random State Initialization191505 +Node: Random State Seeding194363 +Node: Random State Miscellaneous195752 +Node: Formatted Output196393 +Node: Formatted Output Strings196638 +Node: Formatted Output Functions201852 +Node: C++ Formatted Output205927 +Node: Formatted Input208609 +Node: Formatted Input Strings208845 +Node: Formatted Input Functions213497 +Node: C++ Formatted Input216466 +Node: C++ Class Interface218369 +Node: C++ Interface General219370 +Node: C++ Interface Integers222440 +Node: C++ Interface Rationals225871 +Node: C++ Interface Floats229548 +Node: C++ Interface Random Numbers234830 +Node: C++ Interface Limitations237236 +Node: BSD Compatible Functions240056 +Node: Custom Allocation244767 +Node: Language Bindings249085 +Node: Algorithms253038 +Node: Multiplication Algorithms253738 +Node: Basecase Multiplication254710 +Node: Karatsuba Multiplication256618 +Node: Toom 3-Way Multiplication260243 +Node: Toom 4-Way Multiplication266657 +Node: FFT Multiplication268029 +Node: Other Multiplication273365 +Node: Unbalanced Multiplication275839 +Node: Division Algorithms276627 +Node: Single Limb Division277006 +Node: Basecase Division279897 +Node: Divide and Conquer Division281100 +Node: Block-Wise Barrett Division283169 +Node: Exact Division283821 +Node: Exact Remainder286986 +Node: Small Quotient Division289213 +Node: Greatest Common Divisor Algorithms290811 +Node: Binary GCD291108 +Node: Lehmer's Algorithm293957 +Node: Subquadratic GCD296177 +Node: Extended GCD298636 +Node: Jacobi Symbol299948 +Node: Powering Algorithms300864 +Node: Normal Powering Algorithm301127 +Node: Modular Powering Algorithm301655 +Node: Root Extraction Algorithms302435 +Node: Square Root Algorithm302750 +Node: Nth Root Algorithm304891 +Node: Perfect Square Algorithm305676 +Node: Perfect Power Algorithm307762 +Node: Radix Conversion Algorithms308383 +Node: Binary to Radix308759 +Node: Radix to Binary312688 +Node: Other Algorithms314776 +Node: Prime Testing Algorithm315128 +Node: Factorial Algorithm316312 +Node: Binomial Coefficients Algorithm317715 +Node: Fibonacci Numbers Algorithm318609 +Node: Lucas Numbers Algorithm321083 +Node: Random Number Algorithms321804 +Node: Assembly Coding323925 +Node: Assembly Code Organisation324885 +Node: Assembly Basics325852 +Node: Assembly Carry Propagation327002 +Node: Assembly Cache Handling328833 +Node: Assembly Functional Units330994 +Node: Assembly Floating Point332607 +Node: Assembly SIMD Instructions336385 +Node: Assembly Software Pipelining337367 +Node: Assembly Loop Unrolling338429 +Node: Assembly Writing Guide340644 +Node: Internals343409 +Node: Integer Internals343921 +Node: Rational Internals346177 +Node: Float Internals347415 +Node: Raw Output Internals354829 +Node: C++ Interface Internals356023 +Node: Contributors359309 +Node: References364267 +Node: GNU Free Documentation License369925 +Node: Concept Index395094 +Node: Function Index441276 + +End Tag Table diff --git a/misc/builddeps/dp.win64/share/info/gmp.info-1 b/misc/builddeps/dp.win64/share/info/gmp.info-1 new file mode 100644 index 00000000..d1360599 --- /dev/null +++ b/misc/builddeps/dp.win64/share/info/gmp.info-1 @@ -0,0 +1,7084 @@ +This is ../../gmp/doc/gmp.info, produced by makeinfo version 4.8 from +../../gmp/doc/gmp.texi. + + This manual describes how to install and use the GNU multiple +precision arithmetic library, version 5.0.1. + + Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, +2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free +Software Foundation, Inc. + + Permission is granted to copy, distribute and/or modify this +document under the terms of the GNU Free Documentation License, Version +1.3 or any later version published by the Free Software Foundation; +with no Invariant Sections, with the Front-Cover Texts being "A GNU +Manual", and with the Back-Cover Texts being "You have freedom to copy +and modify this GNU Manual, like GNU software". A copy of the license +is included in *Note GNU Free Documentation License::. + +INFO-DIR-SECTION GNU libraries +START-INFO-DIR-ENTRY +* gmp: (gmp). GNU Multiple Precision Arithmetic Library. +END-INFO-DIR-ENTRY + + +File: gmp.info, Node: Top, Next: Copying, Prev: (dir), Up: (dir) + +GNU MP +****** + + This manual describes how to install and use the GNU multiple +precision arithmetic library, version 5.0.1. + + Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, +2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free +Software Foundation, Inc. + + Permission is granted to copy, distribute and/or modify this +document under the terms of the GNU Free Documentation License, Version +1.3 or any later version published by the Free Software Foundation; +with no Invariant Sections, with the Front-Cover Texts being "A GNU +Manual", and with the Back-Cover Texts being "You have freedom to copy +and modify this GNU Manual, like GNU software". A copy of the license +is included in *Note GNU Free Documentation License::. + + +* Menu: + +* Copying:: GMP Copying Conditions (LGPL). +* Introduction to GMP:: Brief introduction to GNU MP. +* Installing GMP:: How to configure and compile the GMP library. +* GMP Basics:: What every GMP user should know. +* Reporting Bugs:: How to usefully report bugs. +* Integer Functions:: Functions for arithmetic on signed integers. +* Rational Number Functions:: Functions for arithmetic on rational numbers. +* Floating-point Functions:: Functions for arithmetic on floats. +* Low-level Functions:: Fast functions for natural numbers. +* Random Number Functions:: Functions for generating random numbers. +* Formatted Output:: `printf' style output. +* Formatted Input:: `scanf' style input. +* C++ Class Interface:: Class wrappers around GMP types. +* BSD Compatible Functions:: All functions found in BSD MP. +* Custom Allocation:: How to customize the internal allocation. +* Language Bindings:: Using GMP from other languages. +* Algorithms:: What happens behind the scenes. +* Internals:: How values are represented behind the scenes. + +* Contributors:: Who brings you this library? +* References:: Some useful papers and books to read. +* GNU Free Documentation License:: +* Concept Index:: +* Function Index:: + + +File: gmp.info, Node: Copying, Next: Introduction to GMP, Prev: Top, Up: Top + +GNU MP Copying Conditions +************************* + +This library is "free"; this means that everyone is free to use it and +free to redistribute it on a free basis. The library is not in the +public domain; it is copyrighted and there are restrictions on its +distribution, but these restrictions are designed to permit everything +that a good cooperating citizen would want to do. What is not allowed +is to try to prevent others from further sharing any version of this +library that they might get from you. + + Specifically, we want to make sure that you have the right to give +away copies of the library, that you receive source code or else can +get it if you want it, that you can change this library or use pieces +of it in new free programs, and that you know you can do these things. + + To make sure that everyone has such rights, we have to forbid you to +deprive anyone else of these rights. For example, if you distribute +copies of the GNU MP library, you must give the recipients all the +rights that you have. You must make sure that they, too, receive or +can get the source code. And you must tell them their rights. + + Also, for our own protection, we must make certain that everyone +finds out that there is no warranty for the GNU MP library. If it is +modified by someone else and passed on, we want their recipients to +know that what they have is not what we distributed, so that any +problems introduced by others will not reflect on our reputation. + + The precise conditions of the license for the GNU MP library are +found in the Lesser General Public License version 3 that accompanies +the source code, see `COPYING.LIB'. Certain demonstration programs are +provided under the terms of the plain General Public License version 3, +see `COPYING'. + + +File: gmp.info, Node: Introduction to GMP, Next: Installing GMP, Prev: Copying, Up: Top + +1 Introduction to GNU MP +************************ + +GNU MP is a portable library written in C for arbitrary precision +arithmetic on integers, rational numbers, and floating-point numbers. +It aims to provide the fastest possible arithmetic for all applications +that need higher precision than is directly supported by the basic C +types. + + Many applications use just a few hundred bits of precision; but some +applications may need thousands or even millions of bits. GMP is +designed to give good performance for both, by choosing algorithms +based on the sizes of the operands, and by carefully keeping the +overhead at a minimum. + + The speed of GMP is achieved by using fullwords as the basic +arithmetic type, by using sophisticated algorithms, by including +carefully optimized assembly code for the most common inner loops for +many different CPUs, and by a general emphasis on speed (as opposed to +simplicity or elegance). + + There is assembly code for these CPUs: ARM, DEC Alpha 21064, 21164, +and 21264, AMD 29000, AMD K6, K6-2, Athlon, and Athlon64, Hitachi +SuperH and SH-2, HPPA 1.0, 1.1 and 2.0, Intel Pentium, Pentium +Pro/II/III, Pentium 4, generic x86, Intel IA-64, i960, Motorola +MC68000, MC68020, MC88100, and MC88110, Motorola/IBM PowerPC 32 and 64, +National NS32000, IBM POWER, MIPS R3000, R4000, SPARCv7, SuperSPARC, +generic SPARCv8, UltraSPARC, DEC VAX, and Zilog Z8000. Some +optimizations also for Cray vector systems, Clipper, IBM ROMP (RT), and +Pyramid AP/XP. + +For up-to-date information on GMP, please see the GMP web pages at + + `http://gmplib.org/' + +The latest version of the library is available at + + `ftp://ftp.gnu.org/gnu/gmp/' + + Many sites around the world mirror `ftp.gnu.org', please use a mirror +near you, see `http://www.gnu.org/order/ftp.html' for a full list. + + There are three public mailing lists of interest. One for release +announcements, one for general questions and discussions about usage of +the GMP library and one for bug reports. For more information, see + + `http://gmplib.org/mailman/listinfo/'. + + The proper place for bug reports is . See +*Note Reporting Bugs:: for information about reporting bugs. + + +1.1 How to use this Manual +========================== + +Everyone should read *Note GMP Basics::. If you need to install the +library yourself, then read *Note Installing GMP::. If you have a +system with multiple ABIs, then read *Note ABI and ISA::, for the +compiler options that must be used on applications. + + The rest of the manual can be used for later reference, although it +is probably a good idea to glance through it. + + +File: gmp.info, Node: Installing GMP, Next: GMP Basics, Prev: Introduction to GMP, Up: Top + +2 Installing GMP +**************** + +GMP has an autoconf/automake/libtool based configuration system. On a +Unix-like system a basic build can be done with + + ./configure + make + +Some self-tests can be run with + + make check + +And you can install (under `/usr/local' by default) with + + make install + + If you experience problems, please report them to +. See *Note Reporting Bugs::, for information on +what to include in useful bug reports. + +* Menu: + +* Build Options:: +* ABI and ISA:: +* Notes for Package Builds:: +* Notes for Particular Systems:: +* Known Build Problems:: +* Performance optimization:: + + +File: gmp.info, Node: Build Options, Next: ABI and ISA, Prev: Installing GMP, Up: Installing GMP + +2.1 Build Options +================= + +All the usual autoconf configure options are available, run `./configure +--help' for a summary. The file `INSTALL.autoconf' has some generic +installation information too. + +Tools + `configure' requires various Unix-like tools. See *Note Notes for + Particular Systems::, for some options on non-Unix systems. + + It might be possible to build without the help of `configure', + certainly all the code is there, but unfortunately you'll be on + your own. + +Build Directory + To compile in a separate build directory, `cd' to that directory, + and prefix the configure command with the path to the GMP source + directory. For example + + cd /my/build/dir + /my/sources/gmp-5.0.1/configure + + Not all `make' programs have the necessary features (`VPATH') to + support this. In particular, SunOS and Slowaris `make' have bugs + that make them unable to build in a separate directory. Use GNU + `make' instead. + +`--prefix' and `--exec-prefix' + The `--prefix' option can be used in the normal way to direct GMP + to install under a particular tree. The default is `/usr/local'. + + `--exec-prefix' can be used to direct architecture-dependent files + like `libgmp.a' to a different location. This can be used to share + architecture-independent parts like the documentation, but + separate the dependent parts. Note however that `gmp.h' and + `mp.h' are architecture-dependent since they encode certain + aspects of `libgmp', so it will be necessary to ensure both + `$prefix/include' and `$exec_prefix/include' are available to the + compiler. + +`--disable-shared', `--disable-static' + By default both shared and static libraries are built (where + possible), but one or other can be disabled. Shared libraries + result in smaller executables and permit code sharing between + separate running processes, but on some CPUs are slightly slower, + having a small cost on each function call. + +Native Compilation, `--build=CPU-VENDOR-OS' + For normal native compilation, the system can be specified with + `--build'. By default `./configure' uses the output from running + `./config.guess'. On some systems `./config.guess' can determine + the exact CPU type, on others it will be necessary to give it + explicitly. For example, + + ./configure --build=ultrasparc-sun-solaris2.7 + + In all cases the `OS' part is important, since it controls how + libtool generates shared libraries. Running `./config.guess' is + the simplest way to see what it should be, if you don't know + already. + +Cross Compilation, `--host=CPU-VENDOR-OS' + When cross-compiling, the system used for compiling is given by + `--build' and the system where the library will run is given by + `--host'. For example when using a FreeBSD Athlon system to build + GNU/Linux m68k binaries, + + ./configure --build=athlon-pc-freebsd3.5 --host=m68k-mac-linux-gnu + + Compiler tools are sought first with the host system type as a + prefix. For example `m68k-mac-linux-gnu-ranlib' is tried, then + plain `ranlib'. This makes it possible for a set of + cross-compiling tools to co-exist with native tools. The prefix + is the argument to `--host', and this can be an alias, such as + `m68k-linux'. But note that tools don't have to be setup this + way, it's enough to just have a `PATH' with a suitable + cross-compiling `cc' etc. + + Compiling for a different CPU in the same family as the build + system is a form of cross-compilation, though very possibly this + would merely be special options on a native compiler. In any case + `./configure' avoids depending on being able to run code on the + build system, which is important when creating binaries for a + newer CPU since they very possibly won't run on the build system. + + In all cases the compiler must be able to produce an executable + (of whatever format) from a standard C `main'. Although only + object files will go to make up `libgmp', `./configure' uses + linking tests for various purposes, such as determining what + functions are available on the host system. + + Currently a warning is given unless an explicit `--build' is used + when cross-compiling, because it may not be possible to correctly + guess the build system type if the `PATH' has only a + cross-compiling `cc'. + + Note that the `--target' option is not appropriate for GMP. It's + for use when building compiler tools, with `--host' being where + they will run, and `--target' what they'll produce code for. + Ordinary programs or libraries like GMP are only interested in the + `--host' part, being where they'll run. (Some past versions of + GMP used `--target' incorrectly.) + +CPU types + In general, if you want a library that runs as fast as possible, + you should configure GMP for the exact CPU type your system uses. + However, this may mean the binaries won't run on older members of + the family, and might run slower on other members, older or newer. + The best idea is always to build GMP for the exact machine type + you intend to run it on. + + The following CPUs have specific support. See `configure.in' for + details of what code and compiler options they select. + + * Alpha: alpha, alphaev5, alphaev56, alphapca56, alphapca57, + alphaev6, alphaev67, alphaev68 alphaev7 + + * Cray: c90, j90, t90, sv1 + + * HPPA: hppa1.0, hppa1.1, hppa2.0, hppa2.0n, hppa2.0w, hppa64 + + * IA-64: ia64, itanium, itanium2 + + * MIPS: mips, mips3, mips64 + + * Motorola: m68k, m68000, m68010, m68020, m68030, m68040, + m68060, m68302, m68360, m88k, m88110 + + * POWER: power, power1, power2, power2sc + + * PowerPC: powerpc, powerpc64, powerpc401, powerpc403, + powerpc405, powerpc505, powerpc601, powerpc602, powerpc603, + powerpc603e, powerpc604, powerpc604e, powerpc620, powerpc630, + powerpc740, powerpc7400, powerpc7450, powerpc750, powerpc801, + powerpc821, powerpc823, powerpc860, powerpc970 + + * SPARC: sparc, sparcv8, microsparc, supersparc, sparcv9, + ultrasparc, ultrasparc2, ultrasparc2i, ultrasparc3, sparc64 + + * x86 family: i386, i486, i586, pentium, pentiummmx, pentiumpro, + pentium2, pentium3, pentium4, k6, k62, k63, athlon, amd64, + viac3, viac32 + + * Other: a29k, arm, clipper, i960, ns32k, pyramid, sh, sh2, vax, + z8k + + CPUs not listed will use generic C code. + +Generic C Build + If some of the assembly code causes problems, or if otherwise + desired, the generic C code can be selected with CPU `none'. For + example, + + ./configure --host=none-unknown-freebsd3.5 + + Note that this will run quite slowly, but it should be portable + and should at least make it possible to get something running if + all else fails. + +Fat binary, `--enable-fat' + Using `--enable-fat' selects a "fat binary" build on x86, where + optimized low level subroutines are chosen at runtime according to + the CPU detected. This means more code, but gives good + performance on all x86 chips. (This option might become available + for more architectures in the future.) + +`ABI' + On some systems GMP supports multiple ABIs (application binary + interfaces), meaning data type sizes and calling conventions. By + default GMP chooses the best ABI available, but a particular ABI + can be selected. For example + + ./configure --host=mips64-sgi-irix6 ABI=n32 + + See *Note ABI and ISA::, for the available choices on relevant + CPUs, and what applications need to do. + +`CC', `CFLAGS' + By default the C compiler used is chosen from among some likely + candidates, with `gcc' normally preferred if it's present. The + usual `CC=whatever' can be passed to `./configure' to choose + something different. + + For various systems, default compiler flags are set based on the + CPU and compiler. The usual `CFLAGS="-whatever"' can be passed to + `./configure' to use something different or to set good flags for + systems GMP doesn't otherwise know. + + The `CC' and `CFLAGS' used are printed during `./configure', and + can be found in each generated `Makefile'. This is the easiest way + to check the defaults when considering changing or adding + something. + + Note that when `CC' and `CFLAGS' are specified on a system + supporting multiple ABIs it's important to give an explicit + `ABI=whatever', since GMP can't determine the ABI just from the + flags and won't be able to select the correct assembly code. + + If just `CC' is selected then normal default `CFLAGS' for that + compiler will be used (if GMP recognises it). For example + `CC=gcc' can be used to force the use of GCC, with default flags + (and default ABI). + +`CPPFLAGS' + Any flags like `-D' defines or `-I' includes required by the + preprocessor should be set in `CPPFLAGS' rather than `CFLAGS'. + Compiling is done with both `CPPFLAGS' and `CFLAGS', but + preprocessing uses just `CPPFLAGS'. This distinction is because + most preprocessors won't accept all the flags the compiler does. + Preprocessing is done separately in some configure tests, and in + the `ansi2knr' support for K&R compilers. + +`CC_FOR_BUILD' + Some build-time programs are compiled and run to generate + host-specific data tables. `CC_FOR_BUILD' is the compiler used + for this. It doesn't need to be in any particular ABI or mode, it + merely needs to generate executables that can run. The default is + to try the selected `CC' and some likely candidates such as `cc' + and `gcc', looking for something that works. + + No flags are used with `CC_FOR_BUILD' because a simple invocation + like `cc foo.c' should be enough. If some particular options are + required they can be included as for instance `CC_FOR_BUILD="cc + -whatever"'. + +C++ Support, `--enable-cxx' + C++ support in GMP can be enabled with `--enable-cxx', in which + case a C++ compiler will be required. As a convenience + `--enable-cxx=detect' can be used to enable C++ support only if a + compiler can be found. The C++ support consists of a library + `libgmpxx.la' and header file `gmpxx.h' (*note Headers and + Libraries::). + + A separate `libgmpxx.la' has been adopted rather than having C++ + objects within `libgmp.la' in order to ensure dynamic linked C + programs aren't bloated by a dependency on the C++ standard + library, and to avoid any chance that the C++ compiler could be + required when linking plain C programs. + + `libgmpxx.la' will use certain internals from `libgmp.la' and can + only be expected to work with `libgmp.la' from the same GMP + version. Future changes to the relevant internals will be + accompanied by renaming, so a mismatch will cause unresolved + symbols rather than perhaps mysterious misbehaviour. + + In general `libgmpxx.la' will be usable only with the C++ compiler + that built it, since name mangling and runtime support are usually + incompatible between different compilers. + +`CXX', `CXXFLAGS' + When C++ support is enabled, the C++ compiler and its flags can be + set with variables `CXX' and `CXXFLAGS' in the usual way. The + default for `CXX' is the first compiler that works from a list of + likely candidates, with `g++' normally preferred when available. + The default for `CXXFLAGS' is to try `CFLAGS', `CFLAGS' without + `-g', then for `g++' either `-g -O2' or `-O2', or for other + compilers `-g' or nothing. Trying `CFLAGS' this way is convenient + when using `gcc' and `g++' together, since the flags for `gcc' will + usually suit `g++'. + + It's important that the C and C++ compilers match, meaning their + startup and runtime support routines are compatible and that they + generate code in the same ABI (if there's a choice of ABIs on the + system). `./configure' isn't currently able to check these things + very well itself, so for that reason `--disable-cxx' is the + default, to avoid a build failure due to a compiler mismatch. + Perhaps this will change in the future. + + Incidentally, it's normally not good enough to set `CXX' to the + same as `CC'. Although `gcc' for instance recognises `foo.cc' as + C++ code, only `g++' will invoke the linker the right way when + building an executable or shared library from C++ object files. + +Temporary Memory, `--enable-alloca=' + GMP allocates temporary workspace using one of the following three + methods, which can be selected with for instance + `--enable-alloca=malloc-reentrant'. + + * `alloca' - C library or compiler builtin. + + * `malloc-reentrant' - the heap, in a re-entrant fashion. + + * `malloc-notreentrant' - the heap, with global variables. + + For convenience, the following choices are also available. + `--disable-alloca' is the same as `no'. + + * `yes' - a synonym for `alloca'. + + * `no' - a synonym for `malloc-reentrant'. + + * `reentrant' - `alloca' if available, otherwise + `malloc-reentrant'. This is the default. + + * `notreentrant' - `alloca' if available, otherwise + `malloc-notreentrant'. + + `alloca' is reentrant and fast, and is recommended. It actually + allocates just small blocks on the stack; larger ones use + malloc-reentrant. + + `malloc-reentrant' is, as the name suggests, reentrant and thread + safe, but `malloc-notreentrant' is faster and should be used if + reentrancy is not required. + + The two malloc methods in fact use the memory allocation functions + selected by `mp_set_memory_functions', these being `malloc' and + friends by default. *Note Custom Allocation::. + + An additional choice `--enable-alloca=debug' is available, to help + when debugging memory related problems (*note Debugging::). + +FFT Multiplication, `--disable-fft' + By default multiplications are done using Karatsuba, 3-way Toom, + and Fermat FFT. The FFT is only used on large to very large + operands and can be disabled to save code size if desired. + +Berkeley MP, `--enable-mpbsd' + The Berkeley MP compatibility library (`libmp') and header file + (`mp.h') are built and installed only if `--enable-mpbsd' is used. + *Note BSD Compatible Functions::. + +Assertion Checking, `--enable-assert' + This option enables some consistency checking within the library. + This can be of use while debugging, *note Debugging::. + +Execution Profiling, `--enable-profiling=prof/gprof/instrument' + Enable profiling support, in one of various styles, *note + Profiling::. + +`MPN_PATH' + Various assembly versions of each mpn subroutines are provided. + For a given CPU, a search is made though a path to choose a + version of each. For example `sparcv8' has + + MPN_PATH="sparc32/v8 sparc32 generic" + + which means look first for v8 code, then plain sparc32 (which is + v7), and finally fall back on generic C. Knowledgeable users with + special requirements can specify a different path. Normally this + is completely unnecessary. + +Documentation + The source for the document you're now reading is `doc/gmp.texi', + in Texinfo format, see *Note Texinfo: (texinfo)Top. + + Info format `doc/gmp.info' is included in the distribution. The + usual automake targets are available to make PostScript, DVI, PDF + and HTML (these will require various TeX and Texinfo tools). + + DocBook and XML can be generated by the Texinfo `makeinfo' program + too, see *Note Options for `makeinfo': (texinfo)makeinfo options. + + Some supplementary notes can also be found in the `doc' + subdirectory. + + + +File: gmp.info, Node: ABI and ISA, Next: Notes for Package Builds, Prev: Build Options, Up: Installing GMP + +2.2 ABI and ISA +=============== + +ABI (Application Binary Interface) refers to the calling conventions +between functions, meaning what registers are used and what sizes the +various C data types are. ISA (Instruction Set Architecture) refers to +the instructions and registers a CPU has available. + + Some 64-bit ISA CPUs have both a 64-bit ABI and a 32-bit ABI +defined, the latter for compatibility with older CPUs in the family. +GMP supports some CPUs like this in both ABIs. In fact within GMP +`ABI' means a combination of chip ABI, plus how GMP chooses to use it. +For example in some 32-bit ABIs, GMP may support a limb as either a +32-bit `long' or a 64-bit `long long'. + + By default GMP chooses the best ABI available for a given system, +and this generally gives significantly greater speed. But an ABI can +be chosen explicitly to make GMP compatible with other libraries, or +particular application requirements. For example, + + ./configure ABI=32 + + In all cases it's vital that all object code used in a given program +is compiled for the same ABI. + + Usually a limb is implemented as a `long'. When a `long long' limb +is used this is encoded in the generated `gmp.h'. This is convenient +for applications, but it does mean that `gmp.h' will vary, and can't be +just copied around. `gmp.h' remains compiler independent though, since +all compilers for a particular ABI will be expected to use the same +limb type. + + Currently no attempt is made to follow whatever conventions a system +has for installing library or header files built for a particular ABI. +This will probably only matter when installing multiple builds of GMP, +and it might be as simple as configuring with a special `libdir', or it +might require more than that. Note that builds for different ABIs need +to done separately, with a fresh `./configure' and `make' each. + + +AMD64 (`x86_64') + On AMD64 systems supporting both 32-bit and 64-bit modes for + applications, the following ABI choices are available. + + `ABI=64' + The 64-bit ABI uses 64-bit limbs and pointers and makes full + use of the chip architecture. This is the default. + Applications will usually not need special compiler flags, + but for reference the option is + + gcc -m64 + + `ABI=32' + The 32-bit ABI is the usual i386 conventions. This will be + slower, and is not recommended except for inter-operating + with other code not yet 64-bit capable. Applications must be + compiled with + + gcc -m32 + + (In GCC 2.95 and earlier there's no `-m32' option, it's the + only mode.) + + +HPPA 2.0 (`hppa2.0*', `hppa64') + + `ABI=2.0w' + The 2.0w ABI uses 64-bit limbs and pointers and is available + on HP-UX 11 or up. Applications must be compiled with + + gcc [built for 2.0w] + cc +DD64 + + `ABI=2.0n' + The 2.0n ABI means the 32-bit HPPA 1.0 ABI and all its normal + calling conventions, but with 64-bit instructions permitted + within functions. GMP uses a 64-bit `long long' for a limb. + This ABI is available on hppa64 GNU/Linux and on HP-UX 10 or + higher. Applications must be compiled with + + gcc [built for 2.0n] + cc +DA2.0 +e + + Note that current versions of GCC (eg. 3.2) don't generate + 64-bit instructions for `long long' operations and so may be + slower than for 2.0w. (The GMP assembly code is the same + though.) + + `ABI=1.0' + HPPA 2.0 CPUs can run all HPPA 1.0 and 1.1 code in the 32-bit + HPPA 1.0 ABI. No special compiler options are needed for + applications. + + All three ABIs are available for CPU types `hppa2.0w', `hppa2.0' + and `hppa64', but for CPU type `hppa2.0n' only 2.0n or 1.0 are + considered. + + Note that GCC on HP-UX has no options to choose between 2.0n and + 2.0w modes, unlike HP `cc'. Instead it must be built for one or + the other ABI. GMP will detect how it was built, and skip to the + corresponding `ABI'. + + +IA-64 under HP-UX (`ia64*-*-hpux*', `itanium*-*-hpux*') + HP-UX supports two ABIs for IA-64. GMP performance is the same in + both. + + `ABI=32' + In the 32-bit ABI, pointers, `int's and `long's are 32 bits + and GMP uses a 64 bit `long long' for a limb. Applications + can be compiled without any special flags since this ABI is + the default in both HP C and GCC, but for reference the flags + are + + gcc -milp32 + cc +DD32 + + `ABI=64' + In the 64-bit ABI, `long's and pointers are 64 bits and GMP + uses a `long' for a limb. Applications must be compiled with + + gcc -mlp64 + cc +DD64 + + On other IA-64 systems, GNU/Linux for instance, `ABI=64' is the + only choice. + + +MIPS under IRIX 6 (`mips*-*-irix[6789]') + IRIX 6 always has a 64-bit MIPS 3 or better CPU, and supports ABIs + o32, n32, and 64. n32 or 64 are recommended, and GMP performance + will be the same in each. The default is n32. + + `ABI=o32' + The o32 ABI is 32-bit pointers and integers, and no 64-bit + operations. GMP will be slower than in n32 or 64, this + option only exists to support old compilers, eg. GCC 2.7.2. + Applications can be compiled with no special flags on an old + compiler, or on a newer compiler with + + gcc -mabi=32 + cc -32 + + `ABI=n32' + The n32 ABI is 32-bit pointers and integers, but with a + 64-bit limb using a `long long'. Applications must be + compiled with + + gcc -mabi=n32 + cc -n32 + + `ABI=64' + The 64-bit ABI is 64-bit pointers and integers. Applications + must be compiled with + + gcc -mabi=64 + cc -64 + + Note that MIPS GNU/Linux, as of kernel version 2.2, doesn't have + the necessary support for n32 or 64 and so only gets a 32-bit limb + and the MIPS 2 code. + + +PowerPC 64 (`powerpc64', `powerpc620', `powerpc630', `powerpc970', `power4', `power5') + + `ABI=aix64' + The AIX 64 ABI uses 64-bit limbs and pointers and is the + default on PowerPC 64 `*-*-aix*' systems. Applications must + be compiled with + + gcc -maix64 + xlc -q64 + + `ABI=mode64' + The `mode64' ABI uses 64-bit limbs and pointers, and is the + default on 64-bit GNU/Linux, BSD, and Mac OS X/Darwin + systems. Applications must be compiled with + + gcc -m64 + + `ABI=mode32' + The `mode32' ABI uses a 64-bit `long long' limb but with the + chip still in 32-bit mode and using 32-bit calling + conventions. This is the default on for systems where the + true 64-bit ABIs are unavailable. No special compiler + options are needed for applications. + + `ABI=32' + This is the basic 32-bit PowerPC ABI, with a 32-bit limb. No + special compiler options are needed for applications. + + GMP speed is greatest in `aix64' and `mode32'. In `ABI=32' only + the 32-bit ISA is used and this doesn't make full use of a 64-bit + chip. On a suitable system we could perhaps use more of the ISA, + but there are no plans to do so. + + +Sparc V9 (`sparc64', `sparcv9', `ultrasparc*') + + `ABI=64' + The 64-bit V9 ABI is available on the various BSD sparc64 + ports, recent versions of Sparc64 GNU/Linux, and Solaris 2.7 + and up (when the kernel is in 64-bit mode). GCC 3.2 or + higher, or Sun `cc' is required. On GNU/Linux, depending on + the default `gcc' mode, applications must be compiled with + + gcc -m64 + + On Solaris applications must be compiled with + + gcc -m64 -mptr64 -Wa,-xarch=v9 -mcpu=v9 + cc -xarch=v9 + + On the BSD sparc64 systems no special options are required, + since 64-bits is the only ABI available. + + `ABI=32' + For the basic 32-bit ABI, GMP still uses as much of the V9 + ISA as it can. In the Sun documentation this combination is + known as "v8plus". On GNU/Linux, depending on the default + `gcc' mode, applications may need to be compiled with + + gcc -m32 + + On Solaris, no special compiler options are required for + applications, though using something like the following is + recommended. (`gcc' 2.8 and earlier only support `-mv8' + though.) + + gcc -mv8plus + cc -xarch=v8plus + + GMP speed is greatest in `ABI=64', so it's the default where + available. The speed is partly because there are extra registers + available and partly because 64-bits is considered the more + important case and has therefore had better code written for it. + + Don't be confused by the names of the `-m' and `-x' compiler + options, they're called `arch' but effectively control both ABI + and ISA. + + On Solaris 2.6 and earlier, only `ABI=32' is available since the + kernel doesn't save all registers. + + On Solaris 2.7 with the kernel in 32-bit mode, a normal native + build will reject `ABI=64' because the resulting executables won't + run. `ABI=64' can still be built if desired by making it look + like a cross-compile, for example + + ./configure --build=none --host=sparcv9-sun-solaris2.7 ABI=64 + + +File: gmp.info, Node: Notes for Package Builds, Next: Notes for Particular Systems, Prev: ABI and ISA, Up: Installing GMP + +2.3 Notes for Package Builds +============================ + +GMP should present no great difficulties for packaging in a binary +distribution. + + Libtool is used to build the library and `-version-info' is set +appropriately, having started from `3:0:0' in GMP 3.0 (*note Library +interface versions: (libtool)Versioning.). + + The GMP 4 series will be upwardly binary compatible in each release +and will be upwardly binary compatible with all of the GMP 3 series. +Additional function interfaces may be added in each release, so on +systems where libtool versioning is not fully checked by the loader an +auxiliary mechanism may be needed to express that a dynamic linked +application depends on a new enough GMP. + + An auxiliary mechanism may also be needed to express that +`libgmpxx.la' (from `--enable-cxx', *note Build Options::) requires +`libgmp.la' from the same GMP version, since this is not done by the +libtool versioning, nor otherwise. A mismatch will result in +unresolved symbols from the linker, or perhaps the loader. + + When building a package for a CPU family, care should be taken to use +`--host' (or `--build') to choose the least common denominator among +the CPUs which might use the package. For example this might mean plain +`sparc' (meaning V7) for SPARCs. + + For x86s, `--enable-fat' sets things up for a fat binary build, +making a runtime selection of optimized low level routines. This is a +good choice for packaging to run on a range of x86 chips. + + Users who care about speed will want GMP built for their exact CPU +type, to make best use of the available optimizations. Providing a way +to suitably rebuild a package may be useful. This could be as simple +as making it possible for a user to omit `--build' (and `--host') so +`./config.guess' will detect the CPU. But a way to manually specify a +`--build' will be wanted for systems where `./config.guess' is inexact. + + On systems with multiple ABIs, a packaged build will need to decide +which among the choices is to be provided, see *Note ABI and ISA::. A +given run of `./configure' etc will only build one ABI. If a second +ABI is also required then a second run of `./configure' etc must be +made, starting from a clean directory tree (`make distclean'). + + As noted under "ABI and ISA", currently no attempt is made to follow +system conventions for install locations that vary with ABI, such as +`/usr/lib/sparcv9' for `ABI=64' as opposed to `/usr/lib' for `ABI=32'. +A package build can override `libdir' and other standard variables as +necessary. + + Note that `gmp.h' is a generated file, and will be architecture and +ABI dependent. When attempting to install two ABIs simultaneously it +will be important that an application compile gets the correct `gmp.h' +for its desired ABI. If compiler include paths don't vary with ABI +options then it might be necessary to create a `/usr/include/gmp.h' +which tests preprocessor symbols and chooses the correct actual `gmp.h'. + + +File: gmp.info, Node: Notes for Particular Systems, Next: Known Build Problems, Prev: Notes for Package Builds, Up: Installing GMP + +2.4 Notes for Particular Systems +================================ + +AIX 3 and 4 + On systems `*-*-aix[34]*' shared libraries are disabled by + default, since some versions of the native `ar' fail on the + convenience libraries used. A shared build can be attempted with + + ./configure --enable-shared --disable-static + + Note that the `--disable-static' is necessary because in a shared + build libtool makes `libgmp.a' a symlink to `libgmp.so', + apparently for the benefit of old versions of `ld' which only + recognise `.a', but unfortunately this is done even if a fully + functional `ld' is available. + +ARM + On systems `arm*-*-*', versions of GCC up to and including 2.95.3 + have a bug in unsigned division, giving wrong results for some + operands. GMP `./configure' will demand GCC 2.95.4 or later. + +Compaq C++ + Compaq C++ on OSF 5.1 has two flavours of `iostream', a standard + one and an old pre-standard one (see `man iostream_intro'). GMP + can only use the standard one, which unfortunately is not the + default but must be selected by defining `__USE_STD_IOSTREAM'. + Configure with for instance + + ./configure --enable-cxx CPPFLAGS=-D__USE_STD_IOSTREAM + +Floating Point Mode + On some systems, the hardware floating point has a control mode + which can set all operations to be done in a particular precision, + for instance single, double or extended on x86 systems (x87 + floating point). The GMP functions involving a `double' cannot be + expected to operate to their full precision when the hardware is + in single precision mode. Of course this affects all code, + including application code, not just GMP. + +MS-DOS and MS Windows + On an MS-DOS system DJGPP can be used to build GMP, and on an MS + Windows system Cygwin, DJGPP and MINGW can be used. All three are + excellent ports of GCC and the various GNU tools. + + `http://www.cygwin.com/' + `http://www.delorie.com/djgpp/' + `http://www.mingw.org/' + + Microsoft also publishes an Interix "Services for Unix" which can + be used to build GMP on Windows (with a normal `./configure'), but + it's not free software. + +MS Windows DLLs + On systems `*-*-cygwin*', `*-*-mingw*' and `*-*-pw32*' by default + GMP builds only a static library, but a DLL can be built instead + using + + ./configure --disable-static --enable-shared + + Static and DLL libraries can't both be built, since certain export + directives in `gmp.h' must be different. + + A MINGW DLL build of GMP can be used with Microsoft C. Libtool + doesn't install a `.lib' format import library, but it can be + created with MS `lib' as follows, and copied to the install + directory. Similarly for `libmp' and `libgmpxx'. + + cd .libs + lib /def:libgmp-3.dll.def /out:libgmp-3.lib + + MINGW uses the C runtime library `msvcrt.dll' for I/O, so + applications wanting to use the GMP I/O routines must be compiled + with `cl /MD' to do the same. If one of the other C runtime + library choices provided by MS C is desired then the suggestion is + to use the GMP string functions and confine I/O to the application. + +Motorola 68k CPU Types + `m68k' is taken to mean 68000. `m68020' or higher will give a + performance boost on applicable CPUs. `m68360' can be used for + CPU32 series chips. `m68302' can be used for "Dragonball" series + chips, though this is merely a synonym for `m68000'. + +OpenBSD 2.6 + `m4' in this release of OpenBSD has a bug in `eval' that makes it + unsuitable for `.asm' file processing. `./configure' will detect + the problem and either abort or choose another m4 in the `PATH'. + The bug is fixed in OpenBSD 2.7, so either upgrade or use GNU m4. + +Power CPU Types + In GMP, CPU types `power*' and `powerpc*' will each use + instructions not available on the other, so it's important to + choose the right one for the CPU that will be used. Currently GMP + has no assembly code support for using just the common instruction + subset. To get executables that run on both, the current + suggestion is to use the generic C code (CPU `none'), possibly + with appropriate compiler options (like `-mcpu=common' for `gcc'). + CPU `rs6000' (which is not a CPU but a family of workstations) is + accepted by `config.sub', but is currently equivalent to `none'. + +Sparc CPU Types + `sparcv8' or `supersparc' on relevant systems will give a + significant performance increase over the V7 code selected by plain + `sparc'. + +Sparc App Regs + The GMP assembly code for both 32-bit and 64-bit Sparc clobbers the + "application registers" `g2', `g3' and `g4', the same way that the + GCC default `-mapp-regs' does (*note SPARC Options: (gcc)SPARC + Options.). + + This makes that code unsuitable for use with the special V9 + `-mcmodel=embmedany' (which uses `g4' as a data segment pointer), + and for applications wanting to use those registers for special + purposes. In these cases the only suggestion currently is to + build GMP with CPU `none' to avoid the assembly code. + +SunOS 4 + `/usr/bin/m4' lacks various features needed to process `.asm' + files, and instead `./configure' will automatically use + `/usr/5bin/m4', which we believe is always available (if not then + use GNU m4). + +x86 CPU Types + `i586', `pentium' or `pentiummmx' code is good for its intended P5 + Pentium chips, but quite slow when run on Intel P6 class chips + (PPro, P-II, P-III). `i386' is a better choice when making + binaries that must run on both. + +x86 MMX and SSE2 Code + If the CPU selected has MMX code but the assembler doesn't support + it, a warning is given and non-MMX code is used instead. This + will be an inferior build, since the MMX code that's present is + there because it's faster than the corresponding plain integer + code. The same applies to SSE2. + + Old versions of `gas' don't support MMX instructions, in particular + version 1.92.3 that comes with FreeBSD 2.2.8 or the more recent + OpenBSD 3.1 doesn't. + + Solaris 2.6 and 2.7 `as' generate incorrect object code for + register to register `movq' instructions, and so can't be used for + MMX code. Install a recent `gas' if MMX code is wanted on these + systems. + + +File: gmp.info, Node: Known Build Problems, Next: Performance optimization, Prev: Notes for Particular Systems, Up: Installing GMP + +2.5 Known Build Problems +======================== + +You might find more up-to-date information at `http://gmplib.org/'. + +Compiler link options + The version of libtool currently in use rather aggressively strips + compiler options when linking a shared library. This will + hopefully be relaxed in the future, but for now if this is a + problem the suggestion is to create a little script to hide them, + and for instance configure with + + ./configure CC=gcc-with-my-options + +DJGPP (`*-*-msdosdjgpp*') + The DJGPP port of `bash' 2.03 is unable to run the `configure' + script, it exits silently, having died writing a preamble to + `config.log'. Use `bash' 2.04 or higher. + + `make all' was found to run out of memory during the final + `libgmp.la' link on one system tested, despite having 64Mb + available. Running `make libgmp.la' directly helped, perhaps + recursing into the various subdirectories uses up memory. + +GNU binutils `strip' prior to 2.12 + `strip' from GNU binutils 2.11 and earlier should not be used on + the static libraries `libgmp.a' and `libmp.a' since it will + discard all but the last of multiple archive members with the same + name, like the three versions of `init.o' in `libgmp.a'. Binutils + 2.12 or higher can be used successfully. + + The shared libraries `libgmp.so' and `libmp.so' are not affected by + this and any version of `strip' can be used on them. + +`make' syntax error + On certain versions of SCO OpenServer 5 and IRIX 6.5 the native + `make' is unable to handle the long dependencies list for + `libgmp.la'. The symptom is a "syntax error" on the following + line of the top-level `Makefile'. + + libgmp.la: $(libgmp_la_OBJECTS) $(libgmp_la_DEPENDENCIES) + + Either use GNU Make, or as a workaround remove + `$(libgmp_la_DEPENDENCIES)' from that line (which will make the + initial build work, but if any recompiling is done `libgmp.la' + might not be rebuilt). + +MacOS X (`*-*-darwin*') + Libtool currently only knows how to create shared libraries on + MacOS X using the native `cc' (which is a modified GCC), not a + plain GCC. A static-only build should work though + (`--disable-shared'). + +NeXT prior to 3.3 + The system compiler on old versions of NeXT was a massacred and + old GCC, even if it called itself `cc'. This compiler cannot be + used to build GMP, you need to get a real GCC, and install that. + (NeXT may have fixed this in release 3.3 of their system.) + +POWER and PowerPC + Bugs in GCC 2.7.2 (and 2.6.3) mean it can't be used to compile GMP + on POWER or PowerPC. If you want to use GCC for these machines, + get GCC 2.7.2.1 (or later). + +Sequent Symmetry + Use the GNU assembler instead of the system assembler, since the + latter has serious bugs. + +Solaris 2.6 + The system `sed' prints an error "Output line too long" when + libtool builds `libgmp.la'. This doesn't seem to cause any + obvious ill effects, but GNU `sed' is recommended, to avoid any + doubt. + +Sparc Solaris 2.7 with gcc 2.95.2 in `ABI=32' + A shared library build of GMP seems to fail in this combination, + it builds but then fails the tests, apparently due to some + incorrect data relocations within `gmp_randinit_lc_2exp_size'. + The exact cause is unknown, `--disable-shared' is recommended. + + +File: gmp.info, Node: Performance optimization, Prev: Known Build Problems, Up: Installing GMP + +2.6 Performance optimization +============================ + +For optimal performance, build GMP for the exact CPU type of the target +computer, see *Note Build Options::. + + Unlike what is the case for most other programs, the compiler +typically doesn't matter much, since GMP uses assembly language for the +most critical operation. + + In particular for long-running GMP applications, and applications +demanding extremely large numbers, building and running the `tuneup' +program in the `tune' subdirectory, can be important. For example, + + cd tune + make tuneup + ./tuneup + + will generate better contents for the `gmp-mparam.h' parameter file. + + To use the results, put the output in the file file indicated in the +`Parameters for ...' header. Then recompile from scratch. + + The `tuneup' program takes one useful parameter, `-f NNN', which +instructs the program how long to check FFT multiply parameters. If +you're going to use GMP for extremely large numbers, you may want to +run `tuneup' with a large NNN value. + + +File: gmp.info, Node: GMP Basics, Next: Reporting Bugs, Prev: Installing GMP, Up: Top + +3 GMP Basics +************ + +*Using functions, macros, data types, etc. not documented in this +manual is strongly discouraged. If you do so your application is +guaranteed to be incompatible with future versions of GMP.* + +* Menu: + +* Headers and Libraries:: +* Nomenclature and Types:: +* Function Classes:: +* Variable Conventions:: +* Parameter Conventions:: +* Memory Management:: +* Reentrancy:: +* Useful Macros and Constants:: +* Compatibility with older versions:: +* Demonstration Programs:: +* Efficiency:: +* Debugging:: +* Profiling:: +* Autoconf:: +* Emacs:: + + +File: gmp.info, Node: Headers and Libraries, Next: Nomenclature and Types, Prev: GMP Basics, Up: GMP Basics + +3.1 Headers and Libraries +========================= + +All declarations needed to use GMP are collected in the include file +`gmp.h'. It is designed to work with both C and C++ compilers. + + #include + + Note however that prototypes for GMP functions with `FILE *' +parameters are only provided if `' is included too. + + #include + #include + + Likewise `' (or `') is required for prototypes +with `va_list' parameters, such as `gmp_vprintf'. And `' +for prototypes with `struct obstack' parameters, such as +`gmp_obstack_printf', when available. + + All programs using GMP must link against the `libgmp' library. On a +typical Unix-like system this can be done with `-lgmp', for example + + gcc myprogram.c -lgmp + + GMP C++ functions are in a separate `libgmpxx' library. This is +built and installed if C++ support has been enabled (*note Build +Options::). For example, + + g++ mycxxprog.cc -lgmpxx -lgmp + + GMP is built using Libtool and an application can use that to link +if desired, *note GNU Libtool: (libtool)Top. + + If GMP has been installed to a non-standard location then it may be +necessary to use `-I' and `-L' compiler options to point to the right +directories, and some sort of run-time path for a shared library. + + +File: gmp.info, Node: Nomenclature and Types, Next: Function Classes, Prev: Headers and Libraries, Up: GMP Basics + +3.2 Nomenclature and Types +========================== + +In this manual, "integer" usually means a multiple precision integer, as +defined by the GMP library. The C data type for such integers is +`mpz_t'. Here are some examples of how to declare such integers: + + mpz_t sum; + + struct foo { mpz_t x, y; }; + + mpz_t vec[20]; + + "Rational number" means a multiple precision fraction. The C data +type for these fractions is `mpq_t'. For example: + + mpq_t quotient; + + "Floating point number" or "Float" for short, is an arbitrary +precision mantissa with a limited precision exponent. The C data type +for such objects is `mpf_t'. For example: + + mpf_t fp; + + The floating point functions accept and return exponents in the C +type `mp_exp_t'. Currently this is usually a `long', but on some +systems it's an `int' for efficiency. + + A "limb" means the part of a multi-precision number that fits in a +single machine word. (We chose this word because a limb of the human +body is analogous to a digit, only larger, and containing several +digits.) Normally a limb is 32 or 64 bits. The C data type for a limb +is `mp_limb_t'. + + Counts of limbs of a multi-precision number represented in the C type +`mp_size_t'. Currently this is normally a `long', but on some systems +it's an `int' for efficiency, and on some systems it will be `long +long' in the future. + + Counts of bits of a multi-precision number are represented in the C +type `mp_bitcnt_t'. Currently this is always an `unsigned long', but on +some systems it will be an `unsigned long long' in the future . + + "Random state" means an algorithm selection and current state data. +The C data type for such objects is `gmp_randstate_t'. For example: + + gmp_randstate_t rstate; + + Also, in general `mp_bitcnt_t' is used for bit counts and ranges, and +`size_t' is used for byte or character counts. + + +File: gmp.info, Node: Function Classes, Next: Variable Conventions, Prev: Nomenclature and Types, Up: GMP Basics + +3.3 Function Classes +==================== + +There are six classes of functions in the GMP library: + + 1. Functions for signed integer arithmetic, with names beginning with + `mpz_'. The associated type is `mpz_t'. There are about 150 + functions in this class. (*note Integer Functions::) + + 2. Functions for rational number arithmetic, with names beginning with + `mpq_'. The associated type is `mpq_t'. There are about 40 + functions in this class, but the integer functions can be used for + arithmetic on the numerator and denominator separately. (*note + Rational Number Functions::) + + 3. Functions for floating-point arithmetic, with names beginning with + `mpf_'. The associated type is `mpf_t'. There are about 60 + functions is this class. (*note Floating-point Functions::) + + 4. Functions compatible with Berkeley MP, such as `itom', `madd', and + `mult'. The associated type is `MINT'. (*note BSD Compatible + Functions::) + + 5. Fast low-level functions that operate on natural numbers. These + are used by the functions in the preceding groups, and you can + also call them directly from very time-critical user programs. + These functions' names begin with `mpn_'. The associated type is + array of `mp_limb_t'. There are about 30 (hard-to-use) functions + in this class. (*note Low-level Functions::) + + 6. Miscellaneous functions. Functions for setting up custom + allocation and functions for generating random numbers. (*note + Custom Allocation::, and *note Random Number Functions::) + + +File: gmp.info, Node: Variable Conventions, Next: Parameter Conventions, Prev: Function Classes, Up: GMP Basics + +3.4 Variable Conventions +======================== + +GMP functions generally have output arguments before input arguments. +This notation is by analogy with the assignment operator. The BSD MP +compatibility functions are exceptions, having the output arguments +last. + + GMP lets you use the same variable for both input and output in one +call. For example, the main function for integer multiplication, +`mpz_mul', can be used to square `x' and put the result back in `x' with + + mpz_mul (x, x, x); + + Before you can assign to a GMP variable, you need to initialize it +by calling one of the special initialization functions. When you're +done with a variable, you need to clear it out, using one of the +functions for that purpose. Which function to use depends on the type +of variable. See the chapters on integer functions, rational number +functions, and floating-point functions for details. + + A variable should only be initialized once, or at least cleared +between each initialization. After a variable has been initialized, it +may be assigned to any number of times. + + For efficiency reasons, avoid excessive initializing and clearing. +In general, initialize near the start of a function and clear near the +end. For example, + + void + foo (void) + { + mpz_t n; + int i; + mpz_init (n); + for (i = 1; i < 100; i++) + { + mpz_mul (n, ...); + mpz_fdiv_q (n, ...); + ... + } + mpz_clear (n); + } + + +File: gmp.info, Node: Parameter Conventions, Next: Memory Management, Prev: Variable Conventions, Up: GMP Basics + +3.5 Parameter Conventions +========================= + +When a GMP variable is used as a function parameter, it's effectively a +call-by-reference, meaning if the function stores a value there it will +change the original in the caller. Parameters which are input-only can +be designated `const' to provoke a compiler error or warning on +attempting to modify them. + + When a function is going to return a GMP result, it should designate +a parameter that it sets, like the library functions do. More than one +value can be returned by having more than one output parameter, again +like the library functions. A `return' of an `mpz_t' etc doesn't +return the object, only a pointer, and this is almost certainly not +what's wanted. + + Here's an example accepting an `mpz_t' parameter, doing a +calculation, and storing the result to the indicated parameter. + + void + foo (mpz_t result, const mpz_t param, unsigned long n) + { + unsigned long i; + mpz_mul_ui (result, param, n); + for (i = 1; i < n; i++) + mpz_add_ui (result, result, i*7); + } + + int + main (void) + { + mpz_t r, n; + mpz_init (r); + mpz_init_set_str (n, "123456", 0); + foo (r, n, 20L); + gmp_printf ("%Zd\n", r); + return 0; + } + + `foo' works even if the mainline passes the same variable for +`param' and `result', just like the library functions. But sometimes +it's tricky to make that work, and an application might not want to +bother supporting that sort of thing. + + For interest, the GMP types `mpz_t' etc are implemented as +one-element arrays of certain structures. This is why declaring a +variable creates an object with the fields GMP needs, but then using it +as a parameter passes a pointer to the object. Note that the actual +fields in each `mpz_t' etc are for internal use only and should not be +accessed directly by code that expects to be compatible with future GMP +releases. + + +File: gmp.info, Node: Memory Management, Next: Reentrancy, Prev: Parameter Conventions, Up: GMP Basics + +3.6 Memory Management +===================== + +The GMP types like `mpz_t' are small, containing only a couple of sizes, +and pointers to allocated data. Once a variable is initialized, GMP +takes care of all space allocation. Additional space is allocated +whenever a variable doesn't have enough. + + `mpz_t' and `mpq_t' variables never reduce their allocated space. +Normally this is the best policy, since it avoids frequent reallocation. +Applications that need to return memory to the heap at some particular +point can use `mpz_realloc2', or clear variables no longer needed. + + `mpf_t' variables, in the current implementation, use a fixed amount +of space, determined by the chosen precision and allocated at +initialization, so their size doesn't change. + + All memory is allocated using `malloc' and friends by default, but +this can be changed, see *Note Custom Allocation::. Temporary memory +on the stack is also used (via `alloca'), but this can be changed at +build-time if desired, see *Note Build Options::. + + +File: gmp.info, Node: Reentrancy, Next: Useful Macros and Constants, Prev: Memory Management, Up: GMP Basics + +3.7 Reentrancy +============== + +GMP is reentrant and thread-safe, with some exceptions: + + * If configured with `--enable-alloca=malloc-notreentrant' (or with + `--enable-alloca=notreentrant' when `alloca' is not available), + then naturally GMP is not reentrant. + + * `mpf_set_default_prec' and `mpf_init' use a global variable for the + selected precision. `mpf_init2' can be used instead, and in the + C++ interface an explicit precision to the `mpf_class' constructor. + + * `mpz_random' and the other old random number functions use a global + random state and are hence not reentrant. The newer random number + functions that accept a `gmp_randstate_t' parameter can be used + instead. + + * `gmp_randinit' (obsolete) returns an error indication through a + global variable, which is not thread safe. Applications are + advised to use `gmp_randinit_default' or `gmp_randinit_lc_2exp' + instead. + + * `mp_set_memory_functions' uses global variables to store the + selected memory allocation functions. + + * If the memory allocation functions set by a call to + `mp_set_memory_functions' (or `malloc' and friends by default) are + not reentrant, then GMP will not be reentrant either. + + * If the standard I/O functions such as `fwrite' are not reentrant + then the GMP I/O functions using them will not be reentrant either. + + * It's safe for two threads to read from the same GMP variable + simultaneously, but it's not safe for one to read while the + another might be writing, nor for two threads to write + simultaneously. It's not safe for two threads to generate a + random number from the same `gmp_randstate_t' simultaneously, + since this involves an update of that variable. + + +File: gmp.info, Node: Useful Macros and Constants, Next: Compatibility with older versions, Prev: Reentrancy, Up: GMP Basics + +3.8 Useful Macros and Constants +=============================== + + -- Global Constant: const int mp_bits_per_limb + The number of bits per limb. + + -- Macro: __GNU_MP_VERSION + -- Macro: __GNU_MP_VERSION_MINOR + -- Macro: __GNU_MP_VERSION_PATCHLEVEL + The major and minor GMP version, and patch level, respectively, as + integers. For GMP i.j, these numbers will be i, j, and 0, + respectively. For GMP i.j.k, these numbers will be i, j, and k, + respectively. + + -- Global Constant: const char * const gmp_version + The GMP version number, as a null-terminated string, in the form + "i.j.k". This release is "5.0.1". Note that the format "i.j" was + used when k was zero was used before version 4.3.0. + + -- Macro: __GMP_CC + -- Macro: __GMP_CFLAGS + The compiler and compiler flags, respectively, used when compiling + GMP, as strings. + + +File: gmp.info, Node: Compatibility with older versions, Next: Demonstration Programs, Prev: Useful Macros and Constants, Up: GMP Basics + +3.9 Compatibility with older versions +===================================== + +This version of GMP is upwardly binary compatible with all 4.x and 3.x +versions, and upwardly compatible at the source level with all 2.x +versions, with the following exceptions. + + * `mpn_gcd' had its source arguments swapped as of GMP 3.0, for + consistency with other `mpn' functions. + + * `mpf_get_prec' counted precision slightly differently in GMP 3.0 + and 3.0.1, but in 3.1 reverted to the 2.x style. + + There are a number of compatibility issues between GMP 1 and GMP 2 +that of course also apply when porting applications from GMP 1 to GMP +4. Please see the GMP 2 manual for details. + + The Berkeley MP compatibility library (*note BSD Compatible +Functions::) is source and binary compatible with the standard `libmp'. + + +File: gmp.info, Node: Demonstration Programs, Next: Efficiency, Prev: Compatibility with older versions, Up: GMP Basics + +3.10 Demonstration programs +=========================== + +The `demos' subdirectory has some sample programs using GMP. These +aren't built or installed, but there's a `Makefile' with rules for them. +For instance, + + make pexpr + ./pexpr 68^975+10 + +The following programs are provided + + * `pexpr' is an expression evaluator, the program used on the GMP + web page. + + * The `calc' subdirectory has a similar but simpler evaluator using + `lex' and `yacc'. + + * The `expr' subdirectory is yet another expression evaluator, a + library designed for ease of use within a C program. See + `demos/expr/README' for more information. + + * `factorize' is a Pollard-Rho factorization program. + + * `isprime' is a command-line interface to the `mpz_probab_prime_p' + function. + + * `primes' counts or lists primes in an interval, using a sieve. + + * `qcn' is an example use of `mpz_kronecker_ui' to estimate quadratic + class numbers. + + * The `perl' subdirectory is a comprehensive perl interface to GMP. + See `demos/perl/INSTALL' for more information. Documentation is + in POD format in `demos/perl/GMP.pm'. + + As an aside, consideration has been given at various times to some +sort of expression evaluation within the main GMP library. Going +beyond something minimal quickly leads to matters like user-defined +functions, looping, fixnums for control variables, etc, which are +considered outside the scope of GMP (much closer to language +interpreters or compilers, *Note Language Bindings::.) Something +simple for program input convenience may yet be a possibility, a +combination of the `expr' demo and the `pexpr' tree back-end perhaps. +But for now the above evaluators are offered as illustrations. + + +File: gmp.info, Node: Efficiency, Next: Debugging, Prev: Demonstration Programs, Up: GMP Basics + +3.11 Efficiency +=============== + +Small Operands + On small operands, the time for function call overheads and memory + allocation can be significant in comparison to actual calculation. + This is unavoidable in a general purpose variable precision + library, although GMP attempts to be as efficient as it can on + both large and small operands. + +Static Linking + On some CPUs, in particular the x86s, the static `libgmp.a' should + be used for maximum speed, since the PIC code in the shared + `libgmp.so' will have a small overhead on each function call and + global data address. For many programs this will be + insignificant, but for long calculations there's a gain to be had. + +Initializing and Clearing + Avoid excessive initializing and clearing of variables, since this + can be quite time consuming, especially in comparison to otherwise + fast operations like addition. + + A language interpreter might want to keep a free list or stack of + initialized variables ready for use. It should be possible to + integrate something like that with a garbage collector too. + +Reallocations + An `mpz_t' or `mpq_t' variable used to hold successively increasing + values will have its memory repeatedly `realloc'ed, which could be + quite slow or could fragment memory, depending on the C library. + If an application can estimate the final size then `mpz_init2' or + `mpz_realloc2' can be called to allocate the necessary space from + the beginning (*note Initializing Integers::). + + It doesn't matter if a size set with `mpz_init2' or `mpz_realloc2' + is too small, since all functions will do a further reallocation + if necessary. Badly overestimating memory required will waste + space though. + +`2exp' Functions + It's up to an application to call functions like `mpz_mul_2exp' + when appropriate. General purpose functions like `mpz_mul' make + no attempt to identify powers of two or other special forms, + because such inputs will usually be very rare and testing every + time would be wasteful. + +`ui' and `si' Functions + The `ui' functions and the small number of `si' functions exist for + convenience and should be used where applicable. But if for + example an `mpz_t' contains a value that fits in an `unsigned + long' there's no need extract it and call a `ui' function, just + use the regular `mpz' function. + +In-Place Operations + `mpz_abs', `mpq_abs', `mpf_abs', `mpz_neg', `mpq_neg' and + `mpf_neg' are fast when used for in-place operations like + `mpz_abs(x,x)', since in the current implementation only a single + field of `x' needs changing. On suitable compilers (GCC for + instance) this is inlined too. + + `mpz_add_ui', `mpz_sub_ui', `mpf_add_ui' and `mpf_sub_ui' benefit + from an in-place operation like `mpz_add_ui(x,x,y)', since usually + only one or two limbs of `x' will need to be changed. The same + applies to the full precision `mpz_add' etc if `y' is small. If + `y' is big then cache locality may be helped, but that's all. + + `mpz_mul' is currently the opposite, a separate destination is + slightly better. A call like `mpz_mul(x,x,y)' will, unless `y' is + only one limb, make a temporary copy of `x' before forming the + result. Normally that copying will only be a tiny fraction of the + time for the multiply, so this is not a particularly important + consideration. + + `mpz_set', `mpq_set', `mpq_set_num', `mpf_set', etc, make no + attempt to recognise a copy of something to itself, so a call like + `mpz_set(x,x)' will be wasteful. Naturally that would never be + written deliberately, but if it might arise from two pointers to + the same object then a test to avoid it might be desirable. + + if (x != y) + mpz_set (x, y); + + Note that it's never worth introducing extra `mpz_set' calls just + to get in-place operations. If a result should go to a particular + variable then just direct it there and let GMP take care of data + movement. + +Divisibility Testing (Small Integers) + `mpz_divisible_ui_p' and `mpz_congruent_ui_p' are the best + functions for testing whether an `mpz_t' is divisible by an + individual small integer. They use an algorithm which is faster + than `mpz_tdiv_ui', but which gives no useful information about + the actual remainder, only whether it's zero (or a particular + value). + + However when testing divisibility by several small integers, it's + best to take a remainder modulo their product, to save + multi-precision operations. For instance to test whether a number + is divisible by any of 23, 29 or 31 take a remainder modulo + 23*29*31 = 20677 and then test that. + + The division functions like `mpz_tdiv_q_ui' which give a quotient + as well as a remainder are generally a little slower than the + remainder-only functions like `mpz_tdiv_ui'. If the quotient is + only rarely wanted then it's probably best to just take a + remainder and then go back and calculate the quotient if and when + it's wanted (`mpz_divexact_ui' can be used if the remainder is + zero). + +Rational Arithmetic + The `mpq' functions operate on `mpq_t' values with no common + factors in the numerator and denominator. Common factors are + checked-for and cast out as necessary. In general, cancelling + factors every time is the best approach since it minimizes the + sizes for subsequent operations. + + However, applications that know something about the factorization + of the values they're working with might be able to avoid some of + the GCDs used for canonicalization, or swap them for divisions. + For example when multiplying by a prime it's enough to check for + factors of it in the denominator instead of doing a full GCD. Or + when forming a big product it might be known that very little + cancellation will be possible, and so canonicalization can be left + to the end. + + The `mpq_numref' and `mpq_denref' macros give access to the + numerator and denominator to do things outside the scope of the + supplied `mpq' functions. *Note Applying Integer Functions::. + + The canonical form for rationals allows mixed-type `mpq_t' and + integer additions or subtractions to be done directly with + multiples of the denominator. This will be somewhat faster than + `mpq_add'. For example, + + /* mpq increment */ + mpz_add (mpq_numref(q), mpq_numref(q), mpq_denref(q)); + + /* mpq += unsigned long */ + mpz_addmul_ui (mpq_numref(q), mpq_denref(q), 123UL); + + /* mpq -= mpz */ + mpz_submul (mpq_numref(q), mpq_denref(q), z); + +Number Sequences + Functions like `mpz_fac_ui', `mpz_fib_ui' and `mpz_bin_uiui' are + designed for calculating isolated values. If a range of values is + wanted it's probably best to call to get a starting point and + iterate from there. + +Text Input/Output + Hexadecimal or octal are suggested for input or output in text + form. Power-of-2 bases like these can be converted much more + efficiently than other bases, like decimal. For big numbers + there's usually nothing of particular interest to be seen in the + digits, so the base doesn't matter much. + + Maybe we can hope octal will one day become the normal base for + everyday use, as proposed by King Charles XII of Sweden and later + reformers. + + +File: gmp.info, Node: Debugging, Next: Profiling, Prev: Efficiency, Up: GMP Basics + +3.12 Debugging +============== + +Stack Overflow + Depending on the system, a segmentation violation or bus error + might be the only indication of stack overflow. See + `--enable-alloca' choices in *Note Build Options::, for how to + address this. + + In new enough versions of GCC, `-fstack-check' may be able to + ensure an overflow is recognised by the system before too much + damage is done, or `-fstack-limit-symbol' or + `-fstack-limit-register' may be able to add checking if the system + itself doesn't do any (*note Options for Code Generation: + (gcc)Code Gen Options.). These options must be added to the + `CFLAGS' used in the GMP build (*note Build Options::), adding + them just to an application will have no effect. Note also + they're a slowdown, adding overhead to each function call and each + stack allocation. + +Heap Problems + The most likely cause of application problems with GMP is heap + corruption. Failing to `init' GMP variables will have + unpredictable effects, and corruption arising elsewhere in a + program may well affect GMP. Initializing GMP variables more than + once or failing to clear them will cause memory leaks. + + In all such cases a `malloc' debugger is recommended. On a GNU or + BSD system the standard C library `malloc' has some diagnostic + facilities, see *Note Allocation Debugging: (libc)Allocation + Debugging, or `man 3 malloc'. Other possibilities, in no + particular order, include + + `http://www.inf.ethz.ch/personal/biere/projects/ccmalloc/' + `http://dmalloc.com/' + `http://www.perens.com/FreeSoftware/' (electric fence) + `http://packages.debian.org/stable/devel/fda' + `http://www.gnupdate.org/components/leakbug/' + `http://people.redhat.com/~otaylor/memprof/' + `http://www.cbmamiga.demon.co.uk/mpatrol/' + + The GMP default allocation routines in `memory.c' also have a + simple sentinel scheme which can be enabled with `#define DEBUG' + in that file. This is mainly designed for detecting buffer + overruns during GMP development, but might find other uses. + +Stack Backtraces + On some systems the compiler options GMP uses by default can + interfere with debugging. In particular on x86 and 68k systems + `-fomit-frame-pointer' is used and this generally inhibits stack + backtracing. Recompiling without such options may help while + debugging, though the usual caveats about it potentially moving a + memory problem or hiding a compiler bug will apply. + +GDB, the GNU Debugger + A sample `.gdbinit' is included in the distribution, showing how + to call some undocumented dump functions to print GMP variables + from within GDB. Note that these functions shouldn't be used in + final application code since they're undocumented and may be + subject to incompatible changes in future versions of GMP. + +Source File Paths + GMP has multiple source files with the same name, in different + directories. For example `mpz', `mpq' and `mpf' each have an + `init.c'. If the debugger can't already determine the right one + it may help to build with absolute paths on each C file. One way + to do that is to use a separate object directory with an absolute + path to the source directory. + + cd /my/build/dir + /my/source/dir/gmp-5.0.1/configure + + This works via `VPATH', and might require GNU `make'. Alternately + it might be possible to change the `.c.lo' rules appropriately. + +Assertion Checking + The build option `--enable-assert' is available to add some + consistency checks to the library (see *Note Build Options::). + These are likely to be of limited value to most applications. + Assertion failures are just as likely to indicate memory + corruption as a library or compiler bug. + + Applications using the low-level `mpn' functions, however, will + benefit from `--enable-assert' since it adds checks on the + parameters of most such functions, many of which have subtle + restrictions on their usage. Note however that only the generic C + code has checks, not the assembly code, so CPU `none' should be + used for maximum checking. + +Temporary Memory Checking + The build option `--enable-alloca=debug' arranges that each block + of temporary memory in GMP is allocated with a separate call to + `malloc' (or the allocation function set with + `mp_set_memory_functions'). + + This can help a malloc debugger detect accesses outside the + intended bounds, or detect memory not released. In a normal + build, on the other hand, temporary memory is allocated in blocks + which GMP divides up for its own use, or may be allocated with a + compiler builtin `alloca' which will go nowhere near any malloc + debugger hooks. + +Maximum Debuggability + To summarize the above, a GMP build for maximum debuggability + would be + + ./configure --disable-shared --enable-assert \ + --enable-alloca=debug --host=none CFLAGS=-g + + For C++, add `--enable-cxx CXXFLAGS=-g'. + +Checker + The GCC checker (`http://savannah.nongnu.org/projects/checker/') + can be used with GMP. It contains a stub library which means GMP + applications compiled with checker can use a normal GMP build. + + A build of GMP with checking within GMP itself can be made. This + will run very very slowly. On GNU/Linux for example, + + ./configure --host=none-pc-linux-gnu CC=checkergcc + + `--host=none' must be used, since the GMP assembly code doesn't + support the checking scheme. The GMP C++ features cannot be used, + since current versions of checker (0.9.9.1) don't yet support the + standard C++ library. + +Valgrind + The valgrind program (`http://valgrind.org/') is a memory checker + for x86s. It translates and emulates machine instructions to do + strong checks for uninitialized data (at the level of individual + bits), memory accesses through bad pointers, and memory leaks. + + Recent versions of Valgrind are getting support for MMX and + SSE/SSE2 instructions, for past versions GMP will need to be + configured not to use those, ie. for an x86 without them (for + instance plain `i486'). + +Other Problems + Any suspected bug in GMP itself should be isolated to make sure + it's not an application problem, see *Note Reporting Bugs::. + + +File: gmp.info, Node: Profiling, Next: Autoconf, Prev: Debugging, Up: GMP Basics + +3.13 Profiling +============== + +Running a program under a profiler is a good way to find where it's +spending most time and where improvements can be best sought. The +profiling choices for a GMP build are as follows. + +`--disable-profiling' + The default is to add nothing special for profiling. + + It should be possible to just compile the mainline of a program + with `-p' and use `prof' to get a profile consisting of + timer-based sampling of the program counter. Most of the GMP + assembly code has the necessary symbol information. + + This approach has the advantage of minimizing interference with + normal program operation, but on most systems the resolution of + the sampling is quite low (10 milliseconds for instance), + requiring long runs to get accurate information. + +`--enable-profiling=prof' + Build with support for the system `prof', which means `-p' added + to the `CFLAGS'. + + This provides call counting in addition to program counter + sampling, which allows the most frequently called routines to be + identified, and an average time spent in each routine to be + determined. + + The x86 assembly code has support for this option, but on other + processors the assembly routines will be as if compiled without + `-p' and therefore won't appear in the call counts. + + On some systems, such as GNU/Linux, `-p' in fact means `-pg' and in + this case `--enable-profiling=gprof' described below should be used + instead. + +`--enable-profiling=gprof' + Build with support for `gprof', which means `-pg' added to the + `CFLAGS'. + + This provides call graph construction in addition to call counting + and program counter sampling, which makes it possible to count + calls coming from different locations. For example the number of + calls to `mpn_mul' from `mpz_mul' versus the number from + `mpf_mul'. The program counter sampling is still flat though, so + only a total time in `mpn_mul' would be accumulated, not a + separate amount for each call site. + + The x86 assembly code has support for this option, but on other + processors the assembly routines will be as if compiled without + `-pg' and therefore not be included in the call counts. + + On x86 and m68k systems `-pg' and `-fomit-frame-pointer' are + incompatible, so the latter is omitted from the default flags in + that case, which might result in poorer code generation. + + Incidentally, it should be possible to use the `gprof' program + with a plain `--enable-profiling=prof' build. But in that case + only the `gprof -p' flat profile and call counts can be expected + to be valid, not the `gprof -q' call graph. + +`--enable-profiling=instrument' + Build with the GCC option `-finstrument-functions' added to the + `CFLAGS' (*note Options for Code Generation: (gcc)Code Gen + Options.). + + This inserts special instrumenting calls at the start and end of + each function, allowing exact timing and full call graph + construction. + + This instrumenting is not normally a standard system feature and + will require support from an external library, such as + + `http://sourceforge.net/projects/fnccheck/' + + This should be included in `LIBS' during the GMP configure so that + test programs will link. For example, + + ./configure --enable-profiling=instrument LIBS=-lfc + + On a GNU system the C library provides dummy instrumenting + functions, so programs compiled with this option will link. In + this case it's only necessary to ensure the correct library is + added when linking an application. + + The x86 assembly code supports this option, but on other + processors the assembly routines will be as if compiled without + `-finstrument-functions' meaning time spent in them will + effectively be attributed to their caller. + + +File: gmp.info, Node: Autoconf, Next: Emacs, Prev: Profiling, Up: GMP Basics + +3.14 Autoconf +============= + +Autoconf based applications can easily check whether GMP is installed. +The only thing to be noted is that GMP library symbols from version 3 +onwards have prefixes like `__gmpz'. The following therefore would be +a simple test, + + AC_CHECK_LIB(gmp, __gmpz_init) + + This just uses the default `AC_CHECK_LIB' actions for found or not +found, but an application that must have GMP would want to generate an +error if not found. For example, + + AC_CHECK_LIB(gmp, __gmpz_init, , + [AC_MSG_ERROR([GNU MP not found, see http://gmplib.org/])]) + + If functions added in some particular version of GMP are required, +then one of those can be used when checking. For example `mpz_mul_si' +was added in GMP 3.1, + + AC_CHECK_LIB(gmp, __gmpz_mul_si, , + [AC_MSG_ERROR( + [GNU MP not found, or not 3.1 or up, see http://gmplib.org/])]) + + An alternative would be to test the version number in `gmp.h' using +say `AC_EGREP_CPP'. That would make it possible to test the exact +version, if some particular sub-minor release is known to be necessary. + + In general it's recommended that applications should simply demand a +new enough GMP rather than trying to provide supplements for features +not available in past versions. + + Occasionally an application will need or want to know the size of a +type at configuration or preprocessing time, not just with `sizeof' in +the code. This can be done in the normal way with `mp_limb_t' etc, but +GMP 4.0 or up is best for this, since prior versions needed certain +`-D' defines on systems using a `long long' limb. The following would +suit Autoconf 2.50 or up, + + AC_CHECK_SIZEOF(mp_limb_t, , [#include ]) + + +File: gmp.info, Node: Emacs, Prev: Autoconf, Up: GMP Basics + +3.15 Emacs +========== + + (`info-lookup-symbol') is a good way to find documentation on +C functions while editing (*note Info Documentation Lookup: (emacs)Info +Lookup.). + + The GMP manual can be included in such lookups by putting the +following in your `.emacs', + + (eval-after-load "info-look" + '(let ((mode-value (assoc 'c-mode (assoc 'symbol info-lookup-alist)))) + (setcar (nthcdr 3 mode-value) + (cons '("(gmp)Function Index" nil "^ -.* " "\\>") + (nth 3 mode-value))))) + + +File: gmp.info, Node: Reporting Bugs, Next: Integer Functions, Prev: GMP Basics, Up: Top + +4 Reporting Bugs +**************** + +If you think you have found a bug in the GMP library, please +investigate it and report it. We have made this library available to +you, and it is not too much to ask you to report the bugs you find. + + Before you report a bug, check it's not already addressed in *Note +Known Build Problems::, or perhaps *Note Notes for Particular +Systems::. You may also want to check `http://gmplib.org/' for patches +for this release. + + Please include the following in any report, + + * The GMP version number, and if pre-packaged or patched then say so. + + * A test program that makes it possible for us to reproduce the bug. + Include instructions on how to run the program. + + * A description of what is wrong. If the results are incorrect, in + what way. If you get a crash, say so. + + * If you get a crash, include a stack backtrace from the debugger if + it's informative (`where' in `gdb', or `$C' in `adb'). + + * Please do not send core dumps, executables or `strace's. + + * The configuration options you used when building GMP, if any. + + * The name of the compiler and its version. For `gcc', get the + version with `gcc -v', otherwise perhaps `what `which cc`', or + similar. + + * The output from running `uname -a'. + + * The output from running `./config.guess', and from running + `./configfsf.guess' (might be the same). + + * If the bug is related to `configure', then the compressed contents + of `config.log'. + + * If the bug is related to an `asm' file not assembling, then the + contents of `config.m4' and the offending line or lines from the + temporary `mpn/tmp-.s'. + + Please make an effort to produce a self-contained report, with +something definite that can be tested or debugged. Vague queries or +piecemeal messages are difficult to act on and don't help the +development effort. + + It is not uncommon that an observed problem is actually due to a bug +in the compiler; the GMP code tends to explore interesting corners in +compilers. + + If your bug report is good, we will do our best to help you get a +corrected version of the library; if the bug report is poor, we won't +do anything about it (except maybe ask you to send a better report). + + Send your report to: . + + If you think something in this manual is unclear, or downright +incorrect, or if the language needs to be improved, please send a note +to the same address. + + +File: gmp.info, Node: Integer Functions, Next: Rational Number Functions, Prev: Reporting Bugs, Up: Top + +5 Integer Functions +******************* + +This chapter describes the GMP functions for performing integer +arithmetic. These functions start with the prefix `mpz_'. + + GMP integers are stored in objects of type `mpz_t'. + +* Menu: + +* Initializing Integers:: +* Assigning Integers:: +* Simultaneous Integer Init & Assign:: +* Converting Integers:: +* Integer Arithmetic:: +* Integer Division:: +* Integer Exponentiation:: +* Integer Roots:: +* Number Theoretic Functions:: +* Integer Comparisons:: +* Integer Logic and Bit Fiddling:: +* I/O of Integers:: +* Integer Random Numbers:: +* Integer Import and Export:: +* Miscellaneous Integer Functions:: +* Integer Special Functions:: + + +File: gmp.info, Node: Initializing Integers, Next: Assigning Integers, Prev: Integer Functions, Up: Integer Functions + +5.1 Initialization Functions +============================ + +The functions for integer arithmetic assume that all integer objects are +initialized. You do that by calling the function `mpz_init'. For +example, + + { + mpz_t integ; + mpz_init (integ); + ... + mpz_add (integ, ...); + ... + mpz_sub (integ, ...); + + /* Unless the program is about to exit, do ... */ + mpz_clear (integ); + } + + As you can see, you can store new values any number of times, once an +object is initialized. + + -- Function: void mpz_init (mpz_t X) + Initialize X, and set its value to 0. + + -- Function: void mpz_inits (mpz_t X, ...) + Initialize a NULL-terminated list of `mpz_t' variables, and set + their values to 0. + + -- Function: void mpz_init2 (mpz_t X, mp_bitcnt_t N) + Initialize X, with space for N-bit numbers, and set its value to 0. + Calling this function instead of `mpz_init' or `mpz_inits' is never + necessary; reallocation is handled automatically by GMP when + needed. + + N is only the initial space, X will grow automatically in the + normal way, if necessary, for subsequent values stored. + `mpz_init2' makes it possible to avoid such reallocations if a + maximum size is known in advance. + + -- Function: void mpz_clear (mpz_t X) + Free the space occupied by X. Call this function for all `mpz_t' + variables when you are done with them. + + -- Function: void mpz_clears (mpz_t X, ...) + Free the space occupied by a NULL-terminated list of `mpz_t' + variables. + + -- Function: void mpz_realloc2 (mpz_t X, mp_bitcnt_t N) + Change the space allocated for X to N bits. The value in X is + preserved if it fits, or is set to 0 if not. + + Calling this function is never necessary; reallocation is handled + automatically by GMP when needed. But this function can be used + to increase the space for a variable in order to avoid repeated + automatic reallocations, or to decrease it to give memory back to + the heap. + + +File: gmp.info, Node: Assigning Integers, Next: Simultaneous Integer Init & Assign, Prev: Initializing Integers, Up: Integer Functions + +5.2 Assignment Functions +======================== + +These functions assign new values to already initialized integers +(*note Initializing Integers::). + + -- Function: void mpz_set (mpz_t ROP, mpz_t OP) + -- Function: void mpz_set_ui (mpz_t ROP, unsigned long int OP) + -- Function: void mpz_set_si (mpz_t ROP, signed long int OP) + -- Function: void mpz_set_d (mpz_t ROP, double OP) + -- Function: void mpz_set_q (mpz_t ROP, mpq_t OP) + -- Function: void mpz_set_f (mpz_t ROP, mpf_t OP) + Set the value of ROP from OP. + + `mpz_set_d', `mpz_set_q' and `mpz_set_f' truncate OP to make it an + integer. + + -- Function: int mpz_set_str (mpz_t ROP, char *STR, int BASE) + Set the value of ROP from STR, a null-terminated C string in base + BASE. White space is allowed in the string, and is simply ignored. + + The BASE may vary from 2 to 62, or if BASE is 0, then the leading + characters are used: `0x' and `0X' for hexadecimal, `0b' and `0B' + for binary, `0' for octal, or decimal otherwise. + + For bases up to 36, case is ignored; upper-case and lower-case + letters have the same value. For bases 37 to 62, upper-case + letter represent the usual 10..35 while lower-case letter + represent 36..61. + + This function returns 0 if the entire string is a valid number in + base BASE. Otherwise it returns -1. + + -- Function: void mpz_swap (mpz_t ROP1, mpz_t ROP2) + Swap the values ROP1 and ROP2 efficiently. + + +File: gmp.info, Node: Simultaneous Integer Init & Assign, Next: Converting Integers, Prev: Assigning Integers, Up: Integer Functions + +5.3 Combined Initialization and Assignment Functions +==================================================== + +For convenience, GMP provides a parallel series of initialize-and-set +functions which initialize the output and then store the value there. +These functions' names have the form `mpz_init_set...' + + Here is an example of using one: + + { + mpz_t pie; + mpz_init_set_str (pie, "3141592653589793238462643383279502884", 10); + ... + mpz_sub (pie, ...); + ... + mpz_clear (pie); + } + +Once the integer has been initialized by any of the `mpz_init_set...' +functions, it can be used as the source or destination operand for the +ordinary integer functions. Don't use an initialize-and-set function +on a variable already initialized! + + -- Function: void mpz_init_set (mpz_t ROP, mpz_t OP) + -- Function: void mpz_init_set_ui (mpz_t ROP, unsigned long int OP) + -- Function: void mpz_init_set_si (mpz_t ROP, signed long int OP) + -- Function: void mpz_init_set_d (mpz_t ROP, double OP) + Initialize ROP with limb space and set the initial numeric value + from OP. + + -- Function: int mpz_init_set_str (mpz_t ROP, char *STR, int BASE) + Initialize ROP and set its value like `mpz_set_str' (see its + documentation above for details). + + If the string is a correct base BASE number, the function returns + 0; if an error occurs it returns -1. ROP is initialized even if + an error occurs. (I.e., you have to call `mpz_clear' for it.) + + +File: gmp.info, Node: Converting Integers, Next: Integer Arithmetic, Prev: Simultaneous Integer Init & Assign, Up: Integer Functions + +5.4 Conversion Functions +======================== + +This section describes functions for converting GMP integers to +standard C types. Functions for converting _to_ GMP integers are +described in *Note Assigning Integers:: and *Note I/O of Integers::. + + -- Function: unsigned long int mpz_get_ui (mpz_t OP) + Return the value of OP as an `unsigned long'. + + If OP is too big to fit an `unsigned long' then just the least + significant bits that do fit are returned. The sign of OP is + ignored, only the absolute value is used. + + -- Function: signed long int mpz_get_si (mpz_t OP) + If OP fits into a `signed long int' return the value of OP. + Otherwise return the least significant part of OP, with the same + sign as OP. + + If OP is too big to fit in a `signed long int', the returned + result is probably not very useful. To find out if the value will + fit, use the function `mpz_fits_slong_p'. + + -- Function: double mpz_get_d (mpz_t OP) + Convert OP to a `double', truncating if necessary (ie. rounding + towards zero). + + If the exponent from the conversion is too big, the result is + system dependent. An infinity is returned where available. A + hardware overflow trap may or may not occur. + + -- Function: double mpz_get_d_2exp (signed long int *EXP, mpz_t OP) + Convert OP to a `double', truncating if necessary (ie. rounding + towards zero), and returning the exponent separately. + + The return value is in the range 0.5<=abs(D)<1 and the exponent is + stored to `*EXP'. D * 2^EXP is the (truncated) OP value. If OP + is zero, the return is 0.0 and 0 is stored to `*EXP'. + + This is similar to the standard C `frexp' function (*note + Normalization Functions: (libc)Normalization Functions.). + + -- Function: char * mpz_get_str (char *STR, int BASE, mpz_t OP) + Convert OP to a string of digits in base BASE. The base argument + may vary from 2 to 62 or from -2 to -36. + + For BASE in the range 2..36, digits and lower-case letters are + used; for -2..-36, digits and upper-case letters are used; for + 37..62, digits, upper-case letters, and lower-case letters (in + that significance order) are used. + + If STR is `NULL', the result string is allocated using the current + allocation function (*note Custom Allocation::). The block will be + `strlen(str)+1' bytes, that being exactly enough for the string and + null-terminator. + + If STR is not `NULL', it should point to a block of storage large + enough for the result, that being `mpz_sizeinbase (OP, BASE) + 2'. + The two extra bytes are for a possible minus sign, and the + null-terminator. + + A pointer to the result string is returned, being either the + allocated block, or the given STR. + + +File: gmp.info, Node: Integer Arithmetic, Next: Integer Division, Prev: Converting Integers, Up: Integer Functions + +5.5 Arithmetic Functions +======================== + + -- Function: void mpz_add (mpz_t ROP, mpz_t OP1, mpz_t OP2) + -- Function: void mpz_add_ui (mpz_t ROP, mpz_t OP1, unsigned long int + OP2) + Set ROP to OP1 + OP2. + + -- Function: void mpz_sub (mpz_t ROP, mpz_t OP1, mpz_t OP2) + -- Function: void mpz_sub_ui (mpz_t ROP, mpz_t OP1, unsigned long int + OP2) + -- Function: void mpz_ui_sub (mpz_t ROP, unsigned long int OP1, mpz_t + OP2) + Set ROP to OP1 - OP2. + + -- Function: void mpz_mul (mpz_t ROP, mpz_t OP1, mpz_t OP2) + -- Function: void mpz_mul_si (mpz_t ROP, mpz_t OP1, long int OP2) + -- Function: void mpz_mul_ui (mpz_t ROP, mpz_t OP1, unsigned long int + OP2) + Set ROP to OP1 times OP2. + + -- Function: void mpz_addmul (mpz_t ROP, mpz_t OP1, mpz_t OP2) + -- Function: void mpz_addmul_ui (mpz_t ROP, mpz_t OP1, unsigned long + int OP2) + Set ROP to ROP + OP1 times OP2. + + -- Function: void mpz_submul (mpz_t ROP, mpz_t OP1, mpz_t OP2) + -- Function: void mpz_submul_ui (mpz_t ROP, mpz_t OP1, unsigned long + int OP2) + Set ROP to ROP - OP1 times OP2. + + -- Function: void mpz_mul_2exp (mpz_t ROP, mpz_t OP1, mp_bitcnt_t OP2) + Set ROP to OP1 times 2 raised to OP2. This operation can also be + defined as a left shift by OP2 bits. + + -- Function: void mpz_neg (mpz_t ROP, mpz_t OP) + Set ROP to -OP. + + -- Function: void mpz_abs (mpz_t ROP, mpz_t OP) + Set ROP to the absolute value of OP. + + +File: gmp.info, Node: Integer Division, Next: Integer Exponentiation, Prev: Integer Arithmetic, Up: Integer Functions + +5.6 Division Functions +====================== + +Division is undefined if the divisor is zero. Passing a zero divisor +to the division or modulo functions (including the modular powering +functions `mpz_powm' and `mpz_powm_ui'), will cause an intentional +division by zero. This lets a program handle arithmetic exceptions in +these functions the same way as for normal C `int' arithmetic. + + -- Function: void mpz_cdiv_q (mpz_t Q, mpz_t N, mpz_t D) + -- Function: void mpz_cdiv_r (mpz_t R, mpz_t N, mpz_t D) + -- Function: void mpz_cdiv_qr (mpz_t Q, mpz_t R, mpz_t N, mpz_t D) + -- Function: unsigned long int mpz_cdiv_q_ui (mpz_t Q, mpz_t N, + unsigned long int D) + -- Function: unsigned long int mpz_cdiv_r_ui (mpz_t R, mpz_t N, + unsigned long int D) + -- Function: unsigned long int mpz_cdiv_qr_ui (mpz_t Q, mpz_t R, + mpz_t N, unsigned long int D) + -- Function: unsigned long int mpz_cdiv_ui (mpz_t N, + unsigned long int D) + -- Function: void mpz_cdiv_q_2exp (mpz_t Q, mpz_t N, mp_bitcnt_t B) + -- Function: void mpz_cdiv_r_2exp (mpz_t R, mpz_t N, mp_bitcnt_t B) + + -- Function: void mpz_fdiv_q (mpz_t Q, mpz_t N, mpz_t D) + -- Function: void mpz_fdiv_r (mpz_t R, mpz_t N, mpz_t D) + -- Function: void mpz_fdiv_qr (mpz_t Q, mpz_t R, mpz_t N, mpz_t D) + -- Function: unsigned long int mpz_fdiv_q_ui (mpz_t Q, mpz_t N, + unsigned long int D) + -- Function: unsigned long int mpz_fdiv_r_ui (mpz_t R, mpz_t N, + unsigned long int D) + -- Function: unsigned long int mpz_fdiv_qr_ui (mpz_t Q, mpz_t R, + mpz_t N, unsigned long int D) + -- Function: unsigned long int mpz_fdiv_ui (mpz_t N, + unsigned long int D) + -- Function: void mpz_fdiv_q_2exp (mpz_t Q, mpz_t N, mp_bitcnt_t B) + -- Function: void mpz_fdiv_r_2exp (mpz_t R, mpz_t N, mp_bitcnt_t B) + + -- Function: void mpz_tdiv_q (mpz_t Q, mpz_t N, mpz_t D) + -- Function: void mpz_tdiv_r (mpz_t R, mpz_t N, mpz_t D) + -- Function: void mpz_tdiv_qr (mpz_t Q, mpz_t R, mpz_t N, mpz_t D) + -- Function: unsigned long int mpz_tdiv_q_ui (mpz_t Q, mpz_t N, + unsigned long int D) + -- Function: unsigned long int mpz_tdiv_r_ui (mpz_t R, mpz_t N, + unsigned long int D) + -- Function: unsigned long int mpz_tdiv_qr_ui (mpz_t Q, mpz_t R, + mpz_t N, unsigned long int D) + -- Function: unsigned long int mpz_tdiv_ui (mpz_t N, + unsigned long int D) + -- Function: void mpz_tdiv_q_2exp (mpz_t Q, mpz_t N, mp_bitcnt_t B) + -- Function: void mpz_tdiv_r_2exp (mpz_t R, mpz_t N, mp_bitcnt_t B) + + Divide N by D, forming a quotient Q and/or remainder R. For the + `2exp' functions, D=2^B. The rounding is in three styles, each + suiting different applications. + + * `cdiv' rounds Q up towards +infinity, and R will have the + opposite sign to D. The `c' stands for "ceil". + + * `fdiv' rounds Q down towards -infinity, and R will have the + same sign as D. The `f' stands for "floor". + + * `tdiv' rounds Q towards zero, and R will have the same sign + as N. The `t' stands for "truncate". + + In all cases Q and R will satisfy N=Q*D+R, and R will satisfy + 0<=abs(R) 0 and that MOD is odd. + + This function is designed to take the same time and have the same + cache access patterns for any two same-size arguments, assuming + that function arguments are placed at the same position and that + the machine state is identical upon function entry. This function + is intended for cryptographic purposes, where resilience to + side-channel attacks is desired. + + -- Function: void mpz_pow_ui (mpz_t ROP, mpz_t BASE, unsigned long int + EXP) + -- Function: void mpz_ui_pow_ui (mpz_t ROP, unsigned long int BASE, + unsigned long int EXP) + Set ROP to BASE raised to EXP. The case 0^0 yields 1. + + +File: gmp.info, Node: Integer Roots, Next: Number Theoretic Functions, Prev: Integer Exponentiation, Up: Integer Functions + +5.8 Root Extraction Functions +============================= + + -- Function: int mpz_root (mpz_t ROP, mpz_t OP, unsigned long int N) + Set ROP to the truncated integer part of the Nth root of OP. + Return non-zero if the computation was exact, i.e., if OP is ROP + to the Nth power. + + -- Function: void mpz_rootrem (mpz_t ROOT, mpz_t REM, mpz_t U, + unsigned long int N) + Set ROOT to the truncated integer part of the Nth root of U. Set + REM to the remainder, U-ROOT**N. + + -- Function: void mpz_sqrt (mpz_t ROP, mpz_t OP) + Set ROP to the truncated integer part of the square root of OP. + + -- Function: void mpz_sqrtrem (mpz_t ROP1, mpz_t ROP2, mpz_t OP) + Set ROP1 to the truncated integer part of the square root of OP, + like `mpz_sqrt'. Set ROP2 to the remainder OP-ROP1*ROP1, which + will be zero if OP is a perfect square. + + If ROP1 and ROP2 are the same variable, the results are undefined. + + -- Function: int mpz_perfect_power_p (mpz_t OP) + Return non-zero if OP is a perfect power, i.e., if there exist + integers A and B, with B>1, such that OP equals A raised to the + power B. + + Under this definition both 0 and 1 are considered to be perfect + powers. Negative values of OP are accepted, but of course can + only be odd perfect powers. + + -- Function: int mpz_perfect_square_p (mpz_t OP) + Return non-zero if OP is a perfect square, i.e., if the square + root of OP is an integer. Under this definition both 0 and 1 are + considered to be perfect squares. + + +File: gmp.info, Node: Number Theoretic Functions, Next: Integer Comparisons, Prev: Integer Roots, Up: Integer Functions + +5.9 Number Theoretic Functions +============================== + + -- Function: int mpz_probab_prime_p (mpz_t N, int REPS) + Determine whether N is prime. Return 2 if N is definitely prime, + return 1 if N is probably prime (without being certain), or return + 0 if N is definitely composite. + + This function does some trial divisions, then some Miller-Rabin + probabilistic primality tests. REPS controls how many such tests + are done, 5 to 10 is a reasonable number, more will reduce the + chances of a composite being returned as "probably prime". + + Miller-Rabin and similar tests can be more properly called + compositeness tests. Numbers which fail are known to be composite + but those which pass might be prime or might be composite. Only a + few composites pass, hence those which pass are considered + probably prime. + + -- Function: void mpz_nextprime (mpz_t ROP, mpz_t OP) + Set ROP to the next prime greater than OP. + + This function uses a probabilistic algorithm to identify primes. + For practical purposes it's adequate, the chance of a composite + passing will be extremely small. + + -- Function: void mpz_gcd (mpz_t ROP, mpz_t OP1, mpz_t OP2) + Set ROP to the greatest common divisor of OP1 and OP2. The result + is always positive even if one or both input operands are negative. + + -- Function: unsigned long int mpz_gcd_ui (mpz_t ROP, mpz_t OP1, + unsigned long int OP2) + Compute the greatest common divisor of OP1 and OP2. If ROP is not + `NULL', store the result there. + + If the result is small enough to fit in an `unsigned long int', it + is returned. If the result does not fit, 0 is returned, and the + result is equal to the argument OP1. Note that the result will + always fit if OP2 is non-zero. + + -- Function: void mpz_gcdext (mpz_t G, mpz_t S, mpz_t T, mpz_t A, + mpz_t B) + Set G to the greatest common divisor of A and B, and in addition + set S and T to coefficients satisfying A*S + B*T = G. The value + in G is always positive, even if one or both of A and B are + negative. The values in S and T are chosen such that abs(S) <= + abs(B) and abs(T) <= abs(A). + + If T is `NULL' then that value is not computed. + + -- Function: void mpz_lcm (mpz_t ROP, mpz_t OP1, mpz_t OP2) + -- Function: void mpz_lcm_ui (mpz_t ROP, mpz_t OP1, unsigned long OP2) + Set ROP to the least common multiple of OP1 and OP2. ROP is + always positive, irrespective of the signs of OP1 and OP2. ROP + will be zero if either OP1 or OP2 is zero. + + -- Function: int mpz_invert (mpz_t ROP, mpz_t OP1, mpz_t OP2) + Compute the inverse of OP1 modulo OP2 and put the result in ROP. + If the inverse exists, the return value is non-zero and ROP will + satisfy 0 <= ROP < OP2. If an inverse doesn't exist the return + value is zero and ROP is undefined. + + -- Function: int mpz_jacobi (mpz_t A, mpz_t B) + Calculate the Jacobi symbol (A/B). This is defined only for B odd. + + -- Function: int mpz_legendre (mpz_t A, mpz_t P) + Calculate the Legendre symbol (A/P). This is defined only for P + an odd positive prime, and for such P it's identical to the Jacobi + symbol. + + -- Function: int mpz_kronecker (mpz_t A, mpz_t B) + -- Function: int mpz_kronecker_si (mpz_t A, long B) + -- Function: int mpz_kronecker_ui (mpz_t A, unsigned long B) + -- Function: int mpz_si_kronecker (long A, mpz_t B) + -- Function: int mpz_ui_kronecker (unsigned long A, mpz_t B) + Calculate the Jacobi symbol (A/B) with the Kronecker extension + (a/2)=(2/a) when a odd, or (a/2)=0 when a even. + + When B is odd the Jacobi symbol and Kronecker symbol are + identical, so `mpz_kronecker_ui' etc can be used for mixed + precision Jacobi symbols too. + + For more information see Henri Cohen section 1.4.2 (*note + References::), or any number theory textbook. See also the + example program `demos/qcn.c' which uses `mpz_kronecker_ui'. + + -- Function: mp_bitcnt_t mpz_remove (mpz_t ROP, mpz_t OP, mpz_t F) + Remove all occurrences of the factor F from OP and store the + result in ROP. The return value is how many such occurrences were + removed. + + -- Function: void mpz_fac_ui (mpz_t ROP, unsigned long int OP) + Set ROP to OP!, the factorial of OP. + + -- Function: void mpz_bin_ui (mpz_t ROP, mpz_t N, unsigned long int K) + -- Function: void mpz_bin_uiui (mpz_t ROP, unsigned long int N, + unsigned long int K) + Compute the binomial coefficient N over K and store the result in + ROP. Negative values of N are supported by `mpz_bin_ui', using + the identity bin(-n,k) = (-1)^k * bin(n+k-1,k), see Knuth volume 1 + section 1.2.6 part G. + + -- Function: void mpz_fib_ui (mpz_t FN, unsigned long int N) + -- Function: void mpz_fib2_ui (mpz_t FN, mpz_t FNSUB1, unsigned long + int N) + `mpz_fib_ui' sets FN to to F[n], the N'th Fibonacci number. + `mpz_fib2_ui' sets FN to F[n], and FNSUB1 to F[n-1]. + + These functions are designed for calculating isolated Fibonacci + numbers. When a sequence of values is wanted it's best to start + with `mpz_fib2_ui' and iterate the defining F[n+1]=F[n]+F[n-1] or + similar. + + -- Function: void mpz_lucnum_ui (mpz_t LN, unsigned long int N) + -- Function: void mpz_lucnum2_ui (mpz_t LN, mpz_t LNSUB1, unsigned + long int N) + `mpz_lucnum_ui' sets LN to to L[n], the N'th Lucas number. + `mpz_lucnum2_ui' sets LN to L[n], and LNSUB1 to L[n-1]. + + These functions are designed for calculating isolated Lucas + numbers. When a sequence of values is wanted it's best to start + with `mpz_lucnum2_ui' and iterate the defining L[n+1]=L[n]+L[n-1] + or similar. + + The Fibonacci numbers and Lucas numbers are related sequences, so + it's never necessary to call both `mpz_fib2_ui' and + `mpz_lucnum2_ui'. The formulas for going from Fibonacci to Lucas + can be found in *Note Lucas Numbers Algorithm::, the reverse is + straightforward too. + + +File: gmp.info, Node: Integer Comparisons, Next: Integer Logic and Bit Fiddling, Prev: Number Theoretic Functions, Up: Integer Functions + +5.10 Comparison Functions +========================= + + -- Function: int mpz_cmp (mpz_t OP1, mpz_t OP2) + -- Function: int mpz_cmp_d (mpz_t OP1, double OP2) + -- Macro: int mpz_cmp_si (mpz_t OP1, signed long int OP2) + -- Macro: int mpz_cmp_ui (mpz_t OP1, unsigned long int OP2) + Compare OP1 and OP2. Return a positive value if OP1 > OP2, zero + if OP1 = OP2, or a negative value if OP1 < OP2. + + `mpz_cmp_ui' and `mpz_cmp_si' are macros and will evaluate their + arguments more than once. `mpz_cmp_d' can be called with an + infinity, but results are undefined for a NaN. + + -- Function: int mpz_cmpabs (mpz_t OP1, mpz_t OP2) + -- Function: int mpz_cmpabs_d (mpz_t OP1, double OP2) + -- Function: int mpz_cmpabs_ui (mpz_t OP1, unsigned long int OP2) + Compare the absolute values of OP1 and OP2. Return a positive + value if abs(OP1) > abs(OP2), zero if abs(OP1) = abs(OP2), or a + negative value if abs(OP1) < abs(OP2). + + `mpz_cmpabs_d' can be called with an infinity, but results are + undefined for a NaN. + + -- Macro: int mpz_sgn (mpz_t OP) + Return +1 if OP > 0, 0 if OP = 0, and -1 if OP < 0. + + This function is actually implemented as a macro. It evaluates + its argument multiple times. + + +File: gmp.info, Node: Integer Logic and Bit Fiddling, Next: I/O of Integers, Prev: Integer Comparisons, Up: Integer Functions + +5.11 Logical and Bit Manipulation Functions +=========================================== + +These functions behave as if twos complement arithmetic were used +(although sign-magnitude is the actual implementation). The least +significant bit is number 0. + + -- Function: void mpz_and (mpz_t ROP, mpz_t OP1, mpz_t OP2) + Set ROP to OP1 bitwise-and OP2. + + -- Function: void mpz_ior (mpz_t ROP, mpz_t OP1, mpz_t OP2) + Set ROP to OP1 bitwise inclusive-or OP2. + + -- Function: void mpz_xor (mpz_t ROP, mpz_t OP1, mpz_t OP2) + Set ROP to OP1 bitwise exclusive-or OP2. + + -- Function: void mpz_com (mpz_t ROP, mpz_t OP) + Set ROP to the one's complement of OP. + + -- Function: mp_bitcnt_t mpz_popcount (mpz_t OP) + If OP>=0, return the population count of OP, which is the number + of 1 bits in the binary representation. If OP<0, the number of 1s + is infinite, and the return value is the largest possible + `mp_bitcnt_t'. + + -- Function: mp_bitcnt_t mpz_hamdist (mpz_t OP1, mpz_t OP2) + If OP1 and OP2 are both >=0 or both <0, return the hamming + distance between the two operands, which is the number of bit + positions where OP1 and OP2 have different bit values. If one + operand is >=0 and the other <0 then the number of bits different + is infinite, and the return value is the largest possible + `mp_bitcnt_t'. + + -- Function: mp_bitcnt_t mpz_scan0 (mpz_t OP, mp_bitcnt_t STARTING_BIT) + -- Function: mp_bitcnt_t mpz_scan1 (mpz_t OP, mp_bitcnt_t STARTING_BIT) + Scan OP, starting from bit STARTING_BIT, towards more significant + bits, until the first 0 or 1 bit (respectively) is found. Return + the index of the found bit. + + If the bit at STARTING_BIT is already what's sought, then + STARTING_BIT is returned. + + If there's no bit found, then the largest possible `mp_bitcnt_t' is + returned. This will happen in `mpz_scan0' past the end of a + negative number, or `mpz_scan1' past the end of a nonnegative + number. + + -- Function: void mpz_setbit (mpz_t ROP, mp_bitcnt_t BIT_INDEX) + Set bit BIT_INDEX in ROP. + + -- Function: void mpz_clrbit (mpz_t ROP, mp_bitcnt_t BIT_INDEX) + Clear bit BIT_INDEX in ROP. + + -- Function: void mpz_combit (mpz_t ROP, mp_bitcnt_t BIT_INDEX) + Complement bit BIT_INDEX in ROP. + + -- Function: int mpz_tstbit (mpz_t OP, mp_bitcnt_t BIT_INDEX) + Test bit BIT_INDEX in OP and return 0 or 1 accordingly. + + +File: gmp.info, Node: I/O of Integers, Next: Integer Random Numbers, Prev: Integer Logic and Bit Fiddling, Up: Integer Functions + +5.12 Input and Output Functions +=============================== + +Functions that perform input from a stdio stream, and functions that +output to a stdio stream. Passing a `NULL' pointer for a STREAM +argument to any of these functions will make them read from `stdin' and +write to `stdout', respectively. + + When using any of these functions, it is a good idea to include +`stdio.h' before `gmp.h', since that will allow `gmp.h' to define +prototypes for these functions. + + -- Function: size_t mpz_out_str (FILE *STREAM, int BASE, mpz_t OP) + Output OP on stdio stream STREAM, as a string of digits in base + BASE. The base argument may vary from 2 to 62 or from -2 to -36. + + For BASE in the range 2..36, digits and lower-case letters are + used; for -2..-36, digits and upper-case letters are used; for + 37..62, digits, upper-case letters, and lower-case letters (in + that significance order) are used. + + Return the number of bytes written, or if an error occurred, + return 0. + + -- Function: size_t mpz_inp_str (mpz_t ROP, FILE *STREAM, int BASE) + Input a possibly white-space preceded string in base BASE from + stdio stream STREAM, and put the read integer in ROP. + + The BASE may vary from 2 to 62, or if BASE is 0, then the leading + characters are used: `0x' and `0X' for hexadecimal, `0b' and `0B' + for binary, `0' for octal, or decimal otherwise. + + For bases up to 36, case is ignored; upper-case and lower-case + letters have the same value. For bases 37 to 62, upper-case + letter represent the usual 10..35 while lower-case letter + represent 36..61. + + Return the number of bytes read, or if an error occurred, return 0. + + -- Function: size_t mpz_out_raw (FILE *STREAM, mpz_t OP) + Output OP on stdio stream STREAM, in raw binary format. The + integer is written in a portable format, with 4 bytes of size + information, and that many bytes of limbs. Both the size and the + limbs are written in decreasing significance order (i.e., in + big-endian). + + The output can be read with `mpz_inp_raw'. + + Return the number of bytes written, or if an error occurred, + return 0. + + The output of this can not be read by `mpz_inp_raw' from GMP 1, + because of changes necessary for compatibility between 32-bit and + 64-bit machines. + + -- Function: size_t mpz_inp_raw (mpz_t ROP, FILE *STREAM) + Input from stdio stream STREAM in the format written by + `mpz_out_raw', and put the result in ROP. Return the number of + bytes read, or if an error occurred, return 0. + + This routine can read the output from `mpz_out_raw' also from GMP + 1, in spite of changes necessary for compatibility between 32-bit + and 64-bit machines. + + +File: gmp.info, Node: Integer Random Numbers, Next: Integer Import and Export, Prev: I/O of Integers, Up: Integer Functions + +5.13 Random Number Functions +============================ + +The random number functions of GMP come in two groups; older function +that rely on a global state, and newer functions that accept a state +parameter that is read and modified. Please see the *Note Random +Number Functions:: for more information on how to use and not to use +random number functions. + + -- Function: void mpz_urandomb (mpz_t ROP, gmp_randstate_t STATE, + mp_bitcnt_t N) + Generate a uniformly distributed random integer in the range 0 to + 2^N-1, inclusive. + + The variable STATE must be initialized by calling one of the + `gmp_randinit' functions (*Note Random State Initialization::) + before invoking this function. + + -- Function: void mpz_urandomm (mpz_t ROP, gmp_randstate_t STATE, + mpz_t N) + Generate a uniform random integer in the range 0 to N-1, inclusive. + + The variable STATE must be initialized by calling one of the + `gmp_randinit' functions (*Note Random State Initialization::) + before invoking this function. + + -- Function: void mpz_rrandomb (mpz_t ROP, gmp_randstate_t STATE, + mp_bitcnt_t N) + Generate a random integer with long strings of zeros and ones in + the binary representation. Useful for testing functions and + algorithms, since this kind of random numbers have proven to be + more likely to trigger corner-case bugs. The random number will + be in the range 0 to 2^N-1, inclusive. + + The variable STATE must be initialized by calling one of the + `gmp_randinit' functions (*Note Random State Initialization::) + before invoking this function. + + -- Function: void mpz_random (mpz_t ROP, mp_size_t MAX_SIZE) + Generate a random integer of at most MAX_SIZE limbs. The generated + random number doesn't satisfy any particular requirements of + randomness. Negative random numbers are generated when MAX_SIZE + is negative. + + This function is obsolete. Use `mpz_urandomb' or `mpz_urandomm' + instead. + + -- Function: void mpz_random2 (mpz_t ROP, mp_size_t MAX_SIZE) + Generate a random integer of at most MAX_SIZE limbs, with long + strings of zeros and ones in the binary representation. Useful + for testing functions and algorithms, since this kind of random + numbers have proven to be more likely to trigger corner-case bugs. + Negative random numbers are generated when MAX_SIZE is negative. + + This function is obsolete. Use `mpz_rrandomb' instead. + + +File: gmp.info, Node: Integer Import and Export, Next: Miscellaneous Integer Functions, Prev: Integer Random Numbers, Up: Integer Functions + +5.14 Integer Import and Export +============================== + +`mpz_t' variables can be converted to and from arbitrary words of binary +data with the following functions. + + -- Function: void mpz_import (mpz_t ROP, size_t COUNT, int ORDER, + size_t SIZE, int ENDIAN, size_t NAILS, const void *OP) + Set ROP from an array of word data at OP. + + The parameters specify the format of the data. COUNT many words + are read, each SIZE bytes. ORDER can be 1 for most significant + word first or -1 for least significant first. Within each word + ENDIAN can be 1 for most significant byte first, -1 for least + significant first, or 0 for the native endianness of the host CPU. + The most significant NAILS bits of each word are skipped, this + can be 0 to use the full words. + + There is no sign taken from the data, ROP will simply be a positive + integer. An application can handle any sign itself, and apply it + for instance with `mpz_neg'. + + There are no data alignment restrictions on OP, any address is + allowed. + + Here's an example converting an array of `unsigned long' data, most + significant element first, and host byte order within each value. + + unsigned long a[20]; + /* Initialize Z and A */ + mpz_import (z, 20, 1, sizeof(a[0]), 0, 0, a); + + This example assumes the full `sizeof' bytes are used for data in + the given type, which is usually true, and certainly true for + `unsigned long' everywhere we know of. However on Cray vector + systems it may be noted that `short' and `int' are always stored + in 8 bytes (and with `sizeof' indicating that) but use only 32 or + 46 bits. The NAILS feature can account for this, by passing for + instance `8*sizeof(int)-INT_BIT'. + + -- Function: void * mpz_export (void *ROP, size_t *COUNTP, int ORDER, + size_t SIZE, int ENDIAN, size_t NAILS, mpz_t OP) + Fill ROP with word data from OP. + + The parameters specify the format of the data produced. Each word + will be SIZE bytes and ORDER can be 1 for most significant word + first or -1 for least significant first. Within each word ENDIAN + can be 1 for most significant byte first, -1 for least significant + first, or 0 for the native endianness of the host CPU. The most + significant NAILS bits of each word are unused and set to zero, + this can be 0 to produce full words. + + The number of words produced is written to `*COUNTP', or COUNTP + can be `NULL' to discard the count. ROP must have enough space + for the data, or if ROP is `NULL' then a result array of the + necessary size is allocated using the current GMP allocation + function (*note Custom Allocation::). In either case the return + value is the destination used, either ROP or the allocated block. + + If OP is non-zero then the most significant word produced will be + non-zero. If OP is zero then the count returned will be zero and + nothing written to ROP. If ROP is `NULL' in this case, no block + is allocated, just `NULL' is returned. + + The sign of OP is ignored, just the absolute value is exported. An + application can use `mpz_sgn' to get the sign and handle it as + desired. (*note Integer Comparisons::) + + There are no data alignment restrictions on ROP, any address is + allowed. + + When an application is allocating space itself the required size + can be determined with a calculation like the following. Since + `mpz_sizeinbase' always returns at least 1, `count' here will be + at least one, which avoids any portability problems with + `malloc(0)', though if `z' is zero no space at all is actually + needed (or written). + + numb = 8*size - nail; + count = (mpz_sizeinbase (z, 2) + numb-1) / numb; + p = malloc (count * size); + + +File: gmp.info, Node: Miscellaneous Integer Functions, Next: Integer Special Functions, Prev: Integer Import and Export, Up: Integer Functions + +5.15 Miscellaneous Functions +============================ + + -- Function: int mpz_fits_ulong_p (mpz_t OP) + -- Function: int mpz_fits_slong_p (mpz_t OP) + -- Function: int mpz_fits_uint_p (mpz_t OP) + -- Function: int mpz_fits_sint_p (mpz_t OP) + -- Function: int mpz_fits_ushort_p (mpz_t OP) + -- Function: int mpz_fits_sshort_p (mpz_t OP) + Return non-zero iff the value of OP fits in an `unsigned long int', + `signed long int', `unsigned int', `signed int', `unsigned short + int', or `signed short int', respectively. Otherwise, return zero. + + -- Macro: int mpz_odd_p (mpz_t OP) + -- Macro: int mpz_even_p (mpz_t OP) + Determine whether OP is odd or even, respectively. Return + non-zero if yes, zero if no. These macros evaluate their argument + more than once. + + -- Function: size_t mpz_sizeinbase (mpz_t OP, int BASE) + Return the size of OP measured in number of digits in the given + BASE. BASE can vary from 2 to 62. The sign of OP is ignored, + just the absolute value is used. The result will be either exact + or 1 too big. If BASE is a power of 2, the result is always + exact. If OP is zero the return value is always 1. + + This function can be used to determine the space required when + converting OP to a string. The right amount of allocation is + normally two more than the value returned by `mpz_sizeinbase', one + extra for a minus sign and one for the null-terminator. + + It will be noted that `mpz_sizeinbase(OP,2)' can be used to locate + the most significant 1 bit in OP, counting from 1. (Unlike the + bitwise functions which start from 0, *Note Logical and Bit + Manipulation Functions: Integer Logic and Bit Fiddling.) + + +File: gmp.info, Node: Integer Special Functions, Prev: Miscellaneous Integer Functions, Up: Integer Functions + +5.16 Special Functions +====================== + +The functions in this section are for various special purposes. Most +applications will not need them. + + -- Function: void mpz_array_init (mpz_t INTEGER_ARRAY, mp_size_t + ARRAY_SIZE, mp_size_t FIXED_NUM_BITS) + This is a special type of initialization. *Fixed* space of + FIXED_NUM_BITS is allocated to each of the ARRAY_SIZE integers in + INTEGER_ARRAY. There is no way to free the storage allocated by + this function. Don't call `mpz_clear'! + + The INTEGER_ARRAY parameter is the first `mpz_t' in the array. For + example, + + mpz_t arr[20000]; + mpz_array_init (arr[0], 20000, 512); + + This function is only intended for programs that create a large + number of integers and need to reduce memory usage by avoiding the + overheads of allocating and reallocating lots of small blocks. In + normal programs this function is not recommended. + + The space allocated to each integer by this function will not be + automatically increased, unlike the normal `mpz_init', so an + application must ensure it is sufficient for any value stored. + The following space requirements apply to various routines, + + * `mpz_abs', `mpz_neg', `mpz_set', `mpz_set_si' and + `mpz_set_ui' need room for the value they store. + + * `mpz_add', `mpz_add_ui', `mpz_sub' and `mpz_sub_ui' need room + for the larger of the two operands, plus an extra + `mp_bits_per_limb'. + + * `mpz_mul', `mpz_mul_ui' and `mpz_mul_ui' need room for the sum + of the number of bits in their operands, but each rounded up + to a multiple of `mp_bits_per_limb'. + + * `mpz_swap' can be used between two array variables, but not + between an array and a normal variable. + + For other functions, or if in doubt, the suggestion is to + calculate in a regular `mpz_init' variable and copy the result to + an array variable with `mpz_set'. + + -- Function: void * _mpz_realloc (mpz_t INTEGER, mp_size_t NEW_ALLOC) + Change the space for INTEGER to NEW_ALLOC limbs. The value in + INTEGER is preserved if it fits, or is set to 0 if not. The return + value is not useful to applications and should be ignored. + + `mpz_realloc2' is the preferred way to accomplish allocation + changes like this. `mpz_realloc2' and `_mpz_realloc' are the same + except that `_mpz_realloc' takes its size in limbs. + + -- Function: mp_limb_t mpz_getlimbn (mpz_t OP, mp_size_t N) + Return limb number N from OP. The sign of OP is ignored, just the + absolute value is used. The least significant limb is number 0. + + `mpz_size' can be used to find how many limbs make up OP. + `mpz_getlimbn' returns zero if N is outside the range 0 to + `mpz_size(OP)-1'. + + -- Function: size_t mpz_size (mpz_t OP) + Return the size of OP measured in number of limbs. If OP is zero, + the returned value will be zero. + + +File: gmp.info, Node: Rational Number Functions, Next: Floating-point Functions, Prev: Integer Functions, Up: Top + +6 Rational Number Functions +*************************** + +This chapter describes the GMP functions for performing arithmetic on +rational numbers. These functions start with the prefix `mpq_'. + + Rational numbers are stored in objects of type `mpq_t'. + + All rational arithmetic functions assume operands have a canonical +form, and canonicalize their result. The canonical from means that the +denominator and the numerator have no common factors, and that the +denominator is positive. Zero has the unique representation 0/1. + + Pure assignment functions do not canonicalize the assigned variable. +It is the responsibility of the user to canonicalize the assigned +variable before any arithmetic operations are performed on that +variable. + + -- Function: void mpq_canonicalize (mpq_t OP) + Remove any factors that are common to the numerator and + denominator of OP, and make the denominator positive. + +* Menu: + +* Initializing Rationals:: +* Rational Conversions:: +* Rational Arithmetic:: +* Comparing Rationals:: +* Applying Integer Functions:: +* I/O of Rationals:: + + +File: gmp.info, Node: Initializing Rationals, Next: Rational Conversions, Prev: Rational Number Functions, Up: Rational Number Functions + +6.1 Initialization and Assignment Functions +=========================================== + + -- Function: void mpq_init (mpq_t X) + Initialize X and set it to 0/1. Each variable should normally + only be initialized once, or at least cleared out (using the + function `mpq_clear') between each initialization. + + -- Function: void mpq_inits (mpq_t X, ...) + Initialize a NULL-terminated list of `mpq_t' variables, and set + their values to 0/1. + + -- Function: void mpq_clear (mpq_t X) + Free the space occupied by X. Make sure to call this function for + all `mpq_t' variables when you are done with them. + + -- Function: void mpq_clears (mpq_t X, ...) + Free the space occupied by a NULL-terminated list of `mpq_t' + variables. + + -- Function: void mpq_set (mpq_t ROP, mpq_t OP) + -- Function: void mpq_set_z (mpq_t ROP, mpz_t OP) + Assign ROP from OP. + + -- Function: void mpq_set_ui (mpq_t ROP, unsigned long int OP1, + unsigned long int OP2) + -- Function: void mpq_set_si (mpq_t ROP, signed long int OP1, unsigned + long int OP2) + Set the value of ROP to OP1/OP2. Note that if OP1 and OP2 have + common factors, ROP has to be passed to `mpq_canonicalize' before + any operations are performed on ROP. + + -- Function: int mpq_set_str (mpq_t ROP, char *STR, int BASE) + Set ROP from a null-terminated string STR in the given BASE. + + The string can be an integer like "41" or a fraction like + "41/152". The fraction must be in canonical form (*note Rational + Number Functions::), or if not then `mpq_canonicalize' must be + called. + + The numerator and optional denominator are parsed the same as in + `mpz_set_str' (*note Assigning Integers::). White space is + allowed in the string, and is simply ignored. The BASE can vary + from 2 to 62, or if BASE is 0 then the leading characters are + used: `0x' or `0X' for hex, `0b' or `0B' for binary, `0' for + octal, or decimal otherwise. Note that this is done separately + for the numerator and denominator, so for instance `0xEF/100' is + 239/100, whereas `0xEF/0x100' is 239/256. + + The return value is 0 if the entire string is a valid number, or + -1 if not. + + -- Function: void mpq_swap (mpq_t ROP1, mpq_t ROP2) + Swap the values ROP1 and ROP2 efficiently. + + +File: gmp.info, Node: Rational Conversions, Next: Rational Arithmetic, Prev: Initializing Rationals, Up: Rational Number Functions + +6.2 Conversion Functions +======================== + + -- Function: double mpq_get_d (mpq_t OP) + Convert OP to a `double', truncating if necessary (ie. rounding + towards zero). + + If the exponent from the conversion is too big or too small to fit + a `double' then the result is system dependent. For too big an + infinity is returned when available. For too small 0.0 is + normally returned. Hardware overflow, underflow and denorm traps + may or may not occur. + + -- Function: void mpq_set_d (mpq_t ROP, double OP) + -- Function: void mpq_set_f (mpq_t ROP, mpf_t OP) + Set ROP to the value of OP. There is no rounding, this conversion + is exact. + + -- Function: char * mpq_get_str (char *STR, int BASE, mpq_t OP) + Convert OP to a string of digits in base BASE. The base may vary + from 2 to 36. The string will be of the form `num/den', or if the + denominator is 1 then just `num'. + + If STR is `NULL', the result string is allocated using the current + allocation function (*note Custom Allocation::). The block will be + `strlen(str)+1' bytes, that being exactly enough for the string and + null-terminator. + + If STR is not `NULL', it should point to a block of storage large + enough for the result, that being + + mpz_sizeinbase (mpq_numref(OP), BASE) + + mpz_sizeinbase (mpq_denref(OP), BASE) + 3 + + The three extra bytes are for a possible minus sign, possible + slash, and the null-terminator. + + A pointer to the result string is returned, being either the + allocated block, or the given STR. + + +File: gmp.info, Node: Rational Arithmetic, Next: Comparing Rationals, Prev: Rational Conversions, Up: Rational Number Functions + +6.3 Arithmetic Functions +======================== + + -- Function: void mpq_add (mpq_t SUM, mpq_t ADDEND1, mpq_t ADDEND2) + Set SUM to ADDEND1 + ADDEND2. + + -- Function: void mpq_sub (mpq_t DIFFERENCE, mpq_t MINUEND, mpq_t + SUBTRAHEND) + Set DIFFERENCE to MINUEND - SUBTRAHEND. + + -- Function: void mpq_mul (mpq_t PRODUCT, mpq_t MULTIPLIER, mpq_t + MULTIPLICAND) + Set PRODUCT to MULTIPLIER times MULTIPLICAND. + + -- Function: void mpq_mul_2exp (mpq_t ROP, mpq_t OP1, mp_bitcnt_t OP2) + Set ROP to OP1 times 2 raised to OP2. + + -- Function: void mpq_div (mpq_t QUOTIENT, mpq_t DIVIDEND, mpq_t + DIVISOR) + Set QUOTIENT to DIVIDEND/DIVISOR. + + -- Function: void mpq_div_2exp (mpq_t ROP, mpq_t OP1, mp_bitcnt_t OP2) + Set ROP to OP1 divided by 2 raised to OP2. + + -- Function: void mpq_neg (mpq_t NEGATED_OPERAND, mpq_t OPERAND) + Set NEGATED_OPERAND to -OPERAND. + + -- Function: void mpq_abs (mpq_t ROP, mpq_t OP) + Set ROP to the absolute value of OP. + + -- Function: void mpq_inv (mpq_t INVERTED_NUMBER, mpq_t NUMBER) + Set INVERTED_NUMBER to 1/NUMBER. If the new denominator is zero, + this routine will divide by zero. + + +File: gmp.info, Node: Comparing Rationals, Next: Applying Integer Functions, Prev: Rational Arithmetic, Up: Rational Number Functions + +6.4 Comparison Functions +======================== + + -- Function: int mpq_cmp (mpq_t OP1, mpq_t OP2) + Compare OP1 and OP2. Return a positive value if OP1 > OP2, zero + if OP1 = OP2, and a negative value if OP1 < OP2. + + To determine if two rationals are equal, `mpq_equal' is faster than + `mpq_cmp'. + + -- Macro: int mpq_cmp_ui (mpq_t OP1, unsigned long int NUM2, unsigned + long int DEN2) + -- Macro: int mpq_cmp_si (mpq_t OP1, long int NUM2, unsigned long int + DEN2) + Compare OP1 and NUM2/DEN2. Return a positive value if OP1 > + NUM2/DEN2, zero if OP1 = NUM2/DEN2, and a negative value if OP1 < + NUM2/DEN2. + + NUM2 and DEN2 are allowed to have common factors. + + These functions are implemented as a macros and evaluate their + arguments multiple times. + + -- Macro: int mpq_sgn (mpq_t OP) + Return +1 if OP > 0, 0 if OP = 0, and -1 if OP < 0. + + This function is actually implemented as a macro. It evaluates its + arguments multiple times. + + -- Function: int mpq_equal (mpq_t OP1, mpq_t OP2) + Return non-zero if OP1 and OP2 are equal, zero if they are + non-equal. Although `mpq_cmp' can be used for the same purpose, + this function is much faster. + + +File: gmp.info, Node: Applying Integer Functions, Next: I/O of Rationals, Prev: Comparing Rationals, Up: Rational Number Functions + +6.5 Applying Integer Functions to Rationals +=========================================== + +The set of `mpq' functions is quite small. In particular, there are few +functions for either input or output. The following functions give +direct access to the numerator and denominator of an `mpq_t'. + + Note that if an assignment to the numerator and/or denominator could +take an `mpq_t' out of the canonical form described at the start of +this chapter (*note Rational Number Functions::) then +`mpq_canonicalize' must be called before any other `mpq' functions are +applied to that `mpq_t'. + + -- Macro: mpz_t mpq_numref (mpq_t OP) + -- Macro: mpz_t mpq_denref (mpq_t OP) + Return a reference to the numerator and denominator of OP, + respectively. The `mpz' functions can be used on the result of + these macros. + + -- Function: void mpq_get_num (mpz_t NUMERATOR, mpq_t RATIONAL) + -- Function: void mpq_get_den (mpz_t DENOMINATOR, mpq_t RATIONAL) + -- Function: void mpq_set_num (mpq_t RATIONAL, mpz_t NUMERATOR) + -- Function: void mpq_set_den (mpq_t RATIONAL, mpz_t DENOMINATOR) + Get or set the numerator or denominator of a rational. These + functions are equivalent to calling `mpz_set' with an appropriate + `mpq_numref' or `mpq_denref'. Direct use of `mpq_numref' or + `mpq_denref' is recommended instead of these functions. + + +File: gmp.info, Node: I/O of Rationals, Prev: Applying Integer Functions, Up: Rational Number Functions + +6.6 Input and Output Functions +============================== + +When using any of these functions, it's a good idea to include `stdio.h' +before `gmp.h', since that will allow `gmp.h' to define prototypes for +these functions. + + Passing a `NULL' pointer for a STREAM argument to any of these +functions will make them read from `stdin' and write to `stdout', +respectively. + + -- Function: size_t mpq_out_str (FILE *STREAM, int BASE, mpq_t OP) + Output OP on stdio stream STREAM, as a string of digits in base + BASE. The base may vary from 2 to 36. Output is in the form + `num/den' or if the denominator is 1 then just `num'. + + Return the number of bytes written, or if an error occurred, + return 0. + + -- Function: size_t mpq_inp_str (mpq_t ROP, FILE *STREAM, int BASE) + Read a string of digits from STREAM and convert them to a rational + in ROP. Any initial white-space characters are read and + discarded. Return the number of characters read (including white + space), or 0 if a rational could not be read. + + The input can be a fraction like `17/63' or just an integer like + `123'. Reading stops at the first character not in this form, and + white space is not permitted within the string. If the input + might not be in canonical form, then `mpq_canonicalize' must be + called (*note Rational Number Functions::). + + The BASE can be between 2 and 36, or can be 0 in which case the + leading characters of the string determine the base, `0x' or `0X' + for hexadecimal, `0' for octal, or decimal otherwise. The leading + characters are examined separately for the numerator and + denominator of a fraction, so for instance `0x10/11' is 16/11, + whereas `0x10/0x11' is 16/17. + + +File: gmp.info, Node: Floating-point Functions, Next: Low-level Functions, Prev: Rational Number Functions, Up: Top + +7 Floating-point Functions +************************** + +GMP floating point numbers are stored in objects of type `mpf_t' and +functions operating on them have an `mpf_' prefix. + + The mantissa of each float has a user-selectable precision, limited +only by available memory. Each variable has its own precision, and +that can be increased or decreased at any time. + + The exponent of each float is a fixed precision, one machine word on +most systems. In the current implementation the exponent is a count of +limbs, so for example on a 32-bit system this means a range of roughly +2^-68719476768 to 2^68719476736, or on a 64-bit system this will be +greater. Note however `mpf_get_str' can only return an exponent which +fits an `mp_exp_t' and currently `mpf_set_str' doesn't accept exponents +bigger than a `long'. + + Each variable keeps a size for the mantissa data actually in use. +This means that if a float is exactly represented in only a few bits +then only those bits will be used in a calculation, even if the +selected precision is high. + + All calculations are performed to the precision of the destination +variable. Each function is defined to calculate with "infinite +precision" followed by a truncation to the destination precision, but +of course the work done is only what's needed to determine a result +under that definition. + + The precision selected for a variable is a minimum value, GMP may +increase it a little to facilitate efficient calculation. Currently +this means rounding up to a whole limb, and then sometimes having a +further partial limb, depending on the high limb of the mantissa. But +applications shouldn't be concerned by such details. + + The mantissa in stored in binary, as might be imagined from the fact +precisions are expressed in bits. One consequence of this is that +decimal fractions like 0.1 cannot be represented exactly. The same is +true of plain IEEE `double' floats. This makes both highly unsuitable +for calculations involving money or other values that should be exact +decimal fractions. (Suitably scaled integers, or perhaps rationals, +are better choices.) + + `mpf' functions and variables have no special notion of infinity or +not-a-number, and applications must take care not to overflow the +exponent or results will be unpredictable. This might change in a +future release. + + Note that the `mpf' functions are _not_ intended as a smooth +extension to IEEE P754 arithmetic. In particular results obtained on +one computer often differ from the results on a computer with a +different word size. + +* Menu: + +* Initializing Floats:: +* Assigning Floats:: +* Simultaneous Float Init & Assign:: +* Converting Floats:: +* Float Arithmetic:: +* Float Comparison:: +* I/O of Floats:: +* Miscellaneous Float Functions:: + + +File: gmp.info, Node: Initializing Floats, Next: Assigning Floats, Prev: Floating-point Functions, Up: Floating-point Functions + +7.1 Initialization Functions +============================ + + -- Function: void mpf_set_default_prec (mp_bitcnt_t PREC) + Set the default precision to be *at least* PREC bits. All + subsequent calls to `mpf_init' will use this precision, but + previously initialized variables are unaffected. + + -- Function: mp_bitcnt_t mpf_get_default_prec (void) + Return the default precision actually used. + + An `mpf_t' object must be initialized before storing the first value +in it. The functions `mpf_init' and `mpf_init2' are used for that +purpose. + + -- Function: void mpf_init (mpf_t X) + Initialize X to 0. Normally, a variable should be initialized + once only or at least be cleared, using `mpf_clear', between + initializations. The precision of X is undefined unless a default + precision has already been established by a call to + `mpf_set_default_prec'. + + -- Function: void mpf_init2 (mpf_t X, mp_bitcnt_t PREC) + Initialize X to 0 and set its precision to be *at least* PREC + bits. Normally, a variable should be initialized once only or at + least be cleared, using `mpf_clear', between initializations. + + -- Function: void mpf_inits (mpf_t X, ...) + Initialize a NULL-terminated list of `mpf_t' variables, and set + their values to 0. The precision of the initialized variables is + undefined unless a default precision has already been established + by a call to `mpf_set_default_prec'. + + -- Function: void mpf_clear (mpf_t X) + Free the space occupied by X. Make sure to call this function for + all `mpf_t' variables when you are done with them. + + -- Function: void mpf_clears (mpf_t X, ...) + Free the space occupied by a NULL-terminated list of `mpf_t' + variables. + + Here is an example on how to initialize floating-point variables: + { + mpf_t x, y; + mpf_init (x); /* use default precision */ + mpf_init2 (y, 256); /* precision _at least_ 256 bits */ + ... + /* Unless the program is about to exit, do ... */ + mpf_clear (x); + mpf_clear (y); + } + + The following three functions are useful for changing the precision +during a calculation. A typical use would be for adjusting the +precision gradually in iterative algorithms like Newton-Raphson, making +the computation precision closely match the actual accurate part of the +numbers. + + -- Function: mp_bitcnt_t mpf_get_prec (mpf_t OP) + Return the current precision of OP, in bits. + + -- Function: void mpf_set_prec (mpf_t ROP, mp_bitcnt_t PREC) + Set the precision of ROP to be *at least* PREC bits. The value in + ROP will be truncated to the new precision. + + This function requires a call to `realloc', and so should not be + used in a tight loop. + + -- Function: void mpf_set_prec_raw (mpf_t ROP, mp_bitcnt_t PREC) + Set the precision of ROP to be *at least* PREC bits, without + changing the memory allocated. + + PREC must be no more than the allocated precision for ROP, that + being the precision when ROP was initialized, or in the most recent + `mpf_set_prec'. + + The value in ROP is unchanged, and in particular if it had a higher + precision than PREC it will retain that higher precision. New + values written to ROP will use the new PREC. + + Before calling `mpf_clear' or the full `mpf_set_prec', another + `mpf_set_prec_raw' call must be made to restore ROP to its original + allocated precision. Failing to do so will have unpredictable + results. + + `mpf_get_prec' can be used before `mpf_set_prec_raw' to get the + original allocated precision. After `mpf_set_prec_raw' it + reflects the PREC value set. + + `mpf_set_prec_raw' is an efficient way to use an `mpf_t' variable + at different precisions during a calculation, perhaps to gradually + increase precision in an iteration, or just to use various + different precisions for different purposes during a calculation. + + +File: gmp.info, Node: Assigning Floats, Next: Simultaneous Float Init & Assign, Prev: Initializing Floats, Up: Floating-point Functions + +7.2 Assignment Functions +======================== + +These functions assign new values to already initialized floats (*note +Initializing Floats::). + + -- Function: void mpf_set (mpf_t ROP, mpf_t OP) + -- Function: void mpf_set_ui (mpf_t ROP, unsigned long int OP) + -- Function: void mpf_set_si (mpf_t ROP, signed long int OP) + -- Function: void mpf_set_d (mpf_t ROP, double OP) + -- Function: void mpf_set_z (mpf_t ROP, mpz_t OP) + -- Function: void mpf_set_q (mpf_t ROP, mpq_t OP) + Set the value of ROP from OP. + + -- Function: int mpf_set_str (mpf_t ROP, char *STR, int BASE) + Set the value of ROP from the string in STR. The string is of the + form `M@N' or, if the base is 10 or less, alternatively `MeN'. + `M' is the mantissa and `N' is the exponent. The mantissa is + always in the specified base. The exponent is either in the + specified base or, if BASE is negative, in decimal. The decimal + point expected is taken from the current locale, on systems + providing `localeconv'. + + The argument BASE may be in the ranges 2 to 62, or -62 to -2. + Negative values are used to specify that the exponent is in + decimal. + + For bases up to 36, case is ignored; upper-case and lower-case + letters have the same value; for bases 37 to 62, upper-case letter + represent the usual 10..35 while lower-case letter represent + 36..61. + + Unlike the corresponding `mpz' function, the base will not be + determined from the leading characters of the string if BASE is 0. + This is so that numbers like `0.23' are not interpreted as octal. + + White space is allowed in the string, and is simply ignored. + [This is not really true; white-space is ignored in the beginning + of the string and within the mantissa, but not in other places, + such as after a minus sign or in the exponent. We are considering + changing the definition of this function, making it fail when + there is any white-space in the input, since that makes a lot of + sense. Please tell us your opinion about this change. Do you + really want it to accept "3 14" as meaning 314 as it does now?] + + This function returns 0 if the entire string is a valid number in + base BASE. Otherwise it returns -1. + + -- Function: void mpf_swap (mpf_t ROP1, mpf_t ROP2) + Swap ROP1 and ROP2 efficiently. Both the values and the + precisions of the two variables are swapped. + + +File: gmp.info, Node: Simultaneous Float Init & Assign, Next: Converting Floats, Prev: Assigning Floats, Up: Floating-point Functions + +7.3 Combined Initialization and Assignment Functions +==================================================== + +For convenience, GMP provides a parallel series of initialize-and-set +functions which initialize the output and then store the value there. +These functions' names have the form `mpf_init_set...' + + Once the float has been initialized by any of the `mpf_init_set...' +functions, it can be used as the source or destination operand for the +ordinary float functions. Don't use an initialize-and-set function on +a variable already initialized! + + -- Function: void mpf_init_set (mpf_t ROP, mpf_t OP) + -- Function: void mpf_init_set_ui (mpf_t ROP, unsigned long int OP) + -- Function: void mpf_init_set_si (mpf_t ROP, signed long int OP) + -- Function: void mpf_init_set_d (mpf_t ROP, double OP) + Initialize ROP and set its value from OP. + + The precision of ROP will be taken from the active default + precision, as set by `mpf_set_default_prec'. + + -- Function: int mpf_init_set_str (mpf_t ROP, char *STR, int BASE) + Initialize ROP and set its value from the string in STR. See + `mpf_set_str' above for details on the assignment operation. + + Note that ROP is initialized even if an error occurs. (I.e., you + have to call `mpf_clear' for it.) + + The precision of ROP will be taken from the active default + precision, as set by `mpf_set_default_prec'. + + +File: gmp.info, Node: Converting Floats, Next: Float Arithmetic, Prev: Simultaneous Float Init & Assign, Up: Floating-point Functions + +7.4 Conversion Functions +======================== + + -- Function: double mpf_get_d (mpf_t OP) + Convert OP to a `double', truncating if necessary (ie. rounding + towards zero). + + If the exponent in OP is too big or too small to fit a `double' + then the result is system dependent. For too big an infinity is + returned when available. For too small 0.0 is normally returned. + Hardware overflow, underflow and denorm traps may or may not occur. + + -- Function: double mpf_get_d_2exp (signed long int *EXP, mpf_t OP) + Convert OP to a `double', truncating if necessary (ie. rounding + towards zero), and with an exponent returned separately. + + The return value is in the range 0.5<=abs(D)<1 and the exponent is + stored to `*EXP'. D * 2^EXP is the (truncated) OP value. If OP + is zero, the return is 0.0 and 0 is stored to `*EXP'. + + This is similar to the standard C `frexp' function (*note + Normalization Functions: (libc)Normalization Functions.). + + -- Function: long mpf_get_si (mpf_t OP) + -- Function: unsigned long mpf_get_ui (mpf_t OP) + Convert OP to a `long' or `unsigned long', truncating any fraction + part. If OP is too big for the return type, the result is + undefined. + + See also `mpf_fits_slong_p' and `mpf_fits_ulong_p' (*note + Miscellaneous Float Functions::). + + -- Function: char * mpf_get_str (char *STR, mp_exp_t *EXPPTR, int + BASE, size_t N_DIGITS, mpf_t OP) + Convert OP to a string of digits in base BASE. The base argument + may vary from 2 to 62 or from -2 to -36. Up to N_DIGITS digits + will be generated. Trailing zeros are not returned. No more + digits than can be accurately represented by OP are ever + generated. If N_DIGITS is 0 then that accurate maximum number of + digits are generated. + + For BASE in the range 2..36, digits and lower-case letters are + used; for -2..-36, digits and upper-case letters are used; for + 37..62, digits, upper-case letters, and lower-case letters (in + that significance order) are used. + + If STR is `NULL', the result string is allocated using the current + allocation function (*note Custom Allocation::). The block will be + `strlen(str)+1' bytes, that being exactly enough for the string and + null-terminator. + + If STR is not `NULL', it should point to a block of N_DIGITS + 2 + bytes, that being enough for the mantissa, a possible minus sign, + and a null-terminator. When N_DIGITS is 0 to get all significant + digits, an application won't be able to know the space required, + and STR should be `NULL' in that case. + + The generated string is a fraction, with an implicit radix point + immediately to the left of the first digit. The applicable + exponent is written through the EXPPTR pointer. For example, the + number 3.1416 would be returned as string "31416" and exponent 1. + + When OP is zero, an empty string is produced and the exponent + returned is 0. + + A pointer to the result string is returned, being either the + allocated block or the given STR. + + +File: gmp.info, Node: Float Arithmetic, Next: Float Comparison, Prev: Converting Floats, Up: Floating-point Functions + +7.5 Arithmetic Functions +======================== + + -- Function: void mpf_add (mpf_t ROP, mpf_t OP1, mpf_t OP2) + -- Function: void mpf_add_ui (mpf_t ROP, mpf_t OP1, unsigned long int + OP2) + Set ROP to OP1 + OP2. + + -- Function: void mpf_sub (mpf_t ROP, mpf_t OP1, mpf_t OP2) + -- Function: void mpf_ui_sub (mpf_t ROP, unsigned long int OP1, mpf_t + OP2) + -- Function: void mpf_sub_ui (mpf_t ROP, mpf_t OP1, unsigned long int + OP2) + Set ROP to OP1 - OP2. + + -- Function: void mpf_mul (mpf_t ROP, mpf_t OP1, mpf_t OP2) + -- Function: void mpf_mul_ui (mpf_t ROP, mpf_t OP1, unsigned long int + OP2) + Set ROP to OP1 times OP2. + + Division is undefined if the divisor is zero, and passing a zero +divisor to the divide functions will make these functions intentionally +divide by zero. This lets the user handle arithmetic exceptions in +these functions in the same manner as other arithmetic exceptions. + + -- Function: void mpf_div (mpf_t ROP, mpf_t OP1, mpf_t OP2) + -- Function: void mpf_ui_div (mpf_t ROP, unsigned long int OP1, mpf_t + OP2) + -- Function: void mpf_div_ui (mpf_t ROP, mpf_t OP1, unsigned long int + OP2) + Set ROP to OP1/OP2. + + -- Function: void mpf_sqrt (mpf_t ROP, mpf_t OP) + -- Function: void mpf_sqrt_ui (mpf_t ROP, unsigned long int OP) + Set ROP to the square root of OP. + + -- Function: void mpf_pow_ui (mpf_t ROP, mpf_t OP1, unsigned long int + OP2) + Set ROP to OP1 raised to the power OP2. + + -- Function: void mpf_neg (mpf_t ROP, mpf_t OP) + Set ROP to -OP. + + -- Function: void mpf_abs (mpf_t ROP, mpf_t OP) + Set ROP to the absolute value of OP. + + -- Function: void mpf_mul_2exp (mpf_t ROP, mpf_t OP1, mp_bitcnt_t OP2) + Set ROP to OP1 times 2 raised to OP2. + + -- Function: void mpf_div_2exp (mpf_t ROP, mpf_t OP1, mp_bitcnt_t OP2) + Set ROP to OP1 divided by 2 raised to OP2. + + +File: gmp.info, Node: Float Comparison, Next: I/O of Floats, Prev: Float Arithmetic, Up: Floating-point Functions + +7.6 Comparison Functions +======================== + + -- Function: int mpf_cmp (mpf_t OP1, mpf_t OP2) + -- Function: int mpf_cmp_d (mpf_t OP1, double OP2) + -- Function: int mpf_cmp_ui (mpf_t OP1, unsigned long int OP2) + -- Function: int mpf_cmp_si (mpf_t OP1, signed long int OP2) + Compare OP1 and OP2. Return a positive value if OP1 > OP2, zero + if OP1 = OP2, and a negative value if OP1 < OP2. + + `mpf_cmp_d' can be called with an infinity, but results are + undefined for a NaN. + + -- Function: int mpf_eq (mpf_t OP1, mpf_t OP2, mp_bitcnt_t op3) + Return non-zero if the first OP3 bits of OP1 and OP2 are equal, + zero otherwise. I.e., test if OP1 and OP2 are approximately equal. + + Caution 1: All version of GMP up to version 4.2.4 compared just + whole limbs, meaning sometimes more than OP3 bits, sometimes fewer. + + Caution 2: This function will consider XXX11...111 and XX100...000 + different, even if ... is replaced by a semi-infinite number of + bits. Such numbers are really just one ulp off, and should be + considered equal. + + -- Function: void mpf_reldiff (mpf_t ROP, mpf_t OP1, mpf_t OP2) + Compute the relative difference between OP1 and OP2 and store the + result in ROP. This is abs(OP1-OP2)/OP1. + + -- Macro: int mpf_sgn (mpf_t OP) + Return +1 if OP > 0, 0 if OP = 0, and -1 if OP < 0. + + This function is actually implemented as a macro. It evaluates + its arguments multiple times. + + +File: gmp.info, Node: I/O of Floats, Next: Miscellaneous Float Functions, Prev: Float Comparison, Up: Floating-point Functions + +7.7 Input and Output Functions +============================== + +Functions that perform input from a stdio stream, and functions that +output to a stdio stream. Passing a `NULL' pointer for a STREAM +argument to any of these functions will make them read from `stdin' and +write to `stdout', respectively. + + When using any of these functions, it is a good idea to include +`stdio.h' before `gmp.h', since that will allow `gmp.h' to define +prototypes for these functions. + + -- Function: size_t mpf_out_str (FILE *STREAM, int BASE, size_t + N_DIGITS, mpf_t OP) + Print OP to STREAM, as a string of digits. Return the number of + bytes written, or if an error occurred, return 0. + + The mantissa is prefixed with an `0.' and is in the given BASE, + which may vary from 2 to 62 or from -2 to -36. An exponent is + then printed, separated by an `e', or if the base is greater than + 10 then by an `@'. The exponent is always in decimal. The + decimal point follows the current locale, on systems providing + `localeconv'. + + For BASE in the range 2..36, digits and lower-case letters are + used; for -2..-36, digits and upper-case letters are used; for + 37..62, digits, upper-case letters, and lower-case letters (in + that significance order) are used. + + Up to N_DIGITS will be printed from the mantissa, except that no + more digits than are accurately representable by OP will be + printed. N_DIGITS can be 0 to select that accurate maximum. + + -- Function: size_t mpf_inp_str (mpf_t ROP, FILE *STREAM, int BASE) + Read a string in base BASE from STREAM, and put the read float in + ROP. The string is of the form `M@N' or, if the base is 10 or + less, alternatively `MeN'. `M' is the mantissa and `N' is the + exponent. The mantissa is always in the specified base. The + exponent is either in the specified base or, if BASE is negative, + in decimal. The decimal point expected is taken from the current + locale, on systems providing `localeconv'. + + The argument BASE may be in the ranges 2 to 36, or -36 to -2. + Negative values are used to specify that the exponent is in + decimal. + + Unlike the corresponding `mpz' function, the base will not be + determined from the leading characters of the string if BASE is 0. + This is so that numbers like `0.23' are not interpreted as octal. + + Return the number of bytes read, or if an error occurred, return 0. + + +File: gmp.info, Node: Miscellaneous Float Functions, Prev: I/O of Floats, Up: Floating-point Functions + +7.8 Miscellaneous Functions +=========================== + + -- Function: void mpf_ceil (mpf_t ROP, mpf_t OP) + -- Function: void mpf_floor (mpf_t ROP, mpf_t OP) + -- Function: void mpf_trunc (mpf_t ROP, mpf_t OP) + Set ROP to OP rounded to an integer. `mpf_ceil' rounds to the + next higher integer, `mpf_floor' to the next lower, and `mpf_trunc' + to the integer towards zero. + + -- Function: int mpf_integer_p (mpf_t OP) + Return non-zero if OP is an integer. + + -- Function: int mpf_fits_ulong_p (mpf_t OP) + -- Function: int mpf_fits_slong_p (mpf_t OP) + -- Function: int mpf_fits_uint_p (mpf_t OP) + -- Function: int mpf_fits_sint_p (mpf_t OP) + -- Function: int mpf_fits_ushort_p (mpf_t OP) + -- Function: int mpf_fits_sshort_p (mpf_t OP) + Return non-zero if OP would fit in the respective C data type, when + truncated to an integer. + + -- Function: void mpf_urandomb (mpf_t ROP, gmp_randstate_t STATE, + mp_bitcnt_t NBITS) + Generate a uniformly distributed random float in ROP, such that 0 + <= ROP < 1, with NBITS significant bits in the mantissa. + + The variable STATE must be initialized by calling one of the + `gmp_randinit' functions (*Note Random State Initialization::) + before invoking this function. + + -- Function: void mpf_random2 (mpf_t ROP, mp_size_t MAX_SIZE, mp_exp_t + EXP) + Generate a random float of at most MAX_SIZE limbs, with long + strings of zeros and ones in the binary representation. The + exponent of the number is in the interval -EXP to EXP (in limbs). + This function is useful for testing functions and algorithms, + since these kind of random numbers have proven to be more likely + to trigger corner-case bugs. Negative random numbers are + generated when MAX_SIZE is negative. + + +File: gmp.info, Node: Low-level Functions, Next: Random Number Functions, Prev: Floating-point Functions, Up: Top + +8 Low-level Functions +********************* + +This chapter describes low-level GMP functions, used to implement the +high-level GMP functions, but also intended for time-critical user code. + + These functions start with the prefix `mpn_'. + + The `mpn' functions are designed to be as fast as possible, *not* to +provide a coherent calling interface. The different functions have +somewhat similar interfaces, but there are variations that make them +hard to use. These functions do as little as possible apart from the +real multiple precision computation, so that no time is spent on things +that not all callers need. + + A source operand is specified by a pointer to the least significant +limb and a limb count. A destination operand is specified by just a +pointer. It is the responsibility of the caller to ensure that the +destination has enough space for storing the result. + + With this way of specifying operands, it is possible to perform +computations on subranges of an argument, and store the result into a +subrange of a destination. + + A common requirement for all functions is that each source area +needs at least one limb. No size argument may be zero. Unless +otherwise stated, in-place operations are allowed where source and +destination are the same, but not where they only partly overlap. + + The `mpn' functions are the base for the implementation of the +`mpz_', `mpf_', and `mpq_' functions. + + This example adds the number beginning at S1P and the number +beginning at S2P and writes the sum at DESTP. All areas have N limbs. + + cy = mpn_add_n (destp, s1p, s2p, n) + + It should be noted that the `mpn' functions make no attempt to +identify high or low zero limbs on their operands, or other special +forms. On random data such cases will be unlikely and it'd be wasteful +for every function to check every time. An application knowing +something about its data can take steps to trim or perhaps split its +calculations. + + +In the notation used below, a source operand is identified by the +pointer to the least significant limb, and the limb count in braces. +For example, {S1P, S1N}. + + -- Function: mp_limb_t mpn_add_n (mp_limb_t *RP, const mp_limb_t *S1P, + const mp_limb_t *S2P, mp_size_t N) + Add {S1P, N} and {S2P, N}, and write the N least significant limbs + of the result to RP. Return carry, either 0 or 1. + + This is the lowest-level function for addition. It is the + preferred function for addition, since it is written in assembly + for most CPUs. For addition of a variable to itself (i.e., S1P + equals S2P) use `mpn_lshift' with a count of 1 for optimal speed. + + -- Function: mp_limb_t mpn_add_1 (mp_limb_t *RP, const mp_limb_t *S1P, + mp_size_t N, mp_limb_t S2LIMB) + Add {S1P, N} and S2LIMB, and write the N least significant limbs + of the result to RP. Return carry, either 0 or 1. + + -- Function: mp_limb_t mpn_add (mp_limb_t *RP, const mp_limb_t *S1P, + mp_size_t S1N, const mp_limb_t *S2P, mp_size_t S2N) + Add {S1P, S1N} and {S2P, S2N}, and write the S1N least significant + limbs of the result to RP. Return carry, either 0 or 1. + + This function requires that S1N is greater than or equal to S2N. + + -- Function: mp_limb_t mpn_sub_n (mp_limb_t *RP, const mp_limb_t *S1P, + const mp_limb_t *S2P, mp_size_t N) + Subtract {S2P, N} from {S1P, N}, and write the N least significant + limbs of the result to RP. Return borrow, either 0 or 1. + + This is the lowest-level function for subtraction. It is the + preferred function for subtraction, since it is written in + assembly for most CPUs. + + -- Function: mp_limb_t mpn_sub_1 (mp_limb_t *RP, const mp_limb_t *S1P, + mp_size_t N, mp_limb_t S2LIMB) + Subtract S2LIMB from {S1P, N}, and write the N least significant + limbs of the result to RP. Return borrow, either 0 or 1. + + -- Function: mp_limb_t mpn_sub (mp_limb_t *RP, const mp_limb_t *S1P, + mp_size_t S1N, const mp_limb_t *S2P, mp_size_t S2N) + Subtract {S2P, S2N} from {S1P, S1N}, and write the S1N least + significant limbs of the result to RP. Return borrow, either 0 or + 1. + + This function requires that S1N is greater than or equal to S2N. + + -- Function: void mpn_neg (mp_limb_t *RP, const mp_limb_t *SP, + mp_size_t N) + Perform the negation of {SP, N}, and write the result to {RP, N}. + Return carry-out. + + -- Function: void mpn_mul_n (mp_limb_t *RP, const mp_limb_t *S1P, + const mp_limb_t *S2P, mp_size_t N) + Multiply {S1P, N} and {S2P, N}, and write the 2*N-limb result to + RP. + + The destination has to have space for 2*N limbs, even if the + product's most significant limb is zero. No overlap is permitted + between the destination and either source. + + If the two input operands are the same, use `mpn_sqr'. + + -- Function: mp_limb_t mpn_mul (mp_limb_t *RP, const mp_limb_t *S1P, + mp_size_t S1N, const mp_limb_t *S2P, mp_size_t S2N) + Multiply {S1P, S1N} and {S2P, S2N}, and write the (S1N+S2N)-limb + result to RP. Return the most significant limb of the result. + + The destination has to have space for S1N + S2N limbs, even if the + product's most significant limb is zero. No overlap is permitted + between the destination and either source. + + This function requires that S1N is greater than or equal to S2N. + + -- Function: void mpn_sqr (mp_limb_t *RP, const mp_limb_t *S1P, + mp_size_t N) + Compute the square of {S1P, N} and write the 2*N-limb result to RP. + + The destination has to have space for 2*N limbs, even if the + result's most significant limb is zero. No overlap is permitted + between the destination and the source. + + -- Function: mp_limb_t mpn_mul_1 (mp_limb_t *RP, const mp_limb_t *S1P, + mp_size_t N, mp_limb_t S2LIMB) + Multiply {S1P, N} by S2LIMB, and write the N least significant + limbs of the product to RP. Return the most significant limb of + the product. {S1P, N} and {RP, N} are allowed to overlap provided + RP <= S1P. + + This is a low-level function that is a building block for general + multiplication as well as other operations in GMP. It is written + in assembly for most CPUs. + + Don't call this function if S2LIMB is a power of 2; use + `mpn_lshift' with a count equal to the logarithm of S2LIMB + instead, for optimal speed. + + -- Function: mp_limb_t mpn_addmul_1 (mp_limb_t *RP, const mp_limb_t + *S1P, mp_size_t N, mp_limb_t S2LIMB) + Multiply {S1P, N} and S2LIMB, and add the N least significant + limbs of the product to {RP, N} and write the result to RP. + Return the most significant limb of the product, plus carry-out + from the addition. + + This is a low-level function that is a building block for general + multiplication as well as other operations in GMP. It is written + in assembly for most CPUs. + + -- Function: mp_limb_t mpn_submul_1 (mp_limb_t *RP, const mp_limb_t + *S1P, mp_size_t N, mp_limb_t S2LIMB) + Multiply {S1P, N} and S2LIMB, and subtract the N least significant + limbs of the product from {RP, N} and write the result to RP. + Return the most significant limb of the product, plus borrow-out + from the subtraction. + + This is a low-level function that is a building block for general + multiplication and division as well as other operations in GMP. + It is written in assembly for most CPUs. + + -- Function: void mpn_tdiv_qr (mp_limb_t *QP, mp_limb_t *RP, mp_size_t + QXN, const mp_limb_t *NP, mp_size_t NN, const mp_limb_t *DP, + mp_size_t DN) + Divide {NP, NN} by {DP, DN} and put the quotient at {QP, NN-DN+1} + and the remainder at {RP, DN}. The quotient is rounded towards 0. + + No overlap is permitted between arguments, except that NP might + equal RP. The dividend size NN must be greater than or equal to + divisor size DN. The most significant limb of the divisor must be + non-zero. The QXN operand must be zero. + + -- Function: mp_limb_t mpn_divrem (mp_limb_t *R1P, mp_size_t QXN, + mp_limb_t *RS2P, mp_size_t RS2N, const mp_limb_t *S3P, + mp_size_t S3N) + [This function is obsolete. Please call `mpn_tdiv_qr' instead for + best performance.] + + Divide {RS2P, RS2N} by {S3P, S3N}, and write the quotient at R1P, + with the exception of the most significant limb, which is + returned. The remainder replaces the dividend at RS2P; it will be + S3N limbs long (i.e., as many limbs as the divisor). + + In addition to an integer quotient, QXN fraction limbs are + developed, and stored after the integral limbs. For most usages, + QXN will be zero. + + It is required that RS2N is greater than or equal to S3N. It is + required that the most significant bit of the divisor is set. + + If the quotient is not needed, pass RS2P + S3N as R1P. Aside from + that special case, no overlap between arguments is permitted. + + Return the most significant limb of the quotient, either 0 or 1. + + The area at R1P needs to be RS2N - S3N + QXN limbs large. + + -- Function: mp_limb_t mpn_divrem_1 (mp_limb_t *R1P, mp_size_t QXN, + mp_limb_t *S2P, mp_size_t S2N, mp_limb_t S3LIMB) + -- Macro: mp_limb_t mpn_divmod_1 (mp_limb_t *R1P, mp_limb_t *S2P, + mp_size_t S2N, mp_limb_t S3LIMB) + Divide {S2P, S2N} by S3LIMB, and write the quotient at R1P. + Return the remainder. + + The integer quotient is written to {R1P+QXN, S2N} and in addition + QXN fraction limbs are developed and written to {R1P, QXN}. + Either or both S2N and QXN can be zero. For most usages, QXN will + be zero. + + `mpn_divmod_1' exists for upward source compatibility and is + simply a macro calling `mpn_divrem_1' with a QXN of 0. + + The areas at R1P and S2P have to be identical or completely + separate, not partially overlapping. + + -- Function: mp_limb_t mpn_divmod (mp_limb_t *R1P, mp_limb_t *RS2P, + mp_size_t RS2N, const mp_limb_t *S3P, mp_size_t S3N) + [This function is obsolete. Please call `mpn_tdiv_qr' instead for + best performance.] + + -- Macro: mp_limb_t mpn_divexact_by3 (mp_limb_t *RP, mp_limb_t *SP, + mp_size_t N) + -- Function: mp_limb_t mpn_divexact_by3c (mp_limb_t *RP, mp_limb_t + *SP, mp_size_t N, mp_limb_t CARRY) + Divide {SP, N} by 3, expecting it to divide exactly, and writing + the result to {RP, N}. If 3 divides exactly, the return value is + zero and the result is the quotient. If not, the return value is + non-zero and the result won't be anything useful. + + `mpn_divexact_by3c' takes an initial carry parameter, which can be + the return value from a previous call, so a large calculation can + be done piece by piece from low to high. `mpn_divexact_by3' is + simply a macro calling `mpn_divexact_by3c' with a 0 carry + parameter. + + These routines use a multiply-by-inverse and will be faster than + `mpn_divrem_1' on CPUs with fast multiplication but slow division. + + The source a, result q, size n, initial carry i, and return value + c satisfy c*b^n + a-i = 3*q, where b=2^GMP_NUMB_BITS. The return + c is always 0, 1 or 2, and the initial carry i must also be 0, 1 + or 2 (these are both borrows really). When c=0 clearly q=(a-i)/3. + When c!=0, the remainder (a-i) mod 3 is given by 3-c, because b + == 1 mod 3 (when `mp_bits_per_limb' is even, which is always so + currently). + + -- Function: mp_limb_t mpn_mod_1 (mp_limb_t *S1P, mp_size_t S1N, + mp_limb_t S2LIMB) + Divide {S1P, S1N} by S2LIMB, and return the remainder. S1N can be + zero. + + -- Function: mp_limb_t mpn_lshift (mp_limb_t *RP, const mp_limb_t *SP, + mp_size_t N, unsigned int COUNT) + Shift {SP, N} left by COUNT bits, and write the result to {RP, N}. + The bits shifted out at the left are returned in the least + significant COUNT bits of the return value (the rest of the return + value is zero). + + COUNT must be in the range 1 to mp_bits_per_limb-1. The regions + {SP, N} and {RP, N} may overlap, provided RP >= SP. + + This function is written in assembly for most CPUs. + + -- Function: mp_limb_t mpn_rshift (mp_limb_t *RP, const mp_limb_t *SP, + mp_size_t N, unsigned int COUNT) + Shift {SP, N} right by COUNT bits, and write the result to {RP, + N}. The bits shifted out at the right are returned in the most + significant COUNT bits of the return value (the rest of the return + value is zero). + + COUNT must be in the range 1 to mp_bits_per_limb-1. The regions + {SP, N} and {RP, N} may overlap, provided RP <= SP. + + This function is written in assembly for most CPUs. + + -- Function: int mpn_cmp (const mp_limb_t *S1P, const mp_limb_t *S2P, + mp_size_t N) + Compare {S1P, N} and {S2P, N} and return a positive value if S1 > + S2, 0 if they are equal, or a negative value if S1 < S2. + + -- Function: mp_size_t mpn_gcd (mp_limb_t *RP, mp_limb_t *XP, + mp_size_t XN, mp_limb_t *YP, mp_size_t YN) + Set {RP, RETVAL} to the greatest common divisor of {XP, XN} and + {YP, YN}. The result can be up to YN limbs, the return value is + the actual number produced. Both source operands are destroyed. + + {XP, XN} must have at least as many bits as {YP, YN}. {YP, YN} + must be odd. Both operands must have non-zero most significant + limbs. No overlap is permitted between {XP, XN} and {YP, YN}. + + -- Function: mp_limb_t mpn_gcd_1 (const mp_limb_t *XP, mp_size_t XN, + mp_limb_t YLIMB) + Return the greatest common divisor of {XP, XN} and YLIMB. Both + operands must be non-zero. + + -- Function: mp_size_t mpn_gcdext (mp_limb_t *GP, mp_limb_t *SP, + mp_size_t *SN, mp_limb_t *XP, mp_size_t XN, mp_limb_t *YP, + mp_size_t YN) + Let U be defined by {XP, XN} and let V be defined by {YP, YN}. + + Compute the greatest common divisor G of U and V. Compute a + cofactor S such that G = US + VT. The second cofactor T is not + computed but can easily be obtained from (G - U*S) / V (the + division will be exact). It is required that U >= V > 0. + + S satisfies S = 1 or abs(S) < V / (2 G). S = 0 if and only if V + divides U (i.e., G = V). + + Store G at GP and let the return value define its limb count. + Store S at SP and let |*SN| define its limb count. S can be + negative; when this happens *SN will be negative. The areas at GP + and SP should each have room for XN+1 limbs. + + The areas {XP, XN+1} and {YP, YN+1} are destroyed (i.e. the input + operands plus an extra limb past the end of each). + + Compatibility note: GMP 4.3.0 and 4.3.1 defined S less strictly. + Earlier as well as later GMP releases define S as described here. + + -- Function: mp_size_t mpn_sqrtrem (mp_limb_t *R1P, mp_limb_t *R2P, + const mp_limb_t *SP, mp_size_t N) + Compute the square root of {SP, N} and put the result at {R1P, + ceil(N/2)} and the remainder at {R2P, RETVAL}. R2P needs space + for N limbs, but the return value indicates how many are produced. + + The most significant limb of {SP, N} must be non-zero. The areas + {R1P, ceil(N/2)} and {SP, N} must be completely separate. The + areas {R2P, N} and {SP, N} must be either identical or completely + separate. + + If the remainder is not wanted then R2P can be `NULL', and in this + case the return value is zero or non-zero according to whether the + remainder would have been zero or non-zero. + + A return value of zero indicates a perfect square. See also + `mpz_perfect_square_p'. + + -- Function: mp_size_t mpn_get_str (unsigned char *STR, int BASE, + mp_limb_t *S1P, mp_size_t S1N) + Convert {S1P, S1N} to a raw unsigned char array at STR in base + BASE, and return the number of characters produced. There may be + leading zeros in the string. The string is not in ASCII; to + convert it to printable format, add the ASCII codes for `0' or + `A', depending on the base and range. BASE can vary from 2 to 256. + + The most significant limb of the input {S1P, S1N} must be + non-zero. The input {S1P, S1N} is clobbered, except when BASE is + a power of 2, in which case it's unchanged. + + The area at STR has to have space for the largest possible number + represented by a S1N long limb array, plus one extra character. + + -- Function: mp_size_t mpn_set_str (mp_limb_t *RP, const unsigned char + *STR, size_t STRSIZE, int BASE) + Convert bytes {STR,STRSIZE} in the given BASE to limbs at RP. + + STR[0] is the most significant byte and STR[STRSIZE-1] is the + least significant. Each byte should be a value in the range 0 to + BASE-1, not an ASCII character. BASE can vary from 2 to 256. + + The return value is the number of limbs written to RP. If the most + significant input byte is non-zero then the high limb at RP will be + non-zero, and only that exact number of limbs will be required + there. + + If the most significant input byte is zero then there may be high + zero limbs written to RP and included in the return value. + + STRSIZE must be at least 1, and no overlap is permitted between + {STR,STRSIZE} and the result at RP. + + -- Function: mp_bitcnt_t mpn_scan0 (const mp_limb_t *S1P, mp_bitcnt_t + BIT) + Scan S1P from bit position BIT for the next clear bit. + + It is required that there be a clear bit within the area at S1P at + or beyond bit position BIT, so that the function has something to + return. + + -- Function: mp_bitcnt_t mpn_scan1 (const mp_limb_t *S1P, mp_bitcnt_t + BIT) + Scan S1P from bit position BIT for the next set bit. + + It is required that there be a set bit within the area at S1P at or + beyond bit position BIT, so that the function has something to + return. + + -- Function: void mpn_random (mp_limb_t *R1P, mp_size_t R1N) + -- Function: void mpn_random2 (mp_limb_t *R1P, mp_size_t R1N) + Generate a random number of length R1N and store it at R1P. The + most significant limb is always non-zero. `mpn_random' generates + uniformly distributed limb data, `mpn_random2' generates long + strings of zeros and ones in the binary representation. + + `mpn_random2' is intended for testing the correctness of the `mpn' + routines. + + -- Function: mp_bitcnt_t mpn_popcount (const mp_limb_t *S1P, mp_size_t + N) + Count the number of set bits in {S1P, N}. + + -- Function: mp_bitcnt_t mpn_hamdist (const mp_limb_t *S1P, const + mp_limb_t *S2P, mp_size_t N) + Compute the hamming distance between {S1P, N} and {S2P, N}, which + is the number of bit positions where the two operands have + different bit values. + + -- Function: int mpn_perfect_square_p (const mp_limb_t *S1P, mp_size_t + N) + Return non-zero iff {S1P, N} is a perfect square. + + -- Function: void mpn_and_n (mp_limb_t *RP, const mp_limb_t *S1P, + const mp_limb_t *S2P, mp_size_t N) + Perform the bitwise logical and of {S1P, N} and {S2P, N}, and + write the result to {RP, N}. + + -- Function: void mpn_ior_n (mp_limb_t *RP, const mp_limb_t *S1P, + const mp_limb_t *S2P, mp_size_t N) + Perform the bitwise logical inclusive or of {S1P, N} and {S2P, N}, + and write the result to {RP, N}. + + -- Function: void mpn_xor_n (mp_limb_t *RP, const mp_limb_t *S1P, + const mp_limb_t *S2P, mp_size_t N) + Perform the bitwise logical exclusive or of {S1P, N} and {S2P, N}, + and write the result to {RP, N}. + + -- Function: void mpn_andn_n (mp_limb_t *RP, const mp_limb_t *S1P, + const mp_limb_t *S2P, mp_size_t N) + Perform the bitwise logical and of {S1P, N} and the bitwise + complement of {S2P, N}, and write the result to {RP, N}. + + -- Function: void mpn_iorn_n (mp_limb_t *RP, const mp_limb_t *S1P, + const mp_limb_t *S2P, mp_size_t N) + Perform the bitwise logical inclusive or of {S1P, N} and the + bitwise complement of {S2P, N}, and write the result to {RP, N}. + + -- Function: void mpn_nand_n (mp_limb_t *RP, const mp_limb_t *S1P, + const mp_limb_t *S2P, mp_size_t N) + Perform the bitwise logical and of {S1P, N} and {S2P, N}, and + write the bitwise complement of the result to {RP, N}. + + -- Function: void mpn_nior_n (mp_limb_t *RP, const mp_limb_t *S1P, + const mp_limb_t *S2P, mp_size_t N) + Perform the bitwise logical inclusive or of {S1P, N} and {S2P, N}, + and write the bitwise complement of the result to {RP, N}. + + -- Function: void mpn_xnor_n (mp_limb_t *RP, const mp_limb_t *S1P, + const mp_limb_t *S2P, mp_size_t N) + Perform the bitwise logical exclusive or of {S1P, N} and {S2P, N}, + and write the bitwise complement of the result to {RP, N}. + + -- Function: void mpn_com (mp_limb_t *RP, const mp_limb_t *SP, + mp_size_t N) + Perform the bitwise complement of {SP, N}, and write the result to + {RP, N}. + + -- Function: void mpn_copyi (mp_limb_t *RP, const mp_limb_t *S1P, + mp_size_t N) + Copy from {S1P, N} to {RP, N}, increasingly. + + -- Function: void mpn_copyd (mp_limb_t *RP, const mp_limb_t *S1P, + mp_size_t N) + Copy from {S1P, N} to {RP, N}, decreasingly. + + -- Function: void mpn_zero (mp_limb_t *RP, mp_size_t N) + Zero {RP, N}. + + +8.1 Nails +========= + +*Everything in this section is highly experimental and may disappear or +be subject to incompatible changes in a future version of GMP.* + + Nails are an experimental feature whereby a few bits are left unused +at the top of each `mp_limb_t'. This can significantly improve carry +handling on some processors. + + All the `mpn' functions accepting limb data will expect the nail +bits to be zero on entry, and will return data with the nails similarly +all zero. This applies both to limb vectors and to single limb +arguments. + + Nails can be enabled by configuring with `--enable-nails'. By +default the number of bits will be chosen according to what suits the +host processor, but a particular number can be selected with +`--enable-nails=N'. + + At the mpn level, a nail build is neither source nor binary +compatible with a non-nail build, strictly speaking. But programs +acting on limbs only through the mpn functions are likely to work +equally well with either build, and judicious use of the definitions +below should make any program compatible with either build, at the +source level. + + For the higher level routines, meaning `mpz' etc, a nail build +should be fully source and binary compatible with a non-nail build. + + -- Macro: GMP_NAIL_BITS + -- Macro: GMP_NUMB_BITS + -- Macro: GMP_LIMB_BITS + `GMP_NAIL_BITS' is the number of nail bits, or 0 when nails are + not in use. `GMP_NUMB_BITS' is the number of data bits in a limb. + `GMP_LIMB_BITS' is the total number of bits in an `mp_limb_t'. In + all cases + + GMP_LIMB_BITS == GMP_NAIL_BITS + GMP_NUMB_BITS + + -- Macro: GMP_NAIL_MASK + -- Macro: GMP_NUMB_MASK + Bit masks for the nail and number parts of a limb. + `GMP_NAIL_MASK' is 0 when nails are not in use. + + `GMP_NAIL_MASK' is not often needed, since the nail part can be + obtained with `x >> GMP_NUMB_BITS', and that means one less large + constant, which can help various RISC chips. + + -- Macro: GMP_NUMB_MAX + The maximum value that can be stored in the number part of a limb. + This is the same as `GMP_NUMB_MASK', but can be used for clarity + when doing comparisons rather than bit-wise operations. + + The term "nails" comes from finger or toe nails, which are at the +ends of a limb (arm or leg). "numb" is short for number, but is also +how the developers felt after trying for a long time to come up with +sensible names for these things. + + In the future (the distant future most likely) a non-zero nail might +be permitted, giving non-unique representations for numbers in a limb +vector. This would help vector processors since carries would only +ever need to propagate one or two limbs. + + +File: gmp.info, Node: Random Number Functions, Next: Formatted Output, Prev: Low-level Functions, Up: Top + +9 Random Number Functions +************************* + +Sequences of pseudo-random numbers in GMP are generated using a +variable of type `gmp_randstate_t', which holds an algorithm selection +and a current state. Such a variable must be initialized by a call to +one of the `gmp_randinit' functions, and can be seeded with one of the +`gmp_randseed' functions. + + The functions actually generating random numbers are described in +*Note Integer Random Numbers::, and *Note Miscellaneous Float +Functions::. + + The older style random number functions don't accept a +`gmp_randstate_t' parameter but instead share a global variable of that +type. They use a default algorithm and are currently not seeded +(though perhaps that will change in the future). The new functions +accepting a `gmp_randstate_t' are recommended for applications that +care about randomness. + +* Menu: + +* Random State Initialization:: +* Random State Seeding:: +* Random State Miscellaneous:: + + +File: gmp.info, Node: Random State Initialization, Next: Random State Seeding, Prev: Random Number Functions, Up: Random Number Functions + +9.1 Random State Initialization +=============================== + + -- Function: void gmp_randinit_default (gmp_randstate_t STATE) + Initialize STATE with a default algorithm. This will be a + compromise between speed and randomness, and is recommended for + applications with no special requirements. Currently this is + `gmp_randinit_mt'. + + -- Function: void gmp_randinit_mt (gmp_randstate_t STATE) + Initialize STATE for a Mersenne Twister algorithm. This algorithm + is fast and has good randomness properties. + + -- Function: void gmp_randinit_lc_2exp (gmp_randstate_t STATE, mpz_t + A, unsigned long C, mp_bitcnt_t M2EXP) + Initialize STATE with a linear congruential algorithm X = (A*X + + C) mod 2^M2EXP. + + The low bits of X in this algorithm are not very random. The least + significant bit will have a period no more than 2, and the second + bit no more than 4, etc. For this reason only the high half of + each X is actually used. + + When a random number of more than M2EXP/2 bits is to be generated, + multiple iterations of the recurrence are used and the results + concatenated. + + -- Function: int gmp_randinit_lc_2exp_size (gmp_randstate_t STATE, + mp_bitcnt_t SIZE) + Initialize STATE for a linear congruential algorithm as per + `gmp_randinit_lc_2exp'. A, C and M2EXP are selected from a table, + chosen so that SIZE bits (or more) of each X will be used, ie. + M2EXP/2 >= SIZE. + + If successful the return value is non-zero. If SIZE is bigger + than the table data provides then the return value is zero. The + maximum SIZE currently supported is 128. + + -- Function: void gmp_randinit_set (gmp_randstate_t ROP, + gmp_randstate_t OP) + Initialize ROP with a copy of the algorithm and state from OP. + + -- Function: void gmp_randinit (gmp_randstate_t STATE, + gmp_randalg_t ALG, ...) + *This function is obsolete.* + + Initialize STATE with an algorithm selected by ALG. The only + choice is `GMP_RAND_ALG_LC', which is `gmp_randinit_lc_2exp_size' + described above. A third parameter of type `unsigned long' is + required, this is the SIZE for that function. + `GMP_RAND_ALG_DEFAULT' or 0 are the same as `GMP_RAND_ALG_LC'. + + `gmp_randinit' sets bits in the global variable `gmp_errno' to + indicate an error. `GMP_ERROR_UNSUPPORTED_ARGUMENT' if ALG is + unsupported, or `GMP_ERROR_INVALID_ARGUMENT' if the SIZE parameter + is too big. It may be noted this error reporting is not thread + safe (a good reason to use `gmp_randinit_lc_2exp_size' instead). + + -- Function: void gmp_randclear (gmp_randstate_t STATE) + Free all memory occupied by STATE. + + +File: gmp.info, Node: Random State Seeding, Next: Random State Miscellaneous, Prev: Random State Initialization, Up: Random Number Functions + +9.2 Random State Seeding +======================== + + -- Function: void gmp_randseed (gmp_randstate_t STATE, mpz_t SEED) + -- Function: void gmp_randseed_ui (gmp_randstate_t STATE, + unsigned long int SEED) + Set an initial seed value into STATE. + + The size of a seed determines how many different sequences of + random numbers that it's possible to generate. The "quality" of + the seed is the randomness of a given seed compared to the + previous seed used, and this affects the randomness of separate + number sequences. The method for choosing a seed is critical if + the generated numbers are to be used for important applications, + such as generating cryptographic keys. + + Traditionally the system time has been used to seed, but care + needs to be taken with this. If an application seeds often and + the resolution of the system clock is low, then the same sequence + of numbers might be repeated. Also, the system time is quite easy + to guess, so if unpredictability is required then it should + definitely not be the only source for the seed value. On some + systems there's a special device `/dev/random' which provides + random data better suited for use as a seed. + + +File: gmp.info, Node: Random State Miscellaneous, Prev: Random State Seeding, Up: Random Number Functions + +9.3 Random State Miscellaneous +============================== + + -- Function: unsigned long gmp_urandomb_ui (gmp_randstate_t STATE, + unsigned long N) + Return a uniformly distributed random number of N bits, ie. in the + range 0 to 2^N-1 inclusive. N must be less than or equal to the + number of bits in an `unsigned long'. + + -- Function: unsigned long gmp_urandomm_ui (gmp_randstate_t STATE, + unsigned long N) + Return a uniformly distributed random number in the range 0 to + N-1, inclusive. + + +File: gmp.info, Node: Formatted Output, Next: Formatted Input, Prev: Random Number Functions, Up: Top + +10 Formatted Output +******************* + +* Menu: + +* Formatted Output Strings:: +* Formatted Output Functions:: +* C++ Formatted Output:: + + +File: gmp.info, Node: Formatted Output Strings, Next: Formatted Output Functions, Prev: Formatted Output, Up: Formatted Output + +10.1 Format Strings +=================== + +`gmp_printf' and friends accept format strings similar to the standard C +`printf' (*note Formatted Output: (libc)Formatted Output.). A format +specification is of the form + + % [flags] [width] [.[precision]] [type] conv + + GMP adds types `Z', `Q' and `F' for `mpz_t', `mpq_t' and `mpf_t' +respectively, `M' for `mp_limb_t', and `N' for an `mp_limb_t' array. +`Z', `Q', `M' and `N' behave like integers. `Q' will print a `/' and a +denominator, if needed. `F' behaves like a float. For example, + + mpz_t z; + gmp_printf ("%s is an mpz %Zd\n", "here", z); + + mpq_t q; + gmp_printf ("a hex rational: %#40Qx\n", q); + + mpf_t f; + int n; + gmp_printf ("fixed point mpf %.*Ff with %d digits\n", n, f, n); + + mp_limb_t l; + gmp_printf ("limb %Mu\n", l); + + const mp_limb_t *ptr; + mp_size_t size; + gmp_printf ("limb array %Nx\n", ptr, size); + + For `N' the limbs are expected least significant first, as per the +`mpn' functions (*note Low-level Functions::). A negative size can be +given to print the value as a negative. + + All the standard C `printf' types behave the same as the C library +`printf', and can be freely intermixed with the GMP extensions. In the +current implementation the standard parts of the format string are +simply handed to `printf' and only the GMP extensions handled directly. + + The flags accepted are as follows. GLIBC style ' is only for the +standard C types (not the GMP types), and only if the C library +supports it. + + 0 pad with zeros (rather than spaces) + # show the base with `0x', `0X' or `0' + + always show a sign + (space) show a space or a `-' sign + ' group digits, GLIBC style (not GMP types) + + The optional width and precision can be given as a number within the +format string, or as a `*' to take an extra parameter of type `int', the +same as the standard `printf'. + + The standard types accepted are as follows. `h' and `l' are +portable, the rest will depend on the compiler (or include files) for +the type and the C library for the output. + + h short + hh char + j intmax_t or uintmax_t + l long or wchar_t + ll long long + L long double + q quad_t or u_quad_t + t ptrdiff_t + z size_t + +The GMP types are + + F mpf_t, float conversions + Q mpq_t, integer conversions + M mp_limb_t, integer conversions + N mp_limb_t array, integer conversions + Z mpz_t, integer conversions + + The conversions accepted are as follows. `a' and `A' are always +supported for `mpf_t' but depend on the C library for standard C float +types. `m' and `p' depend on the C library. + + a A hex floats, C99 style + c character + d decimal integer + e E scientific format float + f fixed point float + i same as d + g G fixed or scientific float + m `strerror' string, GLIBC style + n store characters written so far + o octal integer + p pointer + s string + u unsigned integer + x X hex integer + + `o', `x' and `X' are unsigned for the standard C types, but for +types `Z', `Q' and `N' they are signed. `u' is not meaningful for `Z', +`Q' and `N'. + + `M' is a proxy for the C library `l' or `L', according to the size +of `mp_limb_t'. Unsigned conversions will be usual, but a signed +conversion can be used and will interpret the value as a twos complement +negative. + + `n' can be used with any type, even the GMP types. + + Other types or conversions that might be accepted by the C library +`printf' cannot be used through `gmp_printf', this includes for +instance extensions registered with GLIBC `register_printf_function'. +Also currently there's no support for POSIX `$' style numbered arguments +(perhaps this will be added in the future). + + The precision field has it's usual meaning for integer `Z' and float +`F' types, but is currently undefined for `Q' and should not be used +with that. + + `mpf_t' conversions only ever generate as many digits as can be +accurately represented by the operand, the same as `mpf_get_str' does. +Zeros will be used if necessary to pad to the requested precision. This +happens even for an `f' conversion of an `mpf_t' which is an integer, +for instance 2^1024 in an `mpf_t' of 128 bits precision will only +produce about 40 digits, then pad with zeros to the decimal point. An +empty precision field like `%.Fe' or `%.Ff' can be used to specifically +request just the significant digits. + + The decimal point character (or string) is taken from the current +locale settings on systems which provide `localeconv' (*note Locales +and Internationalization: (libc)Locales.). The C library will normally +do the same for standard float output. + + The format string is only interpreted as plain `char's, multibyte +characters are not recognised. Perhaps this will change in the future. + + +File: gmp.info, Node: Formatted Output Functions, Next: C++ Formatted Output, Prev: Formatted Output Strings, Up: Formatted Output + +10.2 Functions +============== + +Each of the following functions is similar to the corresponding C +library function. The basic `printf' forms take a variable argument +list. The `vprintf' forms take an argument pointer, see *Note Variadic +Functions: (libc)Variadic Functions, or `man 3 va_start'. + + It should be emphasised that if a format string is invalid, or the +arguments don't match what the format specifies, then the behaviour of +any of these functions will be unpredictable. GCC format string +checking is not available, since it doesn't recognise the GMP +extensions. + + The file based functions `gmp_printf' and `gmp_fprintf' will return +-1 to indicate a write error. Output is not "atomic", so partial +output may be produced if a write error occurs. All the functions can +return -1 if the C library `printf' variant in use returns -1, but this +shouldn't normally occur. + + -- Function: int gmp_printf (const char *FMT, ...) + -- Function: int gmp_vprintf (const char *FMT, va_list AP) + Print to the standard output `stdout'. Return the number of + characters written, or -1 if an error occurred. + + -- Function: int gmp_fprintf (FILE *FP, const char *FMT, ...) + -- Function: int gmp_vfprintf (FILE *FP, const char *FMT, va_list AP) + Print to the stream FP. Return the number of characters written, + or -1 if an error occurred. + + -- Function: int gmp_sprintf (char *BUF, const char *FMT, ...) + -- Function: int gmp_vsprintf (char *BUF, const char *FMT, va_list AP) + Form a null-terminated string in BUF. Return the number of + characters written, excluding the terminating null. + + No overlap is permitted between the space at BUF and the string + FMT. + + These functions are not recommended, since there's no protection + against exceeding the space available at BUF. + + -- Function: int gmp_snprintf (char *BUF, size_t SIZE, const char + *FMT, ...) + -- Function: int gmp_vsnprintf (char *BUF, size_t SIZE, const char + *FMT, va_list AP) + Form a null-terminated string in BUF. No more than SIZE bytes + will be written. To get the full output, SIZE must be enough for + the string and null-terminator. + + The return value is the total number of characters which ought to + have been produced, excluding the terminating null. If RETVAL >= + SIZE then the actual output has been truncated to the first SIZE-1 + characters, and a null appended. + + No overlap is permitted between the region {BUF,SIZE} and the FMT + string. + + Notice the return value is in ISO C99 `snprintf' style. This is + so even if the C library `vsnprintf' is the older GLIBC 2.0.x + style. + + -- Function: int gmp_asprintf (char **PP, const char *FMT, ...) + -- Function: int gmp_vasprintf (char **PP, const char *FMT, va_list AP) + Form a null-terminated string in a block of memory obtained from + the current memory allocation function (*note Custom + Allocation::). The block will be the size of the string and + null-terminator. The address of the block in stored to *PP. The + return value is the number of characters produced, excluding the + null-terminator. + + Unlike the C library `asprintf', `gmp_asprintf' doesn't return -1 + if there's no more memory available, it lets the current allocation + function handle that. + + -- Function: int gmp_obstack_printf (struct obstack *OB, const char + *FMT, ...) + -- Function: int gmp_obstack_vprintf (struct obstack *OB, const char + *FMT, va_list AP) + Append to the current object in OB. The return value is the + number of characters written. A null-terminator is not written. + + FMT cannot be within the current object in OB, since that object + might move as it grows. + + These functions are available only when the C library provides the + obstack feature, which probably means only on GNU systems, see + *Note Obstacks: (libc)Obstacks. + + +File: gmp.info, Node: C++ Formatted Output, Prev: Formatted Output Functions, Up: Formatted Output + +10.3 C++ Formatted Output +========================= + +The following functions are provided in `libgmpxx' (*note Headers and +Libraries::), which is built if C++ support is enabled (*note Build +Options::). Prototypes are available from `'. + + -- Function: ostream& operator<< (ostream& STREAM, mpz_t OP) + Print OP to STREAM, using its `ios' formatting settings. + `ios::width' is reset to 0 after output, the same as the standard + `ostream operator<<' routines do. + + In hex or octal, OP is printed as a signed number, the same as for + decimal. This is unlike the standard `operator<<' routines on + `int' etc, which instead give twos complement. + + -- Function: ostream& operator<< (ostream& STREAM, mpq_t OP) + Print OP to STREAM, using its `ios' formatting settings. + `ios::width' is reset to 0 after output, the same as the standard + `ostream operator<<' routines do. + + Output will be a fraction like `5/9', or if the denominator is 1 + then just a plain integer like `123'. + + In hex or octal, OP is printed as a signed value, the same as for + decimal. If `ios::showbase' is set then a base indicator is shown + on both the numerator and denominator (if the denominator is + required). + + -- Function: ostream& operator<< (ostream& STREAM, mpf_t OP) + Print OP to STREAM, using its `ios' formatting settings. + `ios::width' is reset to 0 after output, the same as the standard + `ostream operator<<' routines do. + + The decimal point follows the standard library float `operator<<', + which on recent systems means the `std::locale' imbued on STREAM. + + Hex and octal are supported, unlike the standard `operator<<' on + `double'. The mantissa will be in hex or octal, the exponent will + be in decimal. For hex the exponent delimiter is an `@'. This is + as per `mpf_out_str'. + + `ios::showbase' is supported, and will put a base on the mantissa, + for example hex `0x1.8' or `0x0.8', or octal `01.4' or `00.4'. + This last form is slightly strange, but at least differentiates + itself from decimal. + + These operators mean that GMP types can be printed in the usual C++ +way, for example, + + mpz_t z; + int n; + ... + cout << "iteration " << n << " value " << z << "\n"; + + But note that `ostream' output (and `istream' input, *note C++ +Formatted Input::) is the only overloading available for the GMP types +and that for instance using `+' with an `mpz_t' will have unpredictable +results. For classes with overloading, see *Note C++ Class Interface::. + + +File: gmp.info, Node: Formatted Input, Next: C++ Class Interface, Prev: Formatted Output, Up: Top + +11 Formatted Input +****************** + +* Menu: + +* Formatted Input Strings:: +* Formatted Input Functions:: +* C++ Formatted Input:: + + +File: gmp.info, Node: Formatted Input Strings, Next: Formatted Input Functions, Prev: Formatted Input, Up: Formatted Input + +11.1 Formatted Input Strings +============================ + +`gmp_scanf' and friends accept format strings similar to the standard C +`scanf' (*note Formatted Input: (libc)Formatted Input.). A format +specification is of the form + + % [flags] [width] [type] conv + + GMP adds types `Z', `Q' and `F' for `mpz_t', `mpq_t' and `mpf_t' +respectively. `Z' and `Q' behave like integers. `Q' will read a `/' +and a denominator, if present. `F' behaves like a float. + + GMP variables don't require an `&' when passed to `gmp_scanf', since +they're already "call-by-reference". For example, + + /* to read say "a(5) = 1234" */ + int n; + mpz_t z; + gmp_scanf ("a(%d) = %Zd\n", &n, z); + + mpq_t q1, q2; + gmp_sscanf ("0377 + 0x10/0x11", "%Qi + %Qi", q1, q2); + + /* to read say "topleft (1.55,-2.66)" */ + mpf_t x, y; + char buf[32]; + gmp_scanf ("%31s (%Ff,%Ff)", buf, x, y); + + All the standard C `scanf' types behave the same as in the C library +`scanf', and can be freely intermixed with the GMP extensions. In the +current implementation the standard parts of the format string are +simply handed to `scanf' and only the GMP extensions handled directly. + + The flags accepted are as follows. `a' and `'' will depend on +support from the C library, and `'' cannot be used with GMP types. + + * read but don't store + a allocate a buffer (string conversions) + ' grouped digits, GLIBC style (not GMP + types) + + The standard types accepted are as follows. `h' and `l' are +portable, the rest will depend on the compiler (or include files) for +the type and the C library for the input. + + h short + hh char + j intmax_t or uintmax_t + l long int, double or wchar_t + ll long long + L long double + q quad_t or u_quad_t + t ptrdiff_t + z size_t + +The GMP types are + + F mpf_t, float conversions + Q mpq_t, integer conversions + Z mpz_t, integer conversions + + The conversions accepted are as follows. `p' and `[' will depend on +support from the C library, the rest are standard. + + c character or characters + d decimal integer + e E f g G float + i integer with base indicator + n characters read so far + o octal integer + p pointer + s string of non-whitespace characters + u decimal integer + x X hex integer + [ string of characters in a set + + `e', `E', `f', `g' and `G' are identical, they all read either fixed +point or scientific format, and either upper or lower case `e' for the +exponent in scientific format. + + C99 style hex float format (`printf %a', *note Formatted Output +Strings::) is always accepted for `mpf_t', but for the standard float +types it will depend on the C library. + + `x' and `X' are identical, both accept both upper and lower case +hexadecimal. + + `o', `u', `x' and `X' all read positive or negative values. For the +standard C types these are described as "unsigned" conversions, but +that merely affects certain overflow handling, negatives are still +allowed (per `strtoul', *note Parsing of Integers: (libc)Parsing of +Integers.). For GMP types there are no overflows, so `d' and `u' are +identical. + + `Q' type reads the numerator and (optional) denominator as given. +If the value might not be in canonical form then `mpq_canonicalize' +must be called before using it in any calculations (*note Rational +Number Functions::). + + `Qi' will read a base specification separately for the numerator and +denominator. For example `0x10/11' would be 16/11, whereas `0x10/0x11' +would be 16/17. + + `n' can be used with any of the types above, even the GMP types. +`*' to suppress assignment is allowed, though in that case it would do +nothing at all. + + Other conversions or types that might be accepted by the C library +`scanf' cannot be used through `gmp_scanf'. + + Whitespace is read and discarded before a field, except for `c' and +`[' conversions. + + For float conversions, the decimal point character (or string) +expected is taken from the current locale settings on systems which +provide `localeconv' (*note Locales and Internationalization: +(libc)Locales.). The C library will normally do the same for standard +float input. + + The format string is only interpreted as plain `char's, multibyte +characters are not recognised. Perhaps this will change in the future. + + +File: gmp.info, Node: Formatted Input Functions, Next: C++ Formatted Input, Prev: Formatted Input Strings, Up: Formatted Input + +11.2 Formatted Input Functions +============================== + +Each of the following functions is similar to the corresponding C +library function. The plain `scanf' forms take a variable argument +list. The `vscanf' forms take an argument pointer, see *Note Variadic +Functions: (libc)Variadic Functions, or `man 3 va_start'. + + It should be emphasised that if a format string is invalid, or the +arguments don't match what the format specifies, then the behaviour of +any of these functions will be unpredictable. GCC format string +checking is not available, since it doesn't recognise the GMP +extensions. + + No overlap is permitted between the FMT string and any of the results +produced. + + -- Function: int gmp_scanf (const char *FMT, ...) + -- Function: int gmp_vscanf (const char *FMT, va_list AP) + Read from the standard input `stdin'. + + -- Function: int gmp_fscanf (FILE *FP, const char *FMT, ...) + -- Function: int gmp_vfscanf (FILE *FP, const char *FMT, va_list AP) + Read from the stream FP. + + -- Function: int gmp_sscanf (const char *S, const char *FMT, ...) + -- Function: int gmp_vsscanf (const char *S, const char *FMT, va_list + AP) + Read from a null-terminated string S. + + The return value from each of these functions is the same as the +standard C99 `scanf', namely the number of fields successfully parsed +and stored. `%n' fields and fields read but suppressed by `*' don't +count towards the return value. + + If end of input (or a file error) is reached before a character for +a field or a literal, and if no previous non-suppressed fields have +matched, then the return value is `EOF' instead of 0. A whitespace +character in the format string is only an optional match and doesn't +induce an `EOF' in this fashion. Leading whitespace read and discarded +for a field don't count as characters for that field. + + For the GMP types, input parsing follows C99 rules, namely one +character of lookahead is used and characters are read while they +continue to meet the format requirements. If this doesn't provide a +complete number then the function terminates, with that field not +stored nor counted towards the return value. For instance with `mpf_t' +an input `1.23e-XYZ' would be read up to the `X' and that character +pushed back since it's not a digit. The string `1.23e-' would then be +considered invalid since an `e' must be followed by at least one digit. + + For the standard C types, in the current implementation GMP calls +the C library `scanf' functions, which might have looser rules about +what constitutes a valid input. + + Note that `gmp_sscanf' is the same as `gmp_fscanf' and only does one +character of lookahead when parsing. Although clearly it could look at +its entire input, it is deliberately made identical to `gmp_fscanf', +the same way C99 `sscanf' is the same as `fscanf'. + + +File: gmp.info, Node: C++ Formatted Input, Prev: Formatted Input Functions, Up: Formatted Input + +11.3 C++ Formatted Input +======================== + +The following functions are provided in `libgmpxx' (*note Headers and +Libraries::), which is built only if C++ support is enabled (*note +Build Options::). Prototypes are available from `'. + + -- Function: istream& operator>> (istream& STREAM, mpz_t ROP) + Read ROP from STREAM, using its `ios' formatting settings. + + -- Function: istream& operator>> (istream& STREAM, mpq_t ROP) + An integer like `123' will be read, or a fraction like `5/9'. No + whitespace is allowed around the `/'. If the fraction is not in + canonical form then `mpq_canonicalize' must be called (*note + Rational Number Functions::) before operating on it. + + As per integer input, an `0' or `0x' base indicator is read when + none of `ios::dec', `ios::oct' or `ios::hex' are set. This is + done separately for numerator and denominator, so that for instance + `0x10/11' is 16/11 and `0x10/0x11' is 16/17. + + -- Function: istream& operator>> (istream& STREAM, mpf_t ROP) + Read ROP from STREAM, using its `ios' formatting settings. + + Hex or octal floats are not supported, but might be in the future, + or perhaps it's best to accept only what the standard float + `operator>>' does. + + Note that digit grouping specified by the `istream' locale is +currently not accepted. Perhaps this will change in the future. + + + These operators mean that GMP types can be read in the usual C++ +way, for example, + + mpz_t z; + ... + cin >> z; + + But note that `istream' input (and `ostream' output, *note C++ +Formatted Output::) is the only overloading available for the GMP types +and that for instance using `+' with an `mpz_t' will have unpredictable +results. For classes with overloading, see *Note C++ Class Interface::. + + +File: gmp.info, Node: C++ Class Interface, Next: BSD Compatible Functions, Prev: Formatted Input, Up: Top + +12 C++ Class Interface +********************** + +This chapter describes the C++ class based interface to GMP. + + All GMP C language types and functions can be used in C++ programs, +since `gmp.h' has `extern "C"' qualifiers, but the class interface +offers overloaded functions and operators which may be more convenient. + + Due to the implementation of this interface, a reasonably recent C++ +compiler is required, one supporting namespaces, partial specialization +of templates and member templates. For GCC this means version 2.91 or +later. + + *Everything described in this chapter is to be considered preliminary +and might be subject to incompatible changes if some unforeseen +difficulty reveals itself.* + +* Menu: + +* C++ Interface General:: +* C++ Interface Integers:: +* C++ Interface Rationals:: +* C++ Interface Floats:: +* C++ Interface Random Numbers:: +* C++ Interface Limitations:: + + +File: gmp.info, Node: C++ Interface General, Next: C++ Interface Integers, Prev: C++ Class Interface, Up: C++ Class Interface + +12.1 C++ Interface General +========================== + +All the C++ classes and functions are available with + + #include + + Programs should be linked with the `libgmpxx' and `libgmp' +libraries. For example, + + g++ mycxxprog.cc -lgmpxx -lgmp + +The classes defined are + + -- Class: mpz_class + -- Class: mpq_class + -- Class: mpf_class + + The standard operators and various standard functions are overloaded +to allow arithmetic with these classes. For example, + + int + main (void) + { + mpz_class a, b, c; + + a = 1234; + b = "-5678"; + c = a+b; + cout << "sum is " << c << "\n"; + cout << "absolute value is " << abs(c) << "\n"; + + return 0; + } + + An important feature of the implementation is that an expression like +`a=b+c' results in a single call to the corresponding `mpz_add', +without using a temporary for the `b+c' part. Expressions which by +their nature imply intermediate values, like `a=b*c+d*e', still use +temporaries though. + + The classes can be freely intermixed in expressions, as can the +classes and the standard types `long', `unsigned long' and `double'. +Smaller types like `int' or `float' can also be intermixed, since C++ +will promote them. + + Note that `bool' is not accepted directly, but must be explicitly +cast to an `int' first. This is because C++ will automatically convert +any pointer to a `bool', so if GMP accepted `bool' it would make all +sorts of invalid class and pointer combinations compile but almost +certainly not do anything sensible. + + Conversions back from the classes to standard C++ types aren't done +automatically, instead member functions like `get_si' are provided (see +the following sections for details). + + Also there are no automatic conversions from the classes to the +corresponding GMP C types, instead a reference to the underlying C +object can be obtained with the following functions, + + -- Function: mpz_t mpz_class::get_mpz_t () + -- Function: mpq_t mpq_class::get_mpq_t () + -- Function: mpf_t mpf_class::get_mpf_t () + + These can be used to call a C function which doesn't have a C++ class +interface. For example to set `a' to the GCD of `b' and `c', + + mpz_class a, b, c; + ... + mpz_gcd (a.get_mpz_t(), b.get_mpz_t(), c.get_mpz_t()); + + In the other direction, a class can be initialized from the +corresponding GMP C type, or assigned to if an explicit constructor is +used. In both cases this makes a copy of the value, it doesn't create +any sort of association. For example, + + mpz_t z; + // ... init and calculate z ... + mpz_class x(z); + mpz_class y; + y = mpz_class (z); + + There are no namespace setups in `gmpxx.h', all types and functions +are simply put into the global namespace. This is what `gmp.h' has +done in the past, and continues to do for compatibility. The extras +provided by `gmpxx.h' follow GMP naming conventions and are unlikely to +clash with anything. + + +File: gmp.info, Node: C++ Interface Integers, Next: C++ Interface Rationals, Prev: C++ Interface General, Up: C++ Class Interface + +12.2 C++ Interface Integers +=========================== + + -- Function: void mpz_class::mpz_class (type N) + Construct an `mpz_class'. All the standard C++ types may be used, + except `long long' and `long double', and all the GMP C++ classes + can be used. Any necessary conversion follows the corresponding C + function, for example `double' follows `mpz_set_d' (*note + Assigning Integers::). + + -- Function: void mpz_class::mpz_class (mpz_t Z) + Construct an `mpz_class' from an `mpz_t'. The value in Z is + copied into the new `mpz_class', there won't be any permanent + association between it and Z. + + -- Function: void mpz_class::mpz_class (const char *S) + -- Function: void mpz_class::mpz_class (const char *S, int BASE = 0) + -- Function: void mpz_class::mpz_class (const string& S) + -- Function: void mpz_class::mpz_class (const string& S, int BASE = 0) + Construct an `mpz_class' converted from a string using + `mpz_set_str' (*note Assigning Integers::). + + If the string is not a valid integer, an `std::invalid_argument' + exception is thrown. The same applies to `operator='. + + -- Function: mpz_class operator/ (mpz_class A, mpz_class D) + -- Function: mpz_class operator% (mpz_class A, mpz_class D) + Divisions involving `mpz_class' round towards zero, as per the + `mpz_tdiv_q' and `mpz_tdiv_r' functions (*note Integer Division::). + This is the same as the C99 `/' and `%' operators. + + The `mpz_fdiv...' or `mpz_cdiv...' functions can always be called + directly if desired. For example, + + mpz_class q, a, d; + ... + mpz_fdiv_q (q.get_mpz_t(), a.get_mpz_t(), d.get_mpz_t()); + + -- Function: mpz_class abs (mpz_class OP1) + -- Function: int cmp (mpz_class OP1, type OP2) + -- Function: int cmp (type OP1, mpz_class OP2) + -- Function: bool mpz_class::fits_sint_p (void) + -- Function: bool mpz_class::fits_slong_p (void) + -- Function: bool mpz_class::fits_sshort_p (void) + -- Function: bool mpz_class::fits_uint_p (void) + -- Function: bool mpz_class::fits_ulong_p (void) + -- Function: bool mpz_class::fits_ushort_p (void) + -- Function: double mpz_class::get_d (void) + -- Function: long mpz_class::get_si (void) + -- Function: string mpz_class::get_str (int BASE = 10) + -- Function: unsigned long mpz_class::get_ui (void) + -- Function: int mpz_class::set_str (const char *STR, int BASE) + -- Function: int mpz_class::set_str (const string& STR, int BASE) + -- Function: int sgn (mpz_class OP) + -- Function: mpz_class sqrt (mpz_class OP) + These functions provide a C++ class interface to the corresponding + GMP C routines. + + `cmp' can be used with any of the classes or the standard C++ + types, except `long long' and `long double'. + + + Overloaded operators for combinations of `mpz_class' and `double' +are provided for completeness, but it should be noted that if the given +`double' is not an integer then the way any rounding is done is +currently unspecified. The rounding might take place at the start, in +the middle, or at the end of the operation, and it might change in the +future. + + Conversions between `mpz_class' and `double', however, are defined +to follow the corresponding C functions `mpz_get_d' and `mpz_set_d'. +And comparisons are always made exactly, as per `mpz_cmp_d'. + + +File: gmp.info, Node: C++ Interface Rationals, Next: C++ Interface Floats, Prev: C++ Interface Integers, Up: C++ Class Interface + +12.3 C++ Interface Rationals +============================ + +In all the following constructors, if a fraction is given then it +should be in canonical form, or if not then `mpq_class::canonicalize' +called. + + -- Function: void mpq_class::mpq_class (type OP) + -- Function: void mpq_class::mpq_class (integer NUM, integer DEN) + Construct an `mpq_class'. The initial value can be a single value + of any type, or a pair of integers (`mpz_class' or standard C++ + integer types) representing a fraction, except that `long long' + and `long double' are not supported. For example, + + mpq_class q (99); + mpq_class q (1.75); + mpq_class q (1, 3); + + -- Function: void mpq_class::mpq_class (mpq_t Q) + Construct an `mpq_class' from an `mpq_t'. The value in Q is + copied into the new `mpq_class', there won't be any permanent + association between it and Q. + + -- Function: void mpq_class::mpq_class (const char *S) + -- Function: void mpq_class::mpq_class (const char *S, int BASE = 0) + -- Function: void mpq_class::mpq_class (const string& S) + -- Function: void mpq_class::mpq_class (const string& S, int BASE = 0) + Construct an `mpq_class' converted from a string using + `mpq_set_str' (*note Initializing Rationals::). + + If the string is not a valid rational, an `std::invalid_argument' + exception is thrown. The same applies to `operator='. + + -- Function: void mpq_class::canonicalize () + Put an `mpq_class' into canonical form, as per *Note Rational + Number Functions::. All arithmetic operators require their + operands in canonical form, and will return results in canonical + form. + + -- Function: mpq_class abs (mpq_class OP) + -- Function: int cmp (mpq_class OP1, type OP2) + -- Function: int cmp (type OP1, mpq_class OP2) + -- Function: double mpq_class::get_d (void) + -- Function: string mpq_class::get_str (int BASE = 10) + -- Function: int mpq_class::set_str (const char *STR, int BASE) + -- Function: int mpq_class::set_str (const string& STR, int BASE) + -- Function: int sgn (mpq_class OP) + These functions provide a C++ class interface to the corresponding + GMP C routines. + + `cmp' can be used with any of the classes or the standard C++ + types, except `long long' and `long double'. + + -- Function: mpz_class& mpq_class::get_num () + -- Function: mpz_class& mpq_class::get_den () + Get a reference to an `mpz_class' which is the numerator or + denominator of an `mpq_class'. This can be used both for read and + write access. If the object returned is modified, it modifies the + original `mpq_class'. + + If direct manipulation might produce a non-canonical value, then + `mpq_class::canonicalize' must be called before further operations. + + -- Function: mpz_t mpq_class::get_num_mpz_t () + -- Function: mpz_t mpq_class::get_den_mpz_t () + Get a reference to the underlying `mpz_t' numerator or denominator + of an `mpq_class'. This can be passed to C functions expecting an + `mpz_t'. Any modifications made to the `mpz_t' will modify the + original `mpq_class'. + + If direct manipulation might produce a non-canonical value, then + `mpq_class::canonicalize' must be called before further operations. + + -- Function: istream& operator>> (istream& STREAM, mpq_class& ROP); + Read ROP from STREAM, using its `ios' formatting settings, the + same as `mpq_t operator>>' (*note C++ Formatted Input::). + + If the ROP read might not be in canonical form then + `mpq_class::canonicalize' must be called. + + +File: gmp.info, Node: C++ Interface Floats, Next: C++ Interface Random Numbers, Prev: C++ Interface Rationals, Up: C++ Class Interface + +12.4 C++ Interface Floats +========================= + +When an expression requires the use of temporary intermediate +`mpf_class' values, like `f=g*h+x*y', those temporaries will have the +same precision as the destination `f'. Explicit constructors can be +used if this doesn't suit. + + -- Function: mpf_class::mpf_class (type OP) + -- Function: mpf_class::mpf_class (type OP, unsigned long PREC) + Construct an `mpf_class'. Any standard C++ type can be used, + except `long long' and `long double', and any of the GMP C++ + classes can be used. + + If PREC is given, the initial precision is that value, in bits. If + PREC is not given, then the initial precision is determined by the + type of OP given. An `mpz_class', `mpq_class', or C++ builtin + type will give the default `mpf' precision (*note Initializing + Floats::). An `mpf_class' or expression will give the precision + of that value. The precision of a binary expression is the higher + of the two operands. + + mpf_class f(1.5); // default precision + mpf_class f(1.5, 500); // 500 bits (at least) + mpf_class f(x); // precision of x + mpf_class f(abs(x)); // precision of x + mpf_class f(-g, 1000); // 1000 bits (at least) + mpf_class f(x+y); // greater of precisions of x and y + + -- Function: void mpf_class::mpf_class (const char *S) + -- Function: void mpf_class::mpf_class (const char *S, unsigned long + PREC, int BASE = 0) + -- Function: void mpf_class::mpf_class (const string& S) + -- Function: void mpf_class::mpf_class (const string& S, unsigned long + PREC, int BASE = 0) + Construct an `mpf_class' converted from a string using + `mpf_set_str' (*note Assigning Floats::). If PREC is given, the + initial precision is that value, in bits. If not, the default + `mpf' precision (*note Initializing Floats::) is used. + + If the string is not a valid float, an `std::invalid_argument' + exception is thrown. The same applies to `operator='. + + -- Function: mpf_class& mpf_class::operator= (type OP) + Convert and store the given OP value to an `mpf_class' object. The + same types are accepted as for the constructors above. + + Note that `operator=' only stores a new value, it doesn't copy or + change the precision of the destination, instead the value is + truncated if necessary. This is the same as `mpf_set' etc. Note + in particular this means for `mpf_class' a copy constructor is not + the same as a default constructor plus assignment. + + mpf_class x (y); // x created with precision of y + + mpf_class x; // x created with default precision + x = y; // value truncated to that precision + + Applications using templated code may need to be careful about the + assumptions the code makes in this area, when working with + `mpf_class' values of various different or non-default precisions. + For instance implementations of the standard `complex' template + have been seen in both styles above, though of course `complex' is + normally only actually specified for use with the builtin float + types. + + -- Function: mpf_class abs (mpf_class OP) + -- Function: mpf_class ceil (mpf_class OP) + -- Function: int cmp (mpf_class OP1, type OP2) + -- Function: int cmp (type OP1, mpf_class OP2) + -- Function: bool mpf_class::fits_sint_p (void) + -- Function: bool mpf_class::fits_slong_p (void) + -- Function: bool mpf_class::fits_sshort_p (void) + -- Function: bool mpf_class::fits_uint_p (void) + -- Function: bool mpf_class::fits_ulong_p (void) + -- Function: bool mpf_class::fits_ushort_p (void) + -- Function: mpf_class floor (mpf_class OP) + -- Function: mpf_class hypot (mpf_class OP1, mpf_class OP2) + -- Function: double mpf_class::get_d (void) + -- Function: long mpf_class::get_si (void) + -- Function: string mpf_class::get_str (mp_exp_t& EXP, int BASE = 10, + size_t DIGITS = 0) + -- Function: unsigned long mpf_class::get_ui (void) + -- Function: int mpf_class::set_str (const char *STR, int BASE) + -- Function: int mpf_class::set_str (const string& STR, int BASE) + -- Function: int sgn (mpf_class OP) + -- Function: mpf_class sqrt (mpf_class OP) + -- Function: mpf_class trunc (mpf_class OP) + These functions provide a C++ class interface to the corresponding + GMP C routines. + + `cmp' can be used with any of the classes or the standard C++ + types, except `long long' and `long double'. + + The accuracy provided by `hypot' is not currently guaranteed. + + -- Function: mp_bitcnt_t mpf_class::get_prec () + -- Function: void mpf_class::set_prec (mp_bitcnt_t PREC) + -- Function: void mpf_class::set_prec_raw (mp_bitcnt_t PREC) + Get or set the current precision of an `mpf_class'. + + The restrictions described for `mpf_set_prec_raw' (*note + Initializing Floats::) apply to `mpf_class::set_prec_raw'. Note + in particular that the `mpf_class' must be restored to it's + allocated precision before being destroyed. This must be done by + application code, there's no automatic mechanism for it. + + +File: gmp.info, Node: C++ Interface Random Numbers, Next: C++ Interface Limitations, Prev: C++ Interface Floats, Up: C++ Class Interface + +12.5 C++ Interface Random Numbers +================================= + + -- Class: gmp_randclass + The C++ class interface to the GMP random number functions uses + `gmp_randclass' to hold an algorithm selection and current state, + as per `gmp_randstate_t'. + + -- Function: gmp_randclass::gmp_randclass (void (*RANDINIT) + (gmp_randstate_t, ...), ...) + Construct a `gmp_randclass', using a call to the given RANDINIT + function (*note Random State Initialization::). The arguments + expected are the same as RANDINIT, but with `mpz_class' instead of + `mpz_t'. For example, + + gmp_randclass r1 (gmp_randinit_default); + gmp_randclass r2 (gmp_randinit_lc_2exp_size, 32); + gmp_randclass r3 (gmp_randinit_lc_2exp, a, c, m2exp); + gmp_randclass r4 (gmp_randinit_mt); + + `gmp_randinit_lc_2exp_size' will fail if the size requested is too + big, an `std::length_error' exception is thrown in that case. + + -- Function: gmp_randclass::gmp_randclass (gmp_randalg_t ALG, ...) + Construct a `gmp_randclass' using the same parameters as + `gmp_randinit' (*note Random State Initialization::). This + function is obsolete and the above RANDINIT style should be + preferred. + + -- Function: void gmp_randclass::seed (unsigned long int S) + -- Function: void gmp_randclass::seed (mpz_class S) + Seed a random number generator. See *note Random Number + Functions::, for how to choose a good seed. + + -- Function: mpz_class gmp_randclass::get_z_bits (unsigned long BITS) + -- Function: mpz_class gmp_randclass::get_z_bits (mpz_class BITS) + Generate a random integer with a specified number of bits. + + -- Function: mpz_class gmp_randclass::get_z_range (mpz_class N) + Generate a random integer in the range 0 to N-1 inclusive. + + -- Function: mpf_class gmp_randclass::get_f () + -- Function: mpf_class gmp_randclass::get_f (unsigned long PREC) + Generate a random float F in the range 0 <= F < 1. F will be to + PREC bits precision, or if PREC is not given then to the precision + of the destination. For example, + + gmp_randclass r; + ... + mpf_class f (0, 512); // 512 bits precision + f = r.get_f(); // random number, 512 bits + + +File: gmp.info, Node: C++ Interface Limitations, Prev: C++ Interface Random Numbers, Up: C++ Class Interface + +12.6 C++ Interface Limitations +============================== + +`mpq_class' and Templated Reading + A generic piece of template code probably won't know that + `mpq_class' requires a `canonicalize' call if inputs read with + `operator>>' might be non-canonical. This can lead to incorrect + results. + + `operator>>' behaves as it does for reasons of efficiency. A + canonicalize can be quite time consuming on large operands, and is + best avoided if it's not necessary. + + But this potential difficulty reduces the usefulness of + `mpq_class'. Perhaps a mechanism to tell `operator>>' what to do + will be adopted in the future, maybe a preprocessor define, a + global flag, or an `ios' flag pressed into service. Or maybe, at + the risk of inconsistency, the `mpq_class' `operator>>' could + canonicalize and leave `mpq_t' `operator>>' not doing so, for use + on those occasions when that's acceptable. Send feedback or + alternate ideas to . + +Subclassing + Subclassing the GMP C++ classes works, but is not currently + recommended. + + Expressions involving subclasses resolve correctly (or seem to), + but in normal C++ fashion the subclass doesn't inherit + constructors and assignments. There's many of those in the GMP + classes, and a good way to reestablish them in a subclass is not + yet provided. + +Templated Expressions + A subtle difficulty exists when using expressions together with + application-defined template functions. Consider the following, + with `T' intended to be some numeric type, + + template + T fun (const T &, const T &); + + When used with, say, plain `mpz_class' variables, it works fine: + `T' is resolved as `mpz_class'. + + mpz_class f(1), g(2); + fun (f, g); // Good + + But when one of the arguments is an expression, it doesn't work. + + mpz_class f(1), g(2), h(3); + fun (f, g+h); // Bad + + This is because `g+h' ends up being a certain expression template + type internal to `gmpxx.h', which the C++ template resolution + rules are unable to automatically convert to `mpz_class'. The + workaround is simply to add an explicit cast. + + mpz_class f(1), g(2), h(3); + fun (f, mpz_class(g+h)); // Good + + Similarly, within `fun' it may be necessary to cast an expression + to type `T' when calling a templated `fun2'. + + template + void fun (T f, T g) + { + fun2 (f, f+g); // Bad + } + + template + void fun (T f, T g) + { + fun2 (f, T(f+g)); // Good + } + + +File: gmp.info, Node: BSD Compatible Functions, Next: Custom Allocation, Prev: C++ Class Interface, Up: Top + +13 Berkeley MP Compatible Functions +*********************************** + +These functions are intended to be fully compatible with the Berkeley MP +library which is available on many BSD derived U*ix systems. The +`--enable-mpbsd' option must be used when building GNU MP to make these +available (*note Installing GMP::). + + The original Berkeley MP library has a usage restriction: you cannot +use the same variable as both source and destination in a single +function call. The compatible functions in GNU MP do not share this +restriction--inputs and outputs may overlap. + + It is not recommended that new programs are written using these +functions. Apart from the incomplete set of functions, the interface +for initializing `MINT' objects is more error prone, and the `pow' +function collides with `pow' in `libm.a'. + + Include the header `mp.h' to get the definition of the necessary +types and functions. If you are on a BSD derived system, make sure to +include GNU `mp.h' if you are going to link the GNU `libmp.a' to your +program. This means that you probably need to give the `-I' +option to the compiler, where `' is the directory where you have +GNU `mp.h'. + + -- Function: MINT * itom (signed short int INITIAL_VALUE) + Allocate an integer consisting of a `MINT' object and dynamic limb + space. Initialize the integer to INITIAL_VALUE. Return a pointer + to the `MINT' object. + + -- Function: MINT * xtom (char *INITIAL_VALUE) + Allocate an integer consisting of a `MINT' object and dynamic limb + space. Initialize the integer from INITIAL_VALUE, a hexadecimal, + null-terminated C string. Return a pointer to the `MINT' object. + + -- Function: void move (MINT *SRC, MINT *DEST) + Set DEST to SRC by copying. Both variables must be previously + initialized. + + -- Function: void madd (MINT *SRC_1, MINT *SRC_2, MINT *DESTINATION) + Add SRC_1 and SRC_2 and put the sum in DESTINATION. + + -- Function: void msub (MINT *SRC_1, MINT *SRC_2, MINT *DESTINATION) + Subtract SRC_2 from SRC_1 and put the difference in DESTINATION. + + -- Function: void mult (MINT *SRC_1, MINT *SRC_2, MINT *DESTINATION) + Multiply SRC_1 and SRC_2 and put the product in DESTINATION. + + -- Function: void mdiv (MINT *DIVIDEND, MINT *DIVISOR, MINT *QUOTIENT, + MINT *REMAINDER) + -- Function: void sdiv (MINT *DIVIDEND, signed short int DIVISOR, MINT + *QUOTIENT, signed short int *REMAINDER) + Set QUOTIENT to DIVIDEND/DIVISOR, and REMAINDER to DIVIDEND mod + DIVISOR. The quotient is rounded towards zero; the remainder has + the same sign as the dividend unless it is zero. + + Some implementations of these functions work differently--or not + at all--for negative arguments. + + -- Function: void msqrt (MINT *OP, MINT *ROOT, MINT *REMAINDER) + Set ROOT to the truncated integer part of the square root of OP, + like `mpz_sqrt'. Set REMAINDER to OP-ROOT*ROOT, i.e. zero if OP + is a perfect square. + + If ROOT and REMAINDER are the same variable, the results are + undefined. + + -- Function: void pow (MINT *BASE, MINT *EXP, MINT *MOD, MINT *DEST) + Set DEST to (BASE raised to EXP) modulo MOD. + + Note that the name `pow' clashes with `pow' from the standard C + math library (*note Exponentiation and Logarithms: (libc)Exponents + and Logarithms.). An application will only be able to use one or + the other. + + -- Function: void rpow (MINT *BASE, signed short int EXP, MINT *DEST) + Set DEST to BASE raised to EXP. + + -- Function: void gcd (MINT *OP1, MINT *OP2, MINT *RES) + Set RES to the greatest common divisor of OP1 and OP2. + + -- Function: int mcmp (MINT *OP1, MINT *OP2) + Compare OP1 and OP2. Return a positive value if OP1 > OP2, zero + if OP1 = OP2, and a negative value if OP1 < OP2. + + -- Function: void min (MINT *DEST) + Input a decimal string from `stdin', and put the read integer in + DEST. SPC and TAB are allowed in the number string, and are + ignored. + + -- Function: void mout (MINT *SRC) + Output SRC to `stdout', as a decimal string. Also output a + newline. + + -- Function: char * mtox (MINT *OP) + Convert OP to a hexadecimal string, and return a pointer to the + string. The returned string is allocated using the default memory + allocation function, `malloc' by default. It will be + `strlen(str)+1' bytes, that being exactly enough for the string + and null-terminator. + + -- Function: void mfree (MINT *OP) + De-allocate, the space used by OP. *This function should only be + passed a value returned by `itom' or `xtom'.* + + +File: gmp.info, Node: Custom Allocation, Next: Language Bindings, Prev: BSD Compatible Functions, Up: Top + +14 Custom Allocation +******************** + +By default GMP uses `malloc', `realloc' and `free' for memory +allocation, and if they fail GMP prints a message to the standard error +output and terminates the program. + + Alternate functions can be specified, to allocate memory in a +different way or to have a different error action on running out of +memory. + + This feature is available in the Berkeley compatibility library +(*note BSD Compatible Functions::) as well as the main GMP library. + + -- Function: void mp_set_memory_functions ( + void *(*ALLOC_FUNC_PTR) (size_t), + void *(*REALLOC_FUNC_PTR) (void *, size_t, size_t), + void (*FREE_FUNC_PTR) (void *, size_t)) + Replace the current allocation functions from the arguments. If + an argument is `NULL', the corresponding default function is used. + + These functions will be used for all memory allocation done by + GMP, apart from temporary space from `alloca' if that function is + available and GMP is configured to use it (*note Build Options::). + + *Be sure to call `mp_set_memory_functions' only when there are no + active GMP objects allocated using the previous memory functions! + Usually that means calling it before any other GMP function.* + + The functions supplied should fit the following declarations: + + -- Function: void * allocate_function (size_t ALLOC_SIZE) + Return a pointer to newly allocated space with at least ALLOC_SIZE + bytes. + + -- Function: void * reallocate_function (void *PTR, size_t OLD_SIZE, + size_t NEW_SIZE) + Resize a previously allocated block PTR of OLD_SIZE bytes to be + NEW_SIZE bytes. + + The block may be moved if necessary or if desired, and in that + case the smaller of OLD_SIZE and NEW_SIZE bytes must be copied to + the new location. The return value is a pointer to the resized + block, that being the new location if moved or just PTR if not. + + PTR is never `NULL', it's always a previously allocated block. + NEW_SIZE may be bigger or smaller than OLD_SIZE. + + -- Function: void free_function (void *PTR, size_t SIZE) + De-allocate the space pointed to by PTR. + + PTR is never `NULL', it's always a previously allocated block of + SIZE bytes. + + A "byte" here means the unit used by the `sizeof' operator. + + The OLD_SIZE parameters to REALLOCATE_FUNCTION and FREE_FUNCTION are +passed for convenience, but of course can be ignored if not needed. +The default functions using `malloc' and friends for instance don't use +them. + + No error return is allowed from any of these functions, if they +return then they must have performed the specified operation. In +particular note that ALLOCATE_FUNCTION or REALLOCATE_FUNCTION mustn't +return `NULL'. + + Getting a different fatal error action is a good use for custom +allocation functions, for example giving a graphical dialog rather than +the default print to `stderr'. How much is possible when genuinely out +of memory is another question though. + + There's currently no defined way for the allocation functions to +recover from an error such as out of memory, they must terminate +program execution. A `longjmp' or throwing a C++ exception will have +undefined results. This may change in the future. + + GMP may use allocated blocks to hold pointers to other allocated +blocks. This will limit the assumptions a conservative garbage +collection scheme can make. + + Since the default GMP allocation uses `malloc' and friends, those +functions will be linked in even if the first thing a program does is an +`mp_set_memory_functions'. It's necessary to change the GMP sources if +this is a problem. + + + -- Function: void mp_get_memory_functions ( + void *(**ALLOC_FUNC_PTR) (size_t), + void *(**REALLOC_FUNC_PTR) (void *, size_t, size_t), + void (**FREE_FUNC_PTR) (void *, size_t)) + Get the current allocation functions, storing function pointers to + the locations given by the arguments. If an argument is `NULL', + that function pointer is not stored. + + For example, to get just the current free function, + + void (*freefunc) (void *, size_t); + + mp_get_memory_functions (NULL, NULL, &freefunc); + + +File: gmp.info, Node: Language Bindings, Next: Algorithms, Prev: Custom Allocation, Up: Top + +15 Language Bindings +******************** + +The following packages and projects offer access to GMP from languages +other than C, though perhaps with varying levels of functionality and +efficiency. + + +C++ + * GMP C++ class interface, *note C++ Class Interface:: + Straightforward interface, expression templates to eliminate + temporaries. + + * ALP `http://www-sop.inria.fr/saga/logiciels/ALP/' + Linear algebra and polynomials using templates. + + * Arithmos `http://www.win.ua.ac.be/~cant/arithmos/' + Rationals with infinities and square roots. + + * CLN `http://www.ginac.de/CLN/' + High level classes for arithmetic. + + * LiDIA `http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/' + A C++ library for computational number theory. + + * Linbox `http://www.linalg.org/' + Sparse vectors and matrices. + + * NTL `http://www.shoup.net/ntl/' + A C++ number theory library. + +Fortran + * Omni F77 `http://phase.hpcc.jp/Omni/home.html' + Arbitrary precision floats. + +Haskell + * Glasgow Haskell Compiler `http://www.haskell.org/ghc/' + +Java + * Kaffe `http://www.kaffe.org/' + + * Kissme `http://kissme.sourceforge.net/' + +Lisp + * GNU Common Lisp `http://www.gnu.org/software/gcl/gcl.html' + + * Librep `http://librep.sourceforge.net/' + + * XEmacs (21.5.18 beta and up) `http://www.xemacs.org' + Optional big integers, rationals and floats using GMP. + +M4 + * GNU m4 betas `http://www.seindal.dk/rene/gnu/' + Optionally provides an arbitrary precision `mpeval'. + +ML + * MLton compiler `http://mlton.org/' + +Objective Caml + * MLGMP `http://www.di.ens.fr/~monniaux/programmes.html.en' + + * Numerix `http://pauillac.inria.fr/~quercia/' + Optionally using GMP. + +Oz + * Mozart `http://www.mozart-oz.org/' + +Pascal + * GNU Pascal Compiler `http://www.gnu-pascal.de/' + GMP unit. + + * Numerix `http://pauillac.inria.fr/~quercia/' + For Free Pascal, optionally using GMP. + +Perl + * GMP module, see `demos/perl' in the GMP sources (*note + Demonstration Programs::). + + * Math::GMP `http://www.cpan.org/' + Compatible with Math::BigInt, but not as many functions as + the GMP module above. + + * Math::BigInt::GMP `http://www.cpan.org/' + Plug Math::GMP into normal Math::BigInt operations. + +Pike + * mpz module in the standard distribution, + `http://pike.ida.liu.se/' + +Prolog + * SWI Prolog `http://www.swi-prolog.org/' + Arbitrary precision floats. + +Python + * mpz module in the standard distribution, + `http://www.python.org/' + + * GMPY `http://gmpy.sourceforge.net/' + +Scheme + * GNU Guile (upcoming 1.8) + `http://www.gnu.org/software/guile/guile.html' + + * RScheme `http://www.rscheme.org/' + + * STklos `http://www.stklos.org/' + +Smalltalk + * GNU Smalltalk + `http://www.smalltalk.org/versions/GNUSmalltalk.html' + +Other + * Axiom `http://savannah.nongnu.org/projects/axiom' + Computer algebra using GCL. + + * DrGenius `http://drgenius.seul.org/' + Geometry system and mathematical programming language. + + * GiNaC `http://www.ginac.de/' + C++ computer algebra using CLN. + + * GOO `http://www.googoogaga.org/' + Dynamic object oriented language. + + * Maxima `http://www.ma.utexas.edu/users/wfs/maxima.html' + Macsyma computer algebra using GCL. + + * Q `http://q-lang.sourceforge.net/' + Equational programming system. + + * Regina `http://regina.sourceforge.net/' + Topological calculator. + + * Yacas `http://www.xs4all.nl/~apinkus/yacas.html' + Yet another computer algebra system. + + + +File: gmp.info, Node: Algorithms, Next: Internals, Prev: Language Bindings, Up: Top + +16 Algorithms +************* + +This chapter is an introduction to some of the algorithms used for +various GMP operations. The code is likely to be hard to understand +without knowing something about the algorithms. + + Some GMP internals are mentioned, but applications that expect to be +compatible with future GMP releases should take care to use only the +documented functions. + +* Menu: + +* Multiplication Algorithms:: +* Division Algorithms:: +* Greatest Common Divisor Algorithms:: +* Powering Algorithms:: +* Root Extraction Algorithms:: +* Radix Conversion Algorithms:: +* Other Algorithms:: +* Assembly Coding:: + + +File: gmp.info, Node: Multiplication Algorithms, Next: Division Algorithms, Prev: Algorithms, Up: Algorithms + +16.1 Multiplication +=================== + +NxN limb multiplications and squares are done using one of five +algorithms, as the size N increases. + + Algorithm Threshold + Basecase (none) + Karatsuba `MUL_TOOM22_THRESHOLD' + Toom-3 `MUL_TOOM33_THRESHOLD' + Toom-4 `MUL_TOOM44_THRESHOLD' + FFT `MUL_FFT_THRESHOLD' + + Similarly for squaring, with the `SQR' thresholds. + + NxM multiplications of operands with different sizes above +`MUL_TOOM22_THRESHOLD' are currently done by special Toom-inspired +algorithms or directly with FFT, depending on operand size (*note +Unbalanced Multiplication::). + +* Menu: + +* Basecase Multiplication:: +* Karatsuba Multiplication:: +* Toom 3-Way Multiplication:: +* Toom 4-Way Multiplication:: +* FFT Multiplication:: +* Other Multiplication:: +* Unbalanced Multiplication:: + + +File: gmp.info, Node: Basecase Multiplication, Next: Karatsuba Multiplication, Prev: Multiplication Algorithms, Up: Multiplication Algorithms + +16.1.1 Basecase Multiplication +------------------------------ + +Basecase NxM multiplication is a straightforward rectangular set of +cross-products, the same as long multiplication done by hand and for +that reason sometimes known as the schoolbook or grammar school method. +This is an O(N*M) algorithm. See Knuth section 4.3.1 algorithm M +(*note References::), and the `mpn/generic/mul_basecase.c' code. + + Assembly implementations of `mpn_mul_basecase' are essentially the +same as the generic C code, but have all the usual assembly tricks and +obscurities introduced for speed. + + A square can be done in roughly half the time of a multiply, by +using the fact that the cross products above and below the diagonal are +the same. A triangle of products below the diagonal is formed, doubled +(left shift by one bit), and then the products on the diagonal added. +This can be seen in `mpn/generic/sqr_basecase.c'. Again the assembly +implementations take essentially the same approach. + + u0 u1 u2 u3 u4 + +---+---+---+---+---+ + u0 | d | | | | | + +---+---+---+---+---+ + u1 | | d | | | | + +---+---+---+---+---+ + u2 | | | d | | | + +---+---+---+---+---+ + u3 | | | | d | | + +---+---+---+---+---+ + u4 | | | | | d | + +---+---+---+---+---+ + + In practice squaring isn't a full 2x faster than multiplying, it's +usually around 1.5x. Less than 1.5x probably indicates +`mpn_sqr_basecase' wants improving on that CPU. + + On some CPUs `mpn_mul_basecase' can be faster than the generic C +`mpn_sqr_basecase' on some small sizes. `SQR_BASECASE_THRESHOLD' is +the size at which to use `mpn_sqr_basecase', this will be zero if that +routine should be used always. + + +File: gmp.info, Node: Karatsuba Multiplication, Next: Toom 3-Way Multiplication, Prev: Basecase Multiplication, Up: Multiplication Algorithms + +16.1.2 Karatsuba Multiplication +------------------------------- + +The Karatsuba multiplication algorithm is described in Knuth section +4.3.3 part A, and various other textbooks. A brief description is +given here. + + The inputs x and y are treated as each split into two parts of equal +length (or the most significant part one limb shorter if N is odd). + + high low + +----------+----------+ + | x1 | x0 | + +----------+----------+ + + +----------+----------+ + | y1 | y0 | + +----------+----------+ + + Let b be the power of 2 where the split occurs, ie. if x0 is k limbs +(y0 the same) then b=2^(k*mp_bits_per_limb). With that x=x1*b+x0 and +y=y1*b+y0, and the following holds, + + x*y = (b^2+b)*x1*y1 - b*(x1-x0)*(y1-y0) + (b+1)*x0*y0 + + This formula means doing only three multiplies of (N/2)x(N/2) limbs, +whereas a basecase multiply of NxN limbs is equivalent to four +multiplies of (N/2)x(N/2). The factors (b^2+b) etc represent the +positions where the three products must be added. + + high low + +--------+--------+ +--------+--------+ + | x1*y1 | | x0*y0 | + +--------+--------+ +--------+--------+ + +--------+--------+ + add | x1*y1 | + +--------+--------+ + +--------+--------+ + add | x0*y0 | + +--------+--------+ + +--------+--------+ + sub | (x1-x0)*(y1-y0) | + +--------+--------+ + + The term (x1-x0)*(y1-y0) is best calculated as an absolute value, +and the sign used to choose to add or subtract. Notice the sum +high(x0*y0)+low(x1*y1) occurs twice, so it's possible to do 5*k limb +additions, rather than 6*k, but in GMP extra function call overheads +outweigh the saving. + + Squaring is similar to multiplying, but with x=y the formula reduces +to an equivalent with three squares, + + x^2 = (b^2+b)*x1^2 - b*(x1-x0)^2 + (b+1)*x0^2 + + The final result is accumulated from those three squares the same +way as for the three multiplies above. The middle term (x1-x0)^2 is now +always positive. + + A similar formula for both multiplying and squaring can be +constructed with a middle term (x1+x0)*(y1+y0). But those sums can +exceed k limbs, leading to more carry handling and additions than the +form above. + + Karatsuba multiplication is asymptotically an O(N^1.585) algorithm, +the exponent being log(3)/log(2), representing 3 multiplies each 1/2 +the size of the inputs. This is a big improvement over the basecase +multiply at O(N^2) and the advantage soon overcomes the extra additions +Karatsuba performs. `MUL_TOOM22_THRESHOLD' can be as little as 10 +limbs. The `SQR' threshold is usually about twice the `MUL'. + + The basecase algorithm will take a time of the form M(N) = a*N^2 + +b*N + c and the Karatsuba algorithm K(N) = 3*M(N/2) + d*N + e, which +expands to K(N) = 3/4*a*N^2 + 3/2*b*N + 3*c + d*N + e. The factor 3/4 +for a means per-crossproduct speedups in the basecase code will +increase the threshold since they benefit M(N) more than K(N). And +conversely the 3/2 for b means linear style speedups of b will increase +the threshold since they benefit K(N) more than M(N). The latter can +be seen for instance when adding an optimized `mpn_sqr_diagonal' to +`mpn_sqr_basecase'. Of course all speedups reduce total time, and in +that sense the algorithm thresholds are merely of academic interest. + + +File: gmp.info, Node: Toom 3-Way Multiplication, Next: Toom 4-Way Multiplication, Prev: Karatsuba Multiplication, Up: Multiplication Algorithms + +16.1.3 Toom 3-Way Multiplication +-------------------------------- + +The Karatsuba formula is the simplest case of a general approach to +splitting inputs that leads to both Toom and FFT algorithms. A +description of Toom can be found in Knuth section 4.3.3, with an +example 3-way calculation after Theorem A. The 3-way form used in GMP +is described here. + + The operands are each considered split into 3 pieces of equal length +(or the most significant part 1 or 2 limbs shorter than the other two). + + high low + +----------+----------+----------+ + | x2 | x1 | x0 | + +----------+----------+----------+ + + +----------+----------+----------+ + | y2 | y1 | y0 | + +----------+----------+----------+ + +These parts are treated as the coefficients of two polynomials + + X(t) = x2*t^2 + x1*t + x0 + Y(t) = y2*t^2 + y1*t + y0 + + Let b equal the power of 2 which is the size of the x0, x1, y0 and +y1 pieces, ie. if they're k limbs each then b=2^(k*mp_bits_per_limb). +With this x=X(b) and y=Y(b). + + Let a polynomial W(t)=X(t)*Y(t) and suppose its coefficients are + + W(t) = w4*t^4 + w3*t^3 + w2*t^2 + w1*t + w0 + + The w[i] are going to be determined, and when they are they'll give +the final result using w=W(b), since x*y=X(b)*Y(b)=W(b). The +coefficients will be roughly b^2 each, and the final W(b) will be an +addition like, + + high low + +-------+-------+ + | w4 | + +-------+-------+ + +--------+-------+ + | w3 | + +--------+-------+ + +--------+-------+ + | w2 | + +--------+-------+ + +--------+-------+ + | w1 | + +--------+-------+ + +-------+-------+ + | w0 | + +-------+-------+ + + The w[i] coefficients could be formed by a simple set of cross +products, like w4=x2*y2, w3=x2*y1+x1*y2, w2=x2*y0+x1*y1+x0*y2 etc, but +this would need all nine x[i]*y[j] for i,j=0,1,2, and would be +equivalent merely to a basecase multiply. Instead the following +approach is used. + + X(t) and Y(t) are evaluated and multiplied at 5 points, giving +values of W(t) at those points. In GMP the following points are used, + + Point Value + t=0 x0 * y0, which gives w0 immediately + t=1 (x2+x1+x0) * (y2+y1+y0) + t=-1 (x2-x1+x0) * (y2-y1+y0) + t=2 (4*x2+2*x1+x0) * (4*y2+2*y1+y0) + t=inf x2 * y2, which gives w4 immediately + + At t=-1 the values can be negative and that's handled using the +absolute values and tracking the sign separately. At t=inf the value +is actually X(t)*Y(t)/t^4 in the limit as t approaches infinity, but +it's much easier to think of as simply x2*y2 giving w4 immediately +(much like x0*y0 at t=0 gives w0 immediately). + + Each of the points substituted into W(t)=w4*t^4+...+w0 gives a +linear combination of the w[i] coefficients, and the value of those +combinations has just been calculated. + + W(0) = w0 + W(1) = w4 + w3 + w2 + w1 + w0 + W(-1) = w4 - w3 + w2 - w1 + w0 + W(2) = 16*w4 + 8*w3 + 4*w2 + 2*w1 + w0 + W(inf) = w4 + + This is a set of five equations in five unknowns, and some +elementary linear algebra quickly isolates each w[i]. This involves +adding or subtracting one W(t) value from another, and a couple of +divisions by powers of 2 and one division by 3, the latter using the +special `mpn_divexact_by3' (*note Exact Division::). + + The conversion of W(t) values to the coefficients is interpolation. +A polynomial of degree 4 like W(t) is uniquely determined by values +known at 5 different points. The points are arbitrary and can be +chosen to make the linear equations come out with a convenient set of +steps for quickly isolating the w[i]. + + Squaring follows the same procedure as multiplication, but there's +only one X(t) and it's evaluated at the 5 points, and those values +squared to give values of W(t). The interpolation is then identical, +and in fact the same `toom3_interpolate' subroutine is used for both +squaring and multiplying. + + Toom-3 is asymptotically O(N^1.465), the exponent being +log(5)/log(3), representing 5 recursive multiplies of 1/3 the original +size each. This is an improvement over Karatsuba at O(N^1.585), though +Toom does more work in the evaluation and interpolation and so it only +realizes its advantage above a certain size. + + Near the crossover between Toom-3 and Karatsuba there's generally a +range of sizes where the difference between the two is small. +`MUL_TOOM33_THRESHOLD' is a somewhat arbitrary point in that range and +successive runs of the tune program can give different values due to +small variations in measuring. A graph of time versus size for the two +shows the effect, see `tune/README'. + + At the fairly small sizes where the Toom-3 thresholds occur it's +worth remembering that the asymptotic behaviour for Karatsuba and +Toom-3 can't be expected to make accurate predictions, due of course to +the big influence of all sorts of overheads, and the fact that only a +few recursions of each are being performed. Even at large sizes +there's a good chance machine dependent effects like cache architecture +will mean actual performance deviates from what might be predicted. + + The formula given for the Karatsuba algorithm (*note Karatsuba +Multiplication::) has an equivalent for Toom-3 involving only five +multiplies, but this would be complicated and unenlightening. + + An alternate view of Toom-3 can be found in Zuras (*note +References::), using a vector to represent the x and y splits and a +matrix multiplication for the evaluation and interpolation stages. The +matrix inverses are not meant to be actually used, and they have +elements with values much greater than in fact arise in the +interpolation steps. The diagram shown for the 3-way is attractive, +but again doesn't have to be implemented that way and for example with +a bit of rearrangement just one division by 6 can be done. + + +File: gmp.info, Node: Toom 4-Way Multiplication, Next: FFT Multiplication, Prev: Toom 3-Way Multiplication, Up: Multiplication Algorithms + +16.1.4 Toom 4-Way Multiplication +-------------------------------- + +Karatsuba and Toom-3 split the operands into 2 and 3 coefficients, +respectively. Toom-4 analogously splits the operands into 4 +coefficients. Using the notation from the section on Toom-3 +multiplication, we form two polynomials: + + X(t) = x3*t^3 + x2*t^2 + x1*t + x0 + Y(t) = y3*t^3 + y2*t^2 + y1*t + y0 + + X(t) and Y(t) are evaluated and multiplied at 7 points, giving +values of W(t) at those points. In GMP the following points are used, + + Point Value + t=0 x0 * y0, which gives w0 immediately + t=1/2 (x3+2*x2+4*x1+8*x0) * (y3+2*y2+4*y1+8*y0) + t=-1/2 (-x3+2*x2-4*x1+8*x0) * (-y3+2*y2-4*y1+8*y0) + t=1 (x3+x2+x1+x0) * (y3+y2+y1+y0) + t=-1 (-x3+x2-x1+x0) * (-y3+y2-y1+y0) + t=2 (8*x3+4*x2+2*x1+x0) * (8*y3+4*y2+2*y1+y0) + t=inf x3 * y3, which gives w6 immediately + + The number of additions and subtractions for Toom-4 is much larger +than for Toom-3. But several subexpressions occur multiple times, for +example x2+x0, occurs for both t=1 and t=-1. + + Toom-4 is asymptotically O(N^1.404), the exponent being +log(7)/log(4), representing 7 recursive multiplies of 1/4 the original +size each. + + +File: gmp.info, Node: FFT Multiplication, Next: Other Multiplication, Prev: Toom 4-Way Multiplication, Up: Multiplication Algorithms + +16.1.5 FFT Multiplication +------------------------- + +At large to very large sizes a Fermat style FFT multiplication is used, +following Scho"nhage and Strassen (*note References::). Descriptions +of FFTs in various forms can be found in many textbooks, for instance +Knuth section 4.3.3 part C or Lipson chapter IX. A brief description +of the form used in GMP is given here. + + The multiplication done is x*y mod 2^N+1, for a given N. A full +product x*y is obtained by choosing N>=bits(x)+bits(y) and padding x +and y with high zero limbs. The modular product is the native form for +the algorithm, so padding to get a full product is unavoidable. + + The algorithm follows a split, evaluate, pointwise multiply, +interpolate and combine similar to that described above for Karatsuba +and Toom-3. A k parameter controls the split, with an FFT-k splitting +into 2^k pieces of M=N/2^k bits each. N must be a multiple of +(2^k)*mp_bits_per_limb so the split falls on limb boundaries, avoiding +bit shifts in the split and combine stages. + + The evaluations, pointwise multiplications, and interpolation, are +all done modulo 2^N'+1 where N' is 2M+k+3 rounded up to a multiple of +2^k and of `mp_bits_per_limb'. The results of interpolation will be +the following negacyclic convolution of the input pieces, and the +choice of N' ensures these sums aren't truncated. + + --- + \ b + w[n] = / (-1) * x[i] * y[j] + --- + i+j==b*2^k+n + b=0,1 + + The points used for the evaluation are g^i for i=0 to 2^k-1 where +g=2^(2N'/2^k). g is a 2^k'th root of unity mod 2^N'+1, which produces +necessary cancellations at the interpolation stage, and it's also a +power of 2 so the fast Fourier transforms used for the evaluation and +interpolation do only shifts, adds and negations. + + The pointwise multiplications are done modulo 2^N'+1 and either +recurse into a further FFT or use a plain multiplication (Toom-3, +Karatsuba or basecase), whichever is optimal at the size N'. The +interpolation is an inverse fast Fourier transform. The resulting set +of sums of x[i]*y[j] are added at appropriate offsets to give the final +result. + + Squaring is the same, but x is the only input so it's one transform +at the evaluate stage and the pointwise multiplies are squares. The +interpolation is the same. + + For a mod 2^N+1 product, an FFT-k is an O(N^(k/(k-1))) algorithm, +the exponent representing 2^k recursed modular multiplies each +1/2^(k-1) the size of the original. Each successive k is an asymptotic +improvement, but overheads mean each is only faster at bigger and +bigger sizes. In the code, `MUL_FFT_TABLE' and `SQR_FFT_TABLE' are the +thresholds where each k is used. Each new k effectively swaps some +multiplying for some shifts, adds and overheads. + + A mod 2^N+1 product can be formed with a normal NxN->2N bit multiply +plus a subtraction, so an FFT and Toom-3 etc can be compared directly. +A k=4 FFT at O(N^1.333) can be expected to be the first faster than +Toom-3 at O(N^1.465). In practice this is what's found, with +`MUL_FFT_MODF_THRESHOLD' and `SQR_FFT_MODF_THRESHOLD' being between 300 +and 1000 limbs, depending on the CPU. So far it's been found that only +very large FFTs recurse into pointwise multiplies above these sizes. + + When an FFT is to give a full product, the change of N to 2N doesn't +alter the theoretical complexity for a given k, but for the purposes of +considering where an FFT might be first used it can be assumed that the +FFT is recursing into a normal multiply and that on that basis it's +doing 2^k recursed multiplies each 1/2^(k-2) the size of the inputs, +making it O(N^(k/(k-2))). This would mean k=7 at O(N^1.4) would be the +first FFT faster than Toom-3. In practice `MUL_FFT_THRESHOLD' and +`SQR_FFT_THRESHOLD' have been found to be in the k=8 range, somewhere +between 3000 and 10000 limbs. + + The way N is split into 2^k pieces and then 2M+k+3 is rounded up to +a multiple of 2^k and `mp_bits_per_limb' means that when +2^k>=mp_bits_per_limb the effective N is a multiple of 2^(2k-1) bits. +The +k+3 means some values of N just under such a multiple will be +rounded to the next. The complexity calculations above assume that a +favourable size is used, meaning one which isn't padded through +rounding, and it's also assumed that the extra +k+3 bits are negligible +at typical FFT sizes. + + The practical effect of the 2^(2k-1) constraint is to introduce a +step-effect into measured speeds. For example k=8 will round N up to a +multiple of 32768 bits, so for a 32-bit limb there'll be 512 limb +groups of sizes for which `mpn_mul_n' runs at the same speed. Or for +k=9 groups of 2048 limbs, k=10 groups of 8192 limbs, etc. In practice +it's been found each k is used at quite small multiples of its size +constraint and so the step effect is quite noticeable in a time versus +size graph. + + The threshold determinations currently measure at the mid-points of +size steps, but this is sub-optimal since at the start of a new step it +can happen that it's better to go back to the previous k for a while. +Something more sophisticated for `MUL_FFT_TABLE' and `SQR_FFT_TABLE' +will be needed. + + +File: gmp.info, Node: Other Multiplication, Next: Unbalanced Multiplication, Prev: FFT Multiplication, Up: Multiplication Algorithms + +16.1.6 Other Multiplication +--------------------------- + +The Toom algorithms described above (*note Toom 3-Way Multiplication::, +*note Toom 4-Way Multiplication::) generalizes to split into an +arbitrary number of pieces, as per Knuth section 4.3.3 algorithm C. +This is not currently used. The notes here are merely for interest. + + In general a split into r+1 pieces is made, and evaluations and +pointwise multiplications done at 2*r+1 points. A 4-way split does 7 +pointwise multiplies, 5-way does 9, etc. Asymptotically an (r+1)-way +algorithm is O(N^(log(2*r+1)/log(r+1))). Only the pointwise +multiplications count towards big-O complexity, but the time spent in +the evaluate and interpolate stages grows with r and has a significant +practical impact, with the asymptotic advantage of each r realized only +at bigger and bigger sizes. The overheads grow as O(N*r), whereas in +an r=2^k FFT they grow only as O(N*log(r)). + + Knuth algorithm C evaluates at points 0,1,2,...,2*r, but exercise 4 +uses -r,...,0,...,r and the latter saves some small multiplies in the +evaluate stage (or rather trades them for additions), and has a further +saving of nearly half the interpolate steps. The idea is to separate +odd and even final coefficients and then perform algorithm C steps C7 +and C8 on them separately. The divisors at step C7 become j^2 and the +multipliers at C8 become 2*t*j-j^2. + + Splitting odd and even parts through positive and negative points +can be thought of as using -1 as a square root of unity. If a 4th root +of unity was available then a further split and speedup would be +possible, but no such root exists for plain integers. Going to complex +integers with i=sqrt(-1) doesn't help, essentially because in Cartesian +form it takes three real multiplies to do a complex multiply. The +existence of 2^k'th roots of unity in a suitable ring or field lets the +fast Fourier transform keep splitting and get to O(N*log(r)). + + Floating point FFTs use complex numbers approximating Nth roots of +unity. Some processors have special support for such FFTs. But these +are not used in GMP since it's very difficult to guarantee an exact +result (to some number of bits). An occasional difference of 1 in the +last bit might not matter to a typical signal processing algorithm, but +is of course of vital importance to GMP. + + +File: gmp.info, Node: Unbalanced Multiplication, Prev: Other Multiplication, Up: Multiplication Algorithms + +16.1.7 Unbalanced Multiplication +-------------------------------- + +Multiplication of operands with different sizes, both below +`MUL_TOOM22_THRESHOLD' are done with plain schoolbook multiplication +(*note Basecase Multiplication::). + + For really large operands, we invoke FFT directly. + + For operands between these sizes, we use Toom inspired algorithms +suggested by Alberto Zanoni and Marco Bodrato. The idea is to split +the operands into polynomials of different degree. GMP currently +splits the smaller operand onto 2 coefficients, i.e., a polynomial of +degree 1, but the larger operand can be split into 2, 3, or 4 +coefficients, i.e., a polynomial of degree 1 to 3. + + +File: gmp.info, Node: Division Algorithms, Next: Greatest Common Divisor Algorithms, Prev: Multiplication Algorithms, Up: Algorithms + +16.2 Division Algorithms +======================== + +* Menu: + +* Single Limb Division:: +* Basecase Division:: +* Divide and Conquer Division:: +* Block-Wise Barrett Division:: +* Exact Division:: +* Exact Remainder:: +* Small Quotient Division:: + + +File: gmp.info, Node: Single Limb Division, Next: Basecase Division, Prev: Division Algorithms, Up: Division Algorithms + +16.2.1 Single Limb Division +--------------------------- + +Nx1 division is implemented using repeated 2x1 divisions from high to +low, either with a hardware divide instruction or a multiplication by +inverse, whichever is best on a given CPU. + + The multiply by inverse follows "Improved division by invariant +integers" by Mo"ller and Granlund (*note References::) and is +implemented as `udiv_qrnnd_preinv' in `gmp-impl.h'. The idea is to +have a fixed-point approximation to 1/d (see `invert_limb') and then +multiply by the high limb (plus one bit) of the dividend to get a +quotient q. With d normalized (high bit set), q is no more than 1 too +small. Subtracting q*d from the dividend gives a remainder, and +reveals whether q or q-1 is correct. + + The result is a division done with two multiplications and four or +five arithmetic operations. On CPUs with low latency multipliers this +can be much faster than a hardware divide, though the cost of +calculating the inverse at the start may mean it's only better on +inputs bigger than say 4 or 5 limbs. + + When a divisor must be normalized, either for the generic C +`__udiv_qrnnd_c' or the multiply by inverse, the division performed is +actually a*2^k by d*2^k where a is the dividend and k is the power +necessary to have the high bit of d*2^k set. The bit shifts for the +dividend are usually accomplished "on the fly" meaning by extracting +the appropriate bits at each step. Done this way the quotient limbs +come out aligned ready to store. When only the remainder is wanted, an +alternative is to take the dividend limbs unshifted and calculate r = a +mod d*2^k followed by an extra final step r*2^k mod d*2^k. This can +help on CPUs with poor bit shifts or few registers. + + The multiply by inverse can be done two limbs at a time. The +calculation is basically the same, but the inverse is two limbs and the +divisor treated as if padded with a low zero limb. This means more +work, since the inverse will need a 2x2 multiply, but the four 1x1s to +do that are independent and can therefore be done partly or wholly in +parallel. Likewise for a 2x1 calculating q*d. The net effect is to +process two limbs with roughly the same two multiplies worth of latency +that one limb at a time gives. This extends to 3 or 4 limbs at a time, +though the extra work to apply the inverse will almost certainly soon +reach the limits of multiplier throughput. + + A similar approach in reverse can be taken to process just half a +limb at a time if the divisor is only a half limb. In this case the +1x1 multiply for the inverse effectively becomes two (1/2)x1 for each +limb, which can be a saving on CPUs with a fast half limb multiply, or +in fact if the only multiply is a half limb, and especially if it's not +pipelined. + + +File: gmp.info, Node: Basecase Division, Next: Divide and Conquer Division, Prev: Single Limb Division, Up: Division Algorithms + +16.2.2 Basecase Division +------------------------ + +Basecase NxM division is like long division done by hand, but in base +2^mp_bits_per_limb. See Knuth section 4.3.1 algorithm D, and +`mpn/generic/sb_divrem_mn.c'. + + Briefly stated, while the dividend remains larger than the divisor, +a high quotient limb is formed and the Nx1 product q*d subtracted at +the top end of the dividend. With a normalized divisor (most +significant bit set), each quotient limb can be formed with a 2x1 +division and a 1x1 multiplication plus some subtractions. The 2x1 +division is by the high limb of the divisor and is done either with a +hardware divide or a multiply by inverse (the same as in *Note Single +Limb Division::) whichever is faster. Such a quotient is sometimes one +too big, requiring an addback of the divisor, but that happens rarely. + + With Q=N-M being the number of quotient limbs, this is an O(Q*M) +algorithm and will run at a speed similar to a basecase QxM +multiplication, differing in fact only in the extra multiply and divide +for each of the Q quotient limbs. + + +File: gmp.info, Node: Divide and Conquer Division, Next: Block-Wise Barrett Division, Prev: Basecase Division, Up: Division Algorithms + +16.2.3 Divide and Conquer Division +---------------------------------- + +For divisors larger than `DC_DIV_QR_THRESHOLD', division is done by +dividing. Or to be precise by a recursive divide and conquer algorithm +based on work by Moenck and Borodin, Jebelean, and Burnikel and Ziegler +(*note References::). + + The algorithm consists essentially of recognising that a 2NxN +division can be done with the basecase division algorithm (*note +Basecase Division::), but using N/2 limbs as a base, not just a single +limb. This way the multiplications that arise are (N/2)x(N/2) and can +take advantage of Karatsuba and higher multiplication algorithms (*note +Multiplication Algorithms::). The two "digits" of the quotient are +formed by recursive Nx(N/2) divisions. + + If the (N/2)x(N/2) multiplies are done with a basecase multiplication +then the work is about the same as a basecase division, but with more +function call overheads and with some subtractions separated from the +multiplies. These overheads mean that it's only when N/2 is above +`MUL_TOOM22_THRESHOLD' that divide and conquer is of use. + + `DC_DIV_QR_THRESHOLD' is based on the divisor size N, so it will be +somewhere above twice `MUL_TOOM22_THRESHOLD', but how much above +depends on the CPU. An optimized `mpn_mul_basecase' can lower +`DC_DIV_QR_THRESHOLD' a little by offering a ready-made advantage over +repeated `mpn_submul_1' calls. + + Divide and conquer is asymptotically O(M(N)*log(N)) where M(N) is +the time for an NxN multiplication done with FFTs. The actual time is +a sum over multiplications of the recursed sizes, as can be seen near +the end of section 2.2 of Burnikel and Ziegler. For example, within +the Toom-3 range, divide and conquer is 2.63*M(N). With higher +algorithms the M(N) term improves and the multiplier tends to log(N). +In practice, at moderate to large sizes, a 2NxN division is about 2 to +4 times slower than an NxN multiplication. + + +File: gmp.info, Node: Block-Wise Barrett Division, Next: Exact Division, Prev: Divide and Conquer Division, Up: Division Algorithms + +16.2.4 Block-Wise Barrett Division +---------------------------------- + +For the largest divisions, a block-wise Barrett division algorithm is +used. Here, the divisor is inverted to a precision determined by the +relative size of the dividend and divisor. Blocks of quotient limbs +are then generated by multiplying blocks from the dividend by the +inverse. + + Our block-wise algorithm computes a smaller inverse than in the +plain Barrett algorithm. For a 2n/n division, the inverse will be just +ceil(n/2) limbs. + + +File: gmp.info, Node: Exact Division, Next: Exact Remainder, Prev: Block-Wise Barrett Division, Up: Division Algorithms + +16.2.5 Exact Division +--------------------- + +A so-called exact division is when the dividend is known to be an exact +multiple of the divisor. Jebelean's exact division algorithm uses this +knowledge to make some significant optimizations (*note References::). + + The idea can be illustrated in decimal for example with 368154 +divided by 543. Because the low digit of the dividend is 4, the low +digit of the quotient must be 8. This is arrived at from 4*7 mod 10, +using the fact 7 is the modular inverse of 3 (the low digit of the +divisor), since 3*7 == 1 mod 10. So 8*543=4344 can be subtracted from +the dividend leaving 363810. Notice the low digit has become zero. + + The procedure is repeated at the second digit, with the next +quotient digit 7 (7 == 1*7 mod 10), subtracting 7*543=3801, leaving +325800. And finally at the third digit with quotient digit 6 (8*7 mod +10), subtracting 6*543=3258 leaving 0. So the quotient is 678. + + Notice however that the multiplies and subtractions don't need to +extend past the low three digits of the dividend, since that's enough +to determine the three quotient digits. For the last quotient digit no +subtraction is needed at all. On a 2NxN division like this one, only +about half the work of a normal basecase division is necessary. + + For an NxM exact division producing Q=N-M quotient limbs, the saving +over a normal basecase division is in two parts. Firstly, each of the +Q quotient limbs needs only one multiply, not a 2x1 divide and +multiply. Secondly, the crossproducts are reduced when Q>M to +Q*M-M*(M+1)/2, or when Q<=M to Q*(Q-1)/2. Notice the savings are +complementary. If Q is big then many divisions are saved, or if Q is +small then the crossproducts reduce to a small number. + + The modular inverse used is calculated efficiently by `binvert_limb' +in `gmp-impl.h'. This does four multiplies for a 32-bit limb, or six +for a 64-bit limb. `tune/modlinv.c' has some alternate implementations +that might suit processors better at bit twiddling than multiplying. + + The sub-quadratic exact division described by Jebelean in "Exact +Division with Karatsuba Complexity" is not currently implemented. It +uses a rearrangement similar to the divide and conquer for normal +division (*note Divide and Conquer Division::), but operating from low +to high. A further possibility not currently implemented is +"Bidirectional Exact Integer Division" by Krandick and Jebelean which +forms quotient limbs from both the high and low ends of the dividend, +and can halve once more the number of crossproducts needed in a 2NxN +division. + + A special case exact division by 3 exists in `mpn_divexact_by3', +supporting Toom-3 multiplication and `mpq' canonicalizations. It forms +quotient digits with a multiply by the modular inverse of 3 (which is +`0xAA..AAB') and uses two comparisons to determine a borrow for the next +limb. The multiplications don't need to be on the dependent chain, as +long as the effect of the borrows is applied, which can help chips with +pipelined multipliers. + + +File: gmp.info, Node: Exact Remainder, Next: Small Quotient Division, Prev: Exact Division, Up: Division Algorithms + +16.2.6 Exact Remainder +---------------------- + +If the exact division algorithm is done with a full subtraction at each +stage and the dividend isn't a multiple of the divisor, then low zero +limbs are produced but with a remainder in the high limbs. For +dividend a, divisor d, quotient q, and b = 2^mp_bits_per_limb, this +remainder r is of the form + + a = q*d + r*b^n + + n represents the number of zero limbs produced by the subtractions, +that being the number of limbs produced for q. r will be in the range +0<=rb*r+u2 condition appropriately relaxed. + + +File: gmp.info, Node: Greatest Common Divisor Algorithms, Next: Powering Algorithms, Prev: Division Algorithms, Up: Algorithms + +16.3 Greatest Common Divisor +============================ + +* Menu: + +* Binary GCD:: +* Lehmer's Algorithm:: +* Subquadratic GCD:: +* Extended GCD:: +* Jacobi Symbol:: + + +File: gmp.info, Node: Binary GCD, Next: Lehmer's Algorithm, Prev: Greatest Common Divisor Algorithms, Up: Greatest Common Divisor Algorithms + +16.3.1 Binary GCD +----------------- + +At small sizes GMP uses an O(N^2) binary style GCD. This is described +in many textbooks, for example Knuth section 4.5.2 algorithm B. It +simply consists of successively reducing odd operands a and b using + + a,b = abs(a-b),min(a,b) + strip factors of 2 from a + + The Euclidean GCD algorithm, as per Knuth algorithms E and A, +repeatedly computes the quotient q = floor(a/b) and replaces a,b by v, +u - q v. The binary algorithm has so far been found to be faster than +the Euclidean algorithm everywhere. One reason the binary method does +well is that the implied quotient at each step is usually small, so +often only one or two subtractions are needed to get the same effect as +a division. Quotients 1, 2 and 3 for example occur 67.7% of the time, +see Knuth section 4.5.3 Theorem E. + + When the implied quotient is large, meaning b is much smaller than +a, then a division is worthwhile. This is the basis for the initial a +mod b reductions in `mpn_gcd' and `mpn_gcd_1' (the latter for both Nx1 +and 1x1 cases). But after that initial reduction, big quotients occur +too rarely to make it worth checking for them. + + + The final 1x1 GCD in `mpn_gcd_1' is done in the generic C code as +described above. For two N-bit operands, the algorithm takes about +0.68 iterations per bit. For optimum performance some attention needs +to be paid to the way the factors of 2 are stripped from a. + + Firstly it may be noted that in twos complement the number of low +zero bits on a-b is the same as b-a, so counting or testing can begin on +a-b without waiting for abs(a-b) to be determined. + + A loop stripping low zero bits tends not to branch predict well, +since the condition is data dependent. But on average there's only a +few low zeros, so an option is to strip one or two bits arithmetically +then loop for more (as done for AMD K6). Or use a lookup table to get +a count for several bits then loop for more (as done for AMD K7). An +alternative approach is to keep just one of a or b odd and iterate + + a,b = abs(a-b), min(a,b) + a = a/2 if even + b = b/2 if even + + This requires about 1.25 iterations per bit, but stripping of a +single bit at each step avoids any branching. Repeating the bit strip +reduces to about 0.9 iterations per bit, which may be a worthwhile +tradeoff. + + Generally with the above approaches a speed of perhaps 6 cycles per +bit can be achieved, which is still not terribly fast with for instance +a 64-bit GCD taking nearly 400 cycles. It's this sort of time which +means it's not usually advantageous to combine a set of divisibility +tests into a GCD. + + Currently, the binary algorithm is used for GCD only when N < 3. + + +File: gmp.info, Node: Lehmer's Algorithm, Next: Subquadratic GCD, Prev: Binary GCD, Up: Greatest Common Divisor Algorithms + +16.3.2 Lehmer's algorithm +------------------------- + +Lehmer's improvement of the Euclidean algorithms is based on the +observation that the initial part of the quotient sequence depends only +on the most significant parts of the inputs. The variant of Lehmer's +algorithm used in GMP splits off the most significant two limbs, as +suggested, e.g., in "A Double-Digit Lehmer-Euclid Algorithm" by +Jebelean (*note References::). The quotients of two double-limb inputs +are collected as a 2 by 2 matrix with single-limb elements. This is +done by the function `mpn_hgcd2'. The resulting matrix is applied to +the inputs using `mpn_mul_1' and `mpn_submul_1'. Each iteration usually +reduces the inputs by almost one limb. In the rare case of a large +quotient, no progress can be made by examining just the most +significant two limbs, and the quotient is computing using plain +division. + + The resulting algorithm is asymptotically O(N^2), just as the +Euclidean algorithm and the binary algorithm. The quadratic part of the +work are the calls to `mpn_mul_1' and `mpn_submul_1'. For small sizes, +the linear work is also significant. There are roughly N calls to the +`mpn_hgcd2' function. This function uses a couple of important +optimizations: + + * It uses the same relaxed notion of correctness as `mpn_hgcd' (see + next section). This means that when called with the most + significant two limbs of two large numbers, the returned matrix + does not always correspond exactly to the initial quotient + sequence for the two large numbers; the final quotient may + sometimes be one off. + + * It takes advantage of the fact the quotients are usually small. + The division operator is not used, since the corresponding + assembler instruction is very slow on most architectures. (This + code could probably be improved further, it uses many branches + that are unfriendly to prediction). + + * It switches from double-limb calculations to single-limb + calculations half-way through, when the input numbers have been + reduced in size from two limbs to one and a half. + + + +File: gmp.info, Node: Subquadratic GCD, Next: Extended GCD, Prev: Lehmer's Algorithm, Up: Greatest Common Divisor Algorithms + +16.3.3 Subquadratic GCD +----------------------- + +For inputs larger than `GCD_DC_THRESHOLD', GCD is computed via the HGCD +(Half GCD) function, as a generalization to Lehmer's algorithm. + + Let the inputs a,b be of size N limbs each. Put S = floor(N/2) + 1. +Then HGCD(a,b) returns a transformation matrix T with non-negative +elements, and reduced numbers (c;d) = T^-1 (a;b). The reduced numbers +c,d must be larger than S limbs, while their difference abs(c-d) must +fit in S limbs. The matrix elements will also be of size roughly N/2. + + The HGCD base case uses Lehmer's algorithm, but with the above stop +condition that returns reduced numbers and the corresponding +transformation matrix half-way through. For inputs larger than +`HGCD_THRESHOLD', HGCD is computed recursively, using the divide and +conquer algorithm in "On Scho"nhage's algorithm and subquadratic +integer GCD computation" by Mo"ller (*note References::). The recursive +algorithm consists of these main steps. + + * Call HGCD recursively, on the most significant N/2 limbs. Apply the + resulting matrix T_1 to the full numbers, reducing them to a size + just above 3N/2. + + * Perform a small number of division or subtraction steps to reduce + the numbers to size below 3N/2. This is essential mainly for the + unlikely case of large quotients. + + * Call HGCD recursively, on the most significant N/2 limbs of the + reduced numbers. Apply the resulting matrix T_2 to the full + numbers, reducing them to a size just above N/2. + + * Compute T = T_1 T_2. + + * Perform a small number of division and subtraction steps to + satisfy the requirements, and return. + + GCD is then implemented as a loop around HGCD, similarly to Lehmer's +algorithm. Where Lehmer repeatedly chops off the top two limbs, calls +`mpn_hgcd2', and applies the resulting matrix to the full numbers, the +subquadratic GCD chops off the most significant third of the limbs (the +proportion is a tuning parameter, and 1/3 seems to be more efficient +than, e.g, 1/2), calls `mpn_hgcd', and applies the resulting matrix. +Once the input numbers are reduced to size below `GCD_DC_THRESHOLD', +Lehmer's algorithm is used for the rest of the work. + + The asymptotic running time of both HGCD and GCD is O(M(N)*log(N)), +where M(N) is the time for multiplying two N-limb numbers. + + +File: gmp.info, Node: Extended GCD, Next: Jacobi Symbol, Prev: Subquadratic GCD, Up: Greatest Common Divisor Algorithms + +16.3.4 Extended GCD +------------------- + +The extended GCD function, or GCDEXT, calculates gcd(a,b) and also +cofactors x and y satisfying a*x+b*y=gcd(a,b). All the algorithms used +for plain GCD are extended to handle this case. The binary algorithm is +used only for single-limb GCDEXT. Lehmer's algorithm is used for sizes +up to `GCDEXT_DC_THRESHOLD'. Above this threshold, GCDEXT is +implemented as a loop around HGCD, but with more book-keeping to keep +track of the cofactors. This gives the same asymptotic running time as +for GCD and HGCD, O(M(N)*log(N)) + + One difference to plain GCD is that while the inputs a and b are +reduced as the algorithm proceeds, the cofactors x and y grow in size. +This makes the tuning of the chopping-point more difficult. The current +code chops off the most significant half of the inputs for the call to +HGCD in the first iteration, and the most significant two thirds for +the remaining calls. This strategy could surely be improved. Also the +stop condition for the loop, where Lehmer's algorithm is invoked once +the inputs are reduced below `GCDEXT_DC_THRESHOLD', could maybe be +improved by taking into account the current size of the cofactors. + + +File: gmp.info, Node: Jacobi Symbol, Prev: Extended GCD, Up: Greatest Common Divisor Algorithms + +16.3.5 Jacobi Symbol +-------------------- + +`mpz_jacobi' and `mpz_kronecker' are currently implemented with a +simple binary algorithm similar to that described for the GCDs (*note +Binary GCD::). They're not very fast when both inputs are large. +Lehmer's multi-step improvement or a binary based multi-step algorithm +is likely to be better. + + When one operand fits a single limb, and that includes +`mpz_kronecker_ui' and friends, an initial reduction is done with +either `mpn_mod_1' or `mpn_modexact_1_odd', followed by the binary +algorithm on a single limb. The binary algorithm is well suited to a +single limb, and the whole calculation in this case is quite efficient. + + In all the routines sign changes for the result are accumulated +using some bit twiddling, avoiding table lookups or conditional jumps. + diff --git a/misc/builddeps/dp.win64/share/info/gmp.info-2 b/misc/builddeps/dp.win64/share/info/gmp.info-2 new file mode 100644 index 00000000..45846232 --- /dev/null +++ b/misc/builddeps/dp.win64/share/info/gmp.info-2 @@ -0,0 +1,3489 @@ +This is ../../gmp/doc/gmp.info, produced by makeinfo version 4.8 from +../../gmp/doc/gmp.texi. + + This manual describes how to install and use the GNU multiple +precision arithmetic library, version 5.0.1. + + Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, +2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free +Software Foundation, Inc. + + Permission is granted to copy, distribute and/or modify this +document under the terms of the GNU Free Documentation License, Version +1.3 or any later version published by the Free Software Foundation; +with no Invariant Sections, with the Front-Cover Texts being "A GNU +Manual", and with the Back-Cover Texts being "You have freedom to copy +and modify this GNU Manual, like GNU software". A copy of the license +is included in *Note GNU Free Documentation License::. + +INFO-DIR-SECTION GNU libraries +START-INFO-DIR-ENTRY +* gmp: (gmp). GNU Multiple Precision Arithmetic Library. +END-INFO-DIR-ENTRY + + +File: gmp.info, Node: Powering Algorithms, Next: Root Extraction Algorithms, Prev: Greatest Common Divisor Algorithms, Up: Algorithms + +16.4 Powering Algorithms +======================== + +* Menu: + +* Normal Powering Algorithm:: +* Modular Powering Algorithm:: + + +File: gmp.info, Node: Normal Powering Algorithm, Next: Modular Powering Algorithm, Prev: Powering Algorithms, Up: Powering Algorithms + +16.4.1 Normal Powering +---------------------- + +Normal `mpz' or `mpf' powering uses a simple binary algorithm, +successively squaring and then multiplying by the base when a 1 bit is +seen in the exponent, as per Knuth section 4.6.3. The "left to right" +variant described there is used rather than algorithm A, since it's +just as easy and can be done with somewhat less temporary memory. + + +File: gmp.info, Node: Modular Powering Algorithm, Prev: Normal Powering Algorithm, Up: Powering Algorithms + +16.4.2 Modular Powering +----------------------- + +Modular powering is implemented using a 2^k-ary sliding window +algorithm, as per "Handbook of Applied Cryptography" algorithm 14.85 +(*note References::). k is chosen according to the size of the +exponent. Larger exponents use larger values of k, the choice being +made to minimize the average number of multiplications that must +supplement the squaring. + + The modular multiplies and squares use either a simple division or +the REDC method by Montgomery (*note References::). REDC is a little +faster, essentially saving N single limb divisions in a fashion similar +to an exact remainder (*note Exact Remainder::). + + +File: gmp.info, Node: Root Extraction Algorithms, Next: Radix Conversion Algorithms, Prev: Powering Algorithms, Up: Algorithms + +16.5 Root Extraction Algorithms +=============================== + +* Menu: + +* Square Root Algorithm:: +* Nth Root Algorithm:: +* Perfect Square Algorithm:: +* Perfect Power Algorithm:: + + +File: gmp.info, Node: Square Root Algorithm, Next: Nth Root Algorithm, Prev: Root Extraction Algorithms, Up: Root Extraction Algorithms + +16.5.1 Square Root +------------------ + +Square roots are taken using the "Karatsuba Square Root" algorithm by +Paul Zimmermann (*note References::). + + An input n is split into four parts of k bits each, so with b=2^k we +have n = a3*b^3 + a2*b^2 + a1*b + a0. Part a3 must be "normalized" so +that either the high or second highest bit is set. In GMP, k is kept +on a limb boundary and the input is left shifted (by an even number of +bits) to normalize. + + The square root of the high two parts is taken, by recursive +application of the algorithm (bottoming out in a one-limb Newton's +method), + + s1,r1 = sqrtrem (a3*b + a2) + + This is an approximation to the desired root and is extended by a +division to give s,r, + + q,u = divrem (r1*b + a1, 2*s1) + s = s1*b + q + r = u*b + a0 - q^2 + + The normalization requirement on a3 means at this point s is either +correct or 1 too big. r is negative in the latter case, so + + if r < 0 then + r = r + 2*s - 1 + s = s - 1 + + The algorithm is expressed in a divide and conquer form, but as +noted in the paper it can also be viewed as a discrete variant of +Newton's method, or as a variation on the schoolboy method (no longer +taught) for square roots two digits at a time. + + If the remainder r is not required then usually only a few high limbs +of r and u need to be calculated to determine whether an adjustment to +s is required. This optimization is not currently implemented. + + In the Karatsuba multiplication range this algorithm is +O(1.5*M(N/2)), where M(n) is the time to multiply two numbers of n +limbs. In the FFT multiplication range this grows to a bound of +O(6*M(N/2)). In practice a factor of about 1.5 to 1.8 is found in the +Karatsuba and Toom-3 ranges, growing to 2 or 3 in the FFT range. + + The algorithm does all its calculations in integers and the resulting +`mpn_sqrtrem' is used for both `mpz_sqrt' and `mpf_sqrt'. The extended +precision given by `mpf_sqrt_ui' is obtained by padding with zero limbs. + + +File: gmp.info, Node: Nth Root Algorithm, Next: Perfect Square Algorithm, Prev: Square Root Algorithm, Up: Root Extraction Algorithms + +16.5.2 Nth Root +--------------- + +Integer Nth roots are taken using Newton's method with the following +iteration, where A is the input and n is the root to be taken. + + 1 A + a[i+1] = - * ( --------- + (n-1)*a[i] ) + n a[i]^(n-1) + + The initial approximation a[1] is generated bitwise by successively +powering a trial root with or without new 1 bits, aiming to be just +above the true root. The iteration converges quadratically when +started from a good approximation. When n is large more initial bits +are needed to get good convergence. The current implementation is not +particularly well optimized. + + +File: gmp.info, Node: Perfect Square Algorithm, Next: Perfect Power Algorithm, Prev: Nth Root Algorithm, Up: Root Extraction Algorithms + +16.5.3 Perfect Square +--------------------- + +A significant fraction of non-squares can be quickly identified by +checking whether the input is a quadratic residue modulo small integers. + + `mpz_perfect_square_p' first tests the input mod 256, which means +just examining the low byte. Only 44 different values occur for +squares mod 256, so 82.8% of inputs can be immediately identified as +non-squares. + + On a 32-bit system similar tests are done mod 9, 5, 7, 13 and 17, +for a total 99.25% of inputs identified as non-squares. On a 64-bit +system 97 is tested too, for a total 99.62%. + + These moduli are chosen because they're factors of 2^24-1 (or 2^48-1 +for 64-bits), and such a remainder can be quickly taken just using +additions (see `mpn_mod_34lsub1'). + + When nails are in use moduli are instead selected by the `gen-psqr.c' +program and applied with an `mpn_mod_1'. The same 2^24-1 or 2^48-1 +could be done with nails using some extra bit shifts, but this is not +currently implemented. + + In any case each modulus is applied to the `mpn_mod_34lsub1' or +`mpn_mod_1' remainder and a table lookup identifies non-squares. By +using a "modexact" style calculation, and suitably permuted tables, +just one multiply each is required, see the code for details. Moduli +are also combined to save operations, so long as the lookup tables +don't become too big. `gen-psqr.c' does all the pre-calculations. + + A square root must still be taken for any value that passes these +tests, to verify it's really a square and not one of the small fraction +of non-squares that get through (ie. a pseudo-square to all the tested +bases). + + Clearly more residue tests could be done, `mpz_perfect_square_p' only +uses a compact and efficient set. Big inputs would probably benefit +from more residue testing, small inputs might be better off with less. +The assumed distribution of squares versus non-squares in the input +would affect such considerations. + + +File: gmp.info, Node: Perfect Power Algorithm, Prev: Perfect Square Algorithm, Up: Root Extraction Algorithms + +16.5.4 Perfect Power +-------------------- + +Detecting perfect powers is required by some factorization algorithms. +Currently `mpz_perfect_power_p' is implemented using repeated Nth root +extractions, though naturally only prime roots need to be considered. +(*Note Nth Root Algorithm::.) + + If a prime divisor p with multiplicity e can be found, then only +roots which are divisors of e need to be considered, much reducing the +work necessary. To this end divisibility by a set of small primes is +checked. + + +File: gmp.info, Node: Radix Conversion Algorithms, Next: Other Algorithms, Prev: Root Extraction Algorithms, Up: Algorithms + +16.6 Radix Conversion +===================== + +Radix conversions are less important than other algorithms. A program +dominated by conversions should probably use a different data +representation. + +* Menu: + +* Binary to Radix:: +* Radix to Binary:: + + +File: gmp.info, Node: Binary to Radix, Next: Radix to Binary, Prev: Radix Conversion Algorithms, Up: Radix Conversion Algorithms + +16.6.1 Binary to Radix +---------------------- + +Conversions from binary to a power-of-2 radix use a simple and fast +O(N) bit extraction algorithm. + + Conversions from binary to other radices use one of two algorithms. +Sizes below `GET_STR_PRECOMPUTE_THRESHOLD' use a basic O(N^2) method. +Repeated divisions by b^n are made, where b is the radix and n is the +biggest power that fits in a limb. But instead of simply using the +remainder r from such divisions, an extra divide step is done to give a +fractional limb representing r/b^n. The digits of r can then be +extracted using multiplications by b rather than divisions. Special +case code is provided for decimal, allowing multiplications by 10 to +optimize to shifts and adds. + + Above `GET_STR_PRECOMPUTE_THRESHOLD' a sub-quadratic algorithm is +used. For an input t, powers b^(n*2^i) of the radix are calculated, +until a power between t and sqrt(t) is reached. t is then divided by +that largest power, giving a quotient which is the digits above that +power, and a remainder which is those below. These two parts are in +turn divided by the second highest power, and so on recursively. When +a piece has been divided down to less than `GET_STR_DC_THRESHOLD' +limbs, the basecase algorithm described above is used. + + The advantage of this algorithm is that big divisions can make use +of the sub-quadratic divide and conquer division (*note Divide and +Conquer Division::), and big divisions tend to have less overheads than +lots of separate single limb divisions anyway. But in any case the +cost of calculating the powers b^(n*2^i) must first be overcome. + + `GET_STR_PRECOMPUTE_THRESHOLD' and `GET_STR_DC_THRESHOLD' represent +the same basic thing, the point where it becomes worth doing a big +division to cut the input in half. `GET_STR_PRECOMPUTE_THRESHOLD' +includes the cost of calculating the radix power required, whereas +`GET_STR_DC_THRESHOLD' assumes that's already available, which is the +case when recursing. + + Since the base case produces digits from least to most significant +but they want to be stored from most to least, it's necessary to +calculate in advance how many digits there will be, or at least be sure +not to underestimate that. For GMP the number of input bits is +multiplied by `chars_per_bit_exactly' from `mp_bases', rounding up. +The result is either correct or one too big. + + Examining some of the high bits of the input could increase the +chance of getting the exact number of digits, but an exact result every +time would not be practical, since in general the difference between +numbers 100... and 99... is only in the last few bits and the work to +identify 99... might well be almost as much as a full conversion. + + `mpf_get_str' doesn't currently use the algorithm described here, it +multiplies or divides by a power of b to move the radix point to the +just above the highest non-zero digit (or at worst one above that +location), then multiplies by b^n to bring out digits. This is O(N^2) +and is certainly not optimal. + + The r/b^n scheme described above for using multiplications to bring +out digits might be useful for more than a single limb. Some brief +experiments with it on the base case when recursing didn't give a +noticeable improvement, but perhaps that was only due to the +implementation. Something similar would work for the sub-quadratic +divisions too, though there would be the cost of calculating a bigger +radix power. + + Another possible improvement for the sub-quadratic part would be to +arrange for radix powers that balanced the sizes of quotient and +remainder produced, ie. the highest power would be an b^(n*k) +approximately equal to sqrt(t), not restricted to a 2^i factor. That +ought to smooth out a graph of times against sizes, but may or may not +be a net speedup. + + +File: gmp.info, Node: Radix to Binary, Prev: Binary to Radix, Up: Radix Conversion Algorithms + +16.6.2 Radix to Binary +---------------------- + +*This section needs to be rewritten, it currently describes the +algorithms used before GMP 4.3.* + + Conversions from a power-of-2 radix into binary use a simple and fast +O(N) bitwise concatenation algorithm. + + Conversions from other radices use one of two algorithms. Sizes +below `SET_STR_PRECOMPUTE_THRESHOLD' use a basic O(N^2) method. Groups +of n digits are converted to limbs, where n is the biggest power of the +base b which will fit in a limb, then those groups are accumulated into +the result by multiplying by b^n and adding. This saves +multi-precision operations, as per Knuth section 4.4 part E (*note +References::). Some special case code is provided for decimal, giving +the compiler a chance to optimize multiplications by 10. + + Above `SET_STR_PRECOMPUTE_THRESHOLD' a sub-quadratic algorithm is +used. First groups of n digits are converted into limbs. Then adjacent +limbs are combined into limb pairs with x*b^n+y, where x and y are the +limbs. Adjacent limb pairs are combined into quads similarly with +x*b^(2n)+y. This continues until a single block remains, that being +the result. + + The advantage of this method is that the multiplications for each x +are big blocks, allowing Karatsuba and higher algorithms to be used. +But the cost of calculating the powers b^(n*2^i) must be overcome. +`SET_STR_PRECOMPUTE_THRESHOLD' usually ends up quite big, around 5000 +digits, and on some processors much bigger still. + + `SET_STR_PRECOMPUTE_THRESHOLD' is based on the input digits (and +tuned for decimal), though it might be better based on a limb count, so +as to be independent of the base. But that sort of count isn't used by +the base case and so would need some sort of initial calculation or +estimate. + + The main reason `SET_STR_PRECOMPUTE_THRESHOLD' is so much bigger +than the corresponding `GET_STR_PRECOMPUTE_THRESHOLD' is that +`mpn_mul_1' is much faster than `mpn_divrem_1' (often by a factor of 5, +or more). + + +File: gmp.info, Node: Other Algorithms, Next: Assembly Coding, Prev: Radix Conversion Algorithms, Up: Algorithms + +16.7 Other Algorithms +===================== + +* Menu: + +* Prime Testing Algorithm:: +* Factorial Algorithm:: +* Binomial Coefficients Algorithm:: +* Fibonacci Numbers Algorithm:: +* Lucas Numbers Algorithm:: +* Random Number Algorithms:: + + +File: gmp.info, Node: Prime Testing Algorithm, Next: Factorial Algorithm, Prev: Other Algorithms, Up: Other Algorithms + +16.7.1 Prime Testing +-------------------- + +The primality testing in `mpz_probab_prime_p' (*note Number Theoretic +Functions::) first does some trial division by small factors and then +uses the Miller-Rabin probabilistic primality testing algorithm, as +described in Knuth section 4.5.4 algorithm P (*note References::). + + For an odd input n, and with n = q*2^k+1 where q is odd, this +algorithm selects a random base x and tests whether x^q mod n is 1 or +-1, or an x^(q*2^j) mod n is 1, for 1<=j<=k. If so then n is probably +prime, if not then n is definitely composite. + + Any prime n will pass the test, but some composites do too. Such +composites are known as strong pseudoprimes to base x. No n is a +strong pseudoprime to more than 1/4 of all bases (see Knuth exercise +22), hence with x chosen at random there's no more than a 1/4 chance a +"probable prime" will in fact be composite. + + In fact strong pseudoprimes are quite rare, making the test much more +powerful than this analysis would suggest, but 1/4 is all that's proven +for an arbitrary n. + + +File: gmp.info, Node: Factorial Algorithm, Next: Binomial Coefficients Algorithm, Prev: Prime Testing Algorithm, Up: Other Algorithms + +16.7.2 Factorial +---------------- + +Factorials are calculated by a combination of removal of twos, +powering, and binary splitting. The procedure can be best illustrated +with an example, + + 23! = 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23 + +has factors of two removed, + + 23! = 2^19.1.1.3.1.5.3.7.1.9.5.11.3.13.7.15.1.17.9.19.5.21.11.23 + +and the resulting terms collected up according to their multiplicity, + + 23! = 2^19.(3.5)^3.(7.9.11)^2.(13.15.17.19.21.23) + + Each sequence such as 13.15.17.19.21.23 is evaluated by splitting +into every second term, as for instance (13.17.21).(15.19.23), and the +same recursively on each half. This is implemented iteratively using +some bit twiddling. + + Such splitting is more efficient than repeated Nx1 multiplies since +it forms big multiplies, allowing Karatsuba and higher algorithms to be +used. And even below the Karatsuba threshold a big block of work can +be more efficient for the basecase algorithm. + + Splitting into subsequences of every second term keeps the resulting +products more nearly equal in size than would the simpler approach of +say taking the first half and second half of the sequence. Nearly +equal products are more efficient for the current multiply +implementation. + + +File: gmp.info, Node: Binomial Coefficients Algorithm, Next: Fibonacci Numbers Algorithm, Prev: Factorial Algorithm, Up: Other Algorithms + +16.7.3 Binomial Coefficients +---------------------------- + +Binomial coefficients C(n,k) are calculated by first arranging k <= n/2 +using C(n,k) = C(n,n-k) if necessary, and then evaluating the following +product simply from i=2 to i=k. + + k (n-k+i) + C(n,k) = (n-k+1) * prod ------- + i=2 i + + It's easy to show that each denominator i will divide the product so +far, so the exact division algorithm is used (*note Exact Division::). + + The numerators n-k+i and denominators i are first accumulated into +as many fit a limb, to save multi-precision operations, though for +`mpz_bin_ui' this applies only to the divisors, since n is an `mpz_t' +and n-k+i in general won't fit in a limb at all. + + +File: gmp.info, Node: Fibonacci Numbers Algorithm, Next: Lucas Numbers Algorithm, Prev: Binomial Coefficients Algorithm, Up: Other Algorithms + +16.7.4 Fibonacci Numbers +------------------------ + +The Fibonacci functions `mpz_fib_ui' and `mpz_fib2_ui' are designed for +calculating isolated F[n] or F[n],F[n-1] values efficiently. + + For small n, a table of single limb values in `__gmp_fib_table' is +used. On a 32-bit limb this goes up to F[47], or on a 64-bit limb up +to F[93]. For convenience the table starts at F[-1]. + + Beyond the table, values are generated with a binary powering +algorithm, calculating a pair F[n] and F[n-1] working from high to low +across the bits of n. The formulas used are + + F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k + F[2k-1] = F[k]^2 + F[k-1]^2 + + F[2k] = F[2k+1] - F[2k-1] + + At each step, k is the high b bits of n. If the next bit of n is 0 +then F[2k],F[2k-1] is used, or if it's a 1 then F[2k+1],F[2k] is used, +and the process repeated until all bits of n are incorporated. Notice +these formulas require just two squares per bit of n. + + It'd be possible to handle the first few n above the single limb +table with simple additions, using the defining Fibonacci recurrence +F[k+1]=F[k]+F[k-1], but this is not done since it usually turns out to +be faster for only about 10 or 20 values of n, and including a block of +code for just those doesn't seem worthwhile. If they really mattered +it'd be better to extend the data table. + + Using a table avoids lots of calculations on small numbers, and +makes small n go fast. A bigger table would make more small n go fast, +it's just a question of balancing size against desired speed. For GMP +the code is kept compact, with the emphasis primarily on a good +powering algorithm. + + `mpz_fib2_ui' returns both F[n] and F[n-1], but `mpz_fib_ui' is only +interested in F[n]. In this case the last step of the algorithm can +become one multiply instead of two squares. One of the following two +formulas is used, according as n is odd or even. + + F[2k] = F[k]*(F[k]+2F[k-1]) + + F[2k+1] = (2F[k]+F[k-1])*(2F[k]-F[k-1]) + 2*(-1)^k + + F[2k+1] here is the same as above, just rearranged to be a multiply. +For interest, the 2*(-1)^k term both here and above can be applied +just to the low limb of the calculation, without a carry or borrow into +further limbs, which saves some code size. See comments with +`mpz_fib_ui' and the internal `mpn_fib2_ui' for how this is done. + + +File: gmp.info, Node: Lucas Numbers Algorithm, Next: Random Number Algorithms, Prev: Fibonacci Numbers Algorithm, Up: Other Algorithms + +16.7.5 Lucas Numbers +-------------------- + +`mpz_lucnum2_ui' derives a pair of Lucas numbers from a pair of +Fibonacci numbers with the following simple formulas. + + L[k] = F[k] + 2*F[k-1] + L[k-1] = 2*F[k] - F[k-1] + + `mpz_lucnum_ui' is only interested in L[n], and some work can be +saved. Trailing zero bits on n can be handled with a single square +each. + + L[2k] = L[k]^2 - 2*(-1)^k + + And the lowest 1 bit can be handled with one multiply of a pair of +Fibonacci numbers, similar to what `mpz_fib_ui' does. + + L[2k+1] = 5*F[k-1]*(2*F[k]+F[k-1]) - 4*(-1)^k + + +File: gmp.info, Node: Random Number Algorithms, Prev: Lucas Numbers Algorithm, Up: Other Algorithms + +16.7.6 Random Numbers +--------------------- + +For the `urandomb' functions, random numbers are generated simply by +concatenating bits produced by the generator. As long as the generator +has good randomness properties this will produce well-distributed N bit +numbers. + + For the `urandomm' functions, random numbers in a range 0<=R48 bit pieces is convenient. With +some care though six 21x32->53 bit products can be used, if one of the +lower two 21-bit pieces also uses the sign bit. + + For the `mpn_mul_1' family of functions on a 64-bit machine, the +invariant single limb is split at the start, into 3 or 4 pieces. +Inside the loop, the bignum operand is split into 32-bit pieces. Fast +conversion of these unsigned 32-bit pieces to floating point is highly +machine-dependent. In some cases, reading the data into the integer +unit, zero-extending to 64-bits, then transferring to the floating +point unit back via memory is the only option. + + Converting partial products back to 64-bit limbs is usually best +done as a signed conversion. Since all values are smaller than 2^53, +signed and unsigned are the same, but most processors lack unsigned +conversions. + + + + Here is a diagram showing 16x32 bit products for an `mpn_mul_1' or +`mpn_addmul_1' with a 64-bit limb. The single limb operand V is split +into four 16-bit parts. The multi-limb operand U is split in the loop +into two 32-bit parts. + + +---+---+---+---+ + |v48|v32|v16|v00| V operand + +---+---+---+---+ + + +-------+---+---+ + x | u32 | u00 | U operand (one limb) + +---------------+ + + --------------------------------- + + +-----------+ + | u00 x v00 | p00 48-bit products + +-----------+ + +-----------+ + | u00 x v16 | p16 + +-----------+ + +-----------+ + | u00 x v32 | p32 + +-----------+ + +-----------+ + | u00 x v48 | p48 + +-----------+ + +-----------+ + | u32 x v00 | r32 + +-----------+ + +-----------+ + | u32 x v16 | r48 + +-----------+ + +-----------+ + | u32 x v32 | r64 + +-----------+ + +-----------+ + | u32 x v48 | r80 + +-----------+ + + p32 and r32 can be summed using floating-point addition, and +likewise p48 and r48. p00 and p16 can be summed with r64 and r80 from +the previous iteration. + + For each loop then, four 49-bit quantities are transferred to the +integer unit, aligned as follows, + + |-----64bits----|-----64bits----| + +------------+ + | p00 + r64' | i00 + +------------+ + +------------+ + | p16 + r80' | i16 + +------------+ + +------------+ + | p32 + r32 | i32 + +------------+ + +------------+ + | p48 + r48 | i48 + +------------+ + + The challenge then is to sum these efficiently and add in a carry +limb, generating a low 64-bit result limb and a high 33-bit carry limb +(i48 extends 33 bits into the high half). + + +File: gmp.info, Node: Assembly SIMD Instructions, Next: Assembly Software Pipelining, Prev: Assembly Floating Point, Up: Assembly Coding + +16.8.7 SIMD Instructions +------------------------ + +The single-instruction multiple-data support in current microprocessors +is aimed at signal processing algorithms where each data point can be +treated more or less independently. There's generally not much support +for propagating the sort of carries that arise in GMP. + + SIMD multiplications of say four 16x16 bit multiplies only do as much +work as one 32x32 from GMP's point of view, and need some shifts and +adds besides. But of course if say the SIMD form is fully pipelined +and uses less instruction decoding then it may still be worthwhile. + + On the x86 chips, MMX has so far found a use in `mpn_rshift' and +`mpn_lshift', and is used in a special case for 16-bit multipliers in +the P55 `mpn_mul_1'. SSE2 is used for Pentium 4 `mpn_mul_1', +`mpn_addmul_1', and `mpn_submul_1'. + + +File: gmp.info, Node: Assembly Software Pipelining, Next: Assembly Loop Unrolling, Prev: Assembly SIMD Instructions, Up: Assembly Coding + +16.8.8 Software Pipelining +-------------------------- + +Software pipelining consists of scheduling instructions around the +branch point in a loop. For example a loop might issue a load not for +use in the present iteration but the next, thereby allowing extra +cycles for the data to arrive from memory. + + Naturally this is wanted only when doing things like loads or +multiplies that take several cycles to complete, and only where a CPU +has multiple functional units so that other work can be done in the +meantime. + + A pipeline with several stages will have a data value in progress at +each stage and each loop iteration moves them along one stage. This is +like juggling. + + If the latency of some instruction is greater than the loop time +then it will be necessary to unroll, so one register has a result ready +to use while another (or multiple others) are still in progress. +(*note Assembly Loop Unrolling::). + + +File: gmp.info, Node: Assembly Loop Unrolling, Next: Assembly Writing Guide, Prev: Assembly Software Pipelining, Up: Assembly Coding + +16.8.9 Loop Unrolling +--------------------- + +Loop unrolling consists of replicating code so that several limbs are +processed in each loop. At a minimum this reduces loop overheads by a +corresponding factor, but it can also allow better register usage, for +example alternately using one register combination and then another. +Judicious use of `m4' macros can help avoid lots of duplication in the +source code. + + Any amount of unrolling can be handled with a loop counter that's +decremented by N each time, stopping when the remaining count is less +than the further N the loop will process. Or by subtracting N at the +start, the termination condition becomes when the counter C is less +than 0 (and the count of remaining limbs is C+N). + + Alternately for a power of 2 unroll the loop count and remainder can +be established with a shift and mask. This is convenient if also +making a computed jump into the middle of a large loop. + + The limbs not a multiple of the unrolling can be handled in various +ways, for example + + * A simple loop at the end (or the start) to process the excess. + Care will be wanted that it isn't too much slower than the + unrolled part. + + * A set of binary tests, for example after an 8-limb unrolling, test + for 4 more limbs to process, then a further 2 more or not, and + finally 1 more or not. This will probably take more code space + than a simple loop. + + * A `switch' statement, providing separate code for each possible + excess, for example an 8-limb unrolling would have separate code + for 0 remaining, 1 remaining, etc, up to 7 remaining. This might + take a lot of code, but may be the best way to optimize all cases + in combination with a deep pipelined loop. + + * A computed jump into the middle of the loop, thus making the first + iteration handle the excess. This should make times smoothly + increase with size, which is attractive, but setups for the jump + and adjustments for pointers can be tricky and could become quite + difficult in combination with deep pipelining. + + +File: gmp.info, Node: Assembly Writing Guide, Prev: Assembly Loop Unrolling, Up: Assembly Coding + +16.8.10 Writing Guide +--------------------- + +This is a guide to writing software pipelined loops for processing limb +vectors in assembly. + + First determine the algorithm and which instructions are needed. +Code it without unrolling or scheduling, to make sure it works. On a +3-operand CPU try to write each new value to a new register, this will +greatly simplify later steps. + + Then note for each instruction the functional unit and/or issue port +requirements. If an instruction can use either of two units, like U0 +or U1 then make a category "U0/U1". Count the total using each unit +(or combined unit), and count all instructions. + + Figure out from those counts the best possible loop time. The goal +will be to find a perfect schedule where instruction latencies are +completely hidden. The total instruction count might be the limiting +factor, or perhaps a particular functional unit. It might be possible +to tweak the instructions to help the limiting factor. + + Suppose the loop time is N, then make N issue buckets, with the +final loop branch at the end of the last. Now fill the buckets with +dummy instructions using the functional units desired. Run this to +make sure the intended speed is reached. + + Now replace the dummy instructions with the real instructions from +the slow but correct loop you started with. The first will typically +be a load instruction. Then the instruction using that value is placed +in a bucket an appropriate distance down. Run the loop again, to check +it still runs at target speed. + + Keep placing instructions, frequently measuring the loop. After a +few you will need to wrap around from the last bucket back to the top +of the loop. If you used the new-register for new-value strategy above +then there will be no register conflicts. If not then take care not to +clobber something already in use. Changing registers at this time is +very error prone. + + The loop will overlap two or more of the original loop iterations, +and the computation of one vector element result will be started in one +iteration of the new loop, and completed one or several iterations +later. + + The final step is to create feed-in and wind-down code for the loop. +A good way to do this is to make a copy (or copies) of the loop at the +start and delete those instructions which don't have valid antecedents, +and at the end replicate and delete those whose results are unwanted +(including any further loads). + + The loop will have a minimum number of limbs loaded and processed, +so the feed-in code must test if the request size is smaller and skip +either to a suitable part of the wind-down or to special code for small +sizes. + + +File: gmp.info, Node: Internals, Next: Contributors, Prev: Algorithms, Up: Top + +17 Internals +************ + +*This chapter is provided only for informational purposes and the +various internals described here may change in future GMP releases. +Applications expecting to be compatible with future releases should use +only the documented interfaces described in previous chapters.* + +* Menu: + +* Integer Internals:: +* Rational Internals:: +* Float Internals:: +* Raw Output Internals:: +* C++ Interface Internals:: + + +File: gmp.info, Node: Integer Internals, Next: Rational Internals, Prev: Internals, Up: Internals + +17.1 Integer Internals +====================== + +`mpz_t' variables represent integers using sign and magnitude, in space +dynamically allocated and reallocated. The fields are as follows. + +`_mp_size' + The number of limbs, or the negative of that when representing a + negative integer. Zero is represented by `_mp_size' set to zero, + in which case the `_mp_d' data is unused. + +`_mp_d' + A pointer to an array of limbs which is the magnitude. These are + stored "little endian" as per the `mpn' functions, so `_mp_d[0]' + is the least significant limb and `_mp_d[ABS(_mp_size)-1]' is the + most significant. Whenever `_mp_size' is non-zero, the most + significant limb is non-zero. + + Currently there's always at least one limb allocated, so for + instance `mpz_set_ui' never needs to reallocate, and `mpz_get_ui' + can fetch `_mp_d[0]' unconditionally (though its value is then + only wanted if `_mp_size' is non-zero). + +`_mp_alloc' + `_mp_alloc' is the number of limbs currently allocated at `_mp_d', + and naturally `_mp_alloc >= ABS(_mp_size)'. When an `mpz' routine + is about to (or might be about to) increase `_mp_size', it checks + `_mp_alloc' to see whether there's enough space, and reallocates + if not. `MPZ_REALLOC' is generally used for this. + + The various bitwise logical functions like `mpz_and' behave as if +negative values were twos complement. But sign and magnitude is always +used internally, and necessary adjustments are made during the +calculations. Sometimes this isn't pretty, but sign and magnitude are +best for other routines. + + Some internal temporary variables are setup with `MPZ_TMP_INIT' and +these have `_mp_d' space obtained from `TMP_ALLOC' rather than the +memory allocation functions. Care is taken to ensure that these are +big enough that no reallocation is necessary (since it would have +unpredictable consequences). + + `_mp_size' and `_mp_alloc' are `int', although `mp_size_t' is +usually a `long'. This is done to make the fields just 32 bits on some +64 bits systems, thereby saving a few bytes of data space but still +providing plenty of range. + + +File: gmp.info, Node: Rational Internals, Next: Float Internals, Prev: Integer Internals, Up: Internals + +17.2 Rational Internals +======================= + +`mpq_t' variables represent rationals using an `mpz_t' numerator and +denominator (*note Integer Internals::). + + The canonical form adopted is denominator positive (and non-zero), +no common factors between numerator and denominator, and zero uniquely +represented as 0/1. + + It's believed that casting out common factors at each stage of a +calculation is best in general. A GCD is an O(N^2) operation so it's +better to do a few small ones immediately than to delay and have to do +a big one later. Knowing the numerator and denominator have no common +factors can be used for example in `mpq_mul' to make only two cross +GCDs necessary, not four. + + This general approach to common factors is badly sub-optimal in the +presence of simple factorizations or little prospect for cancellation, +but GMP has no way to know when this will occur. As per *Note +Efficiency::, that's left to applications. The `mpq_t' framework might +still suit, with `mpq_numref' and `mpq_denref' for direct access to the +numerator and denominator, or of course `mpz_t' variables can be used +directly. + + +File: gmp.info, Node: Float Internals, Next: Raw Output Internals, Prev: Rational Internals, Up: Internals + +17.3 Float Internals +==================== + +Efficient calculation is the primary aim of GMP floats and the use of +whole limbs and simple rounding facilitates this. + + `mpf_t' floats have a variable precision mantissa and a single +machine word signed exponent. The mantissa is represented using sign +and magnitude. + + most least + significant significant + limb limb + + _mp_d + |---- _mp_exp ---> | + _____ _____ _____ _____ _____ + |_____|_____|_____|_____|_____| + . <------------ radix point + + <-------- _mp_size ---------> + +The fields are as follows. + +`_mp_size' + The number of limbs currently in use, or the negative of that when + representing a negative value. Zero is represented by `_mp_size' + and `_mp_exp' both set to zero, and in that case the `_mp_d' data + is unused. (In the future `_mp_exp' might be undefined when + representing zero.) + +`_mp_prec' + The precision of the mantissa, in limbs. In any calculation the + aim is to produce `_mp_prec' limbs of result (the most significant + being non-zero). + +`_mp_d' + A pointer to the array of limbs which is the absolute value of the + mantissa. These are stored "little endian" as per the `mpn' + functions, so `_mp_d[0]' is the least significant limb and + `_mp_d[ABS(_mp_size)-1]' the most significant. + + The most significant limb is always non-zero, but there are no + other restrictions on its value, in particular the highest 1 bit + can be anywhere within the limb. + + `_mp_prec+1' limbs are allocated to `_mp_d', the extra limb being + for convenience (see below). There are no reallocations during a + calculation, only in a change of precision with `mpf_set_prec'. + +`_mp_exp' + The exponent, in limbs, determining the location of the implied + radix point. Zero means the radix point is just above the most + significant limb. Positive values mean a radix point offset + towards the lower limbs and hence a value >= 1, as for example in + the diagram above. Negative exponents mean a radix point further + above the highest limb. + + Naturally the exponent can be any value, it doesn't have to fall + within the limbs as the diagram shows, it can be a long way above + or a long way below. Limbs other than those included in the + `{_mp_d,_mp_size}' data are treated as zero. + + The `_mp_size' and `_mp_prec' fields are `int', although the +`mp_size_t' type is usually a `long'. The `_mp_exp' field is usually +`long'. This is done to make some fields just 32 bits on some 64 bits +systems, thereby saving a few bytes of data space but still providing +plenty of precision and a very large range. + + +The following various points should be noted. + +Low Zeros + The least significant limbs `_mp_d[0]' etc can be zero, though + such low zeros can always be ignored. Routines likely to produce + low zeros check and avoid them to save time in subsequent + calculations, but for most routines they're quite unlikely and + aren't checked. + +Mantissa Size Range + The `_mp_size' count of limbs in use can be less than `_mp_prec' if + the value can be represented in less. This means low precision + values or small integers stored in a high precision `mpf_t' can + still be operated on efficiently. + + `_mp_size' can also be greater than `_mp_prec'. Firstly a value is + allowed to use all of the `_mp_prec+1' limbs available at `_mp_d', + and secondly when `mpf_set_prec_raw' lowers `_mp_prec' it leaves + `_mp_size' unchanged and so the size can be arbitrarily bigger than + `_mp_prec'. + +Rounding + All rounding is done on limb boundaries. Calculating `_mp_prec' + limbs with the high non-zero will ensure the application requested + minimum precision is obtained. + + The use of simple "trunc" rounding towards zero is efficient, + since there's no need to examine extra limbs and increment or + decrement. + +Bit Shifts + Since the exponent is in limbs, there are no bit shifts in basic + operations like `mpf_add' and `mpf_mul'. When differing exponents + are encountered all that's needed is to adjust pointers to line up + the relevant limbs. + + Of course `mpf_mul_2exp' and `mpf_div_2exp' will require bit + shifts, but the choice is between an exponent in limbs which + requires shifts there, or one in bits which requires them almost + everywhere else. + +Use of `_mp_prec+1' Limbs + The extra limb on `_mp_d' (`_mp_prec+1' rather than just + `_mp_prec') helps when an `mpf' routine might get a carry from its + operation. `mpf_add' for instance will do an `mpn_add' of + `_mp_prec' limbs. If there's no carry then that's the result, but + if there is a carry then it's stored in the extra limb of space and + `_mp_size' becomes `_mp_prec+1'. + + Whenever `_mp_prec+1' limbs are held in a variable, the low limb + is not needed for the intended precision, only the `_mp_prec' high + limbs. But zeroing it out or moving the rest down is unnecessary. + Subsequent routines reading the value will simply take the high + limbs they need, and this will be `_mp_prec' if their target has + that same precision. This is no more than a pointer adjustment, + and must be checked anyway since the destination precision can be + different from the sources. + + Copy functions like `mpf_set' will retain a full `_mp_prec+1' limbs + if available. This ensures that a variable which has `_mp_size' + equal to `_mp_prec+1' will get its full exact value copied. + Strictly speaking this is unnecessary since only `_mp_prec' limbs + are needed for the application's requested precision, but it's + considered that an `mpf_set' from one variable into another of the + same precision ought to produce an exact copy. + +Application Precisions + `__GMPF_BITS_TO_PREC' converts an application requested precision + to an `_mp_prec'. The value in bits is rounded up to a whole limb + then an extra limb is added since the most significant limb of + `_mp_d' is only non-zero and therefore might contain only one bit. + + `__GMPF_PREC_TO_BITS' does the reverse conversion, and removes the + extra limb from `_mp_prec' before converting to bits. The net + effect of reading back with `mpf_get_prec' is simply the precision + rounded up to a multiple of `mp_bits_per_limb'. + + Note that the extra limb added here for the high only being + non-zero is in addition to the extra limb allocated to `_mp_d'. + For example with a 32-bit limb, an application request for 250 + bits will be rounded up to 8 limbs, then an extra added for the + high being only non-zero, giving an `_mp_prec' of 9. `_mp_d' then + gets 10 limbs allocated. Reading back with `mpf_get_prec' will + take `_mp_prec' subtract 1 limb and multiply by 32, giving 256 + bits. + + Strictly speaking, the fact the high limb has at least one bit + means that a float with, say, 3 limbs of 32-bits each will be + holding at least 65 bits, but for the purposes of `mpf_t' it's + considered simply to be 64 bits, a nice multiple of the limb size. + + +File: gmp.info, Node: Raw Output Internals, Next: C++ Interface Internals, Prev: Float Internals, Up: Internals + +17.4 Raw Output Internals +========================= + +`mpz_out_raw' uses the following format. + + +------+------------------------+ + | size | data bytes | + +------+------------------------+ + + The size is 4 bytes written most significant byte first, being the +number of subsequent data bytes, or the twos complement negative of +that when a negative integer is represented. The data bytes are the +absolute value of the integer, written most significant byte first. + + The most significant data byte is always non-zero, so the output is +the same on all systems, irrespective of limb size. + + In GMP 1, leading zero bytes were written to pad the data bytes to a +multiple of the limb size. `mpz_inp_raw' will still accept this, for +compatibility. + + The use of "big endian" for both the size and data fields is +deliberate, it makes the data easy to read in a hex dump of a file. +Unfortunately it also means that the limb data must be reversed when +reading or writing, so neither a big endian nor little endian system +can just read and write `_mp_d'. + + +File: gmp.info, Node: C++ Interface Internals, Prev: Raw Output Internals, Up: Internals + +17.5 C++ Interface Internals +============================ + +A system of expression templates is used to ensure something like +`a=b+c' turns into a simple call to `mpz_add' etc. For `mpf_class' the +scheme also ensures the precision of the final destination is used for +any temporaries within a statement like `f=w*x+y*z'. These are +important features which a naive implementation cannot provide. + + A simplified description of the scheme follows. The true scheme is +complicated by the fact that expressions have different return types. +For detailed information, refer to the source code. + + To perform an operation, say, addition, we first define a "function +object" evaluating it, + + struct __gmp_binary_plus + { + static void eval(mpf_t f, mpf_t g, mpf_t h) { mpf_add(f, g, h); } + }; + +And an "additive expression" object, + + __gmp_expr<__gmp_binary_expr > + operator+(const mpf_class &f, const mpf_class &g) + { + return __gmp_expr + <__gmp_binary_expr >(f, g); + } + + The seemingly redundant `__gmp_expr<__gmp_binary_expr<...>>' is used +to encapsulate any possible kind of expression into a single template +type. In fact even `mpf_class' etc are `typedef' specializations of +`__gmp_expr'. + + Next we define assignment of `__gmp_expr' to `mpf_class'. + + template + mpf_class & mpf_class::operator=(const __gmp_expr &expr) + { + expr.eval(this->get_mpf_t(), this->precision()); + return *this; + } + + template + void __gmp_expr<__gmp_binary_expr >::eval + (mpf_t f, mp_bitcnt_t precision) + { + Op::eval(f, expr.val1.get_mpf_t(), expr.val2.get_mpf_t()); + } + + where `expr.val1' and `expr.val2' are references to the expression's +operands (here `expr' is the `__gmp_binary_expr' stored within the +`__gmp_expr'). + + This way, the expression is actually evaluated only at the time of +assignment, when the required precision (that of `f') is known. +Furthermore the target `mpf_t' is now available, thus we can call +`mpf_add' directly with `f' as the output argument. + + Compound expressions are handled by defining operators taking +subexpressions as their arguments, like this: + + template + __gmp_expr + <__gmp_binary_expr<__gmp_expr, __gmp_expr, __gmp_binary_plus> > + operator+(const __gmp_expr &expr1, const __gmp_expr &expr2) + { + return __gmp_expr + <__gmp_binary_expr<__gmp_expr, __gmp_expr, __gmp_binary_plus> > + (expr1, expr2); + } + + And the corresponding specializations of `__gmp_expr::eval': + + template + void __gmp_expr + <__gmp_binary_expr<__gmp_expr, __gmp_expr, Op> >::eval + (mpf_t f, mp_bitcnt_t precision) + { + // declare two temporaries + mpf_class temp1(expr.val1, precision), temp2(expr.val2, precision); + Op::eval(f, temp1.get_mpf_t(), temp2.get_mpf_t()); + } + + The expression is thus recursively evaluated to any level of +complexity and all subexpressions are evaluated to the precision of `f'. + + +File: gmp.info, Node: Contributors, Next: References, Prev: Internals, Up: Top + +Appendix A Contributors +*********************** + +Torbjo"rn Granlund wrote the original GMP library and is still the main +developer. Code not explicitly attributed to others, was contributed by +Torbjo"rn. Several other individuals and organizations have contributed +GMP. Here is a list in chronological order on first contribution: + + Gunnar Sjo"din and Hans Riesel helped with mathematical problems in +early versions of the library. + + Richard Stallman helped with the interface design and revised the +first version of this manual. + + Brian Beuning and Doug Lea helped with testing of early versions of +the library and made creative suggestions. + + John Amanatides of York University in Canada contributed the function +`mpz_probab_prime_p'. + + Paul Zimmermann wrote the REDC-based mpz_powm code, the +Scho"nhage-Strassen FFT multiply code, and the Karatsuba square root +code. He also improved the Toom3 code for GMP 4.2. Paul sparked the +development of GMP 2, with his comparisons between bignum packages. +The ECMNET project Paul is organizing was a driving force behind many +of the optimizations in GMP 3. Paul also wrote the new GMP 4.3 nth +root code (with Torbjo"rn). + + Ken Weber (Kent State University, Universidade Federal do Rio Grande +do Sul) contributed now defunct versions of `mpz_gcd', `mpz_divexact', +`mpn_gcd', and `mpn_bdivmod', partially supported by CNPq (Brazil) +grant 301314194-2. + + Per Bothner of Cygnus Support helped to set up GMP to use Cygnus' +configure. He has also made valuable suggestions and tested numerous +intermediary releases. + + Joachim Hollman was involved in the design of the `mpf' interface, +and in the `mpz' design revisions for version 2. + + Bennet Yee contributed the initial versions of `mpz_jacobi' and +`mpz_legendre'. + + Andreas Schwab contributed the files `mpn/m68k/lshift.S' and +`mpn/m68k/rshift.S' (now in `.asm' form). + + Robert Harley of Inria, France and David Seal of ARM, England, +suggested clever improvements for population count. Robert also wrote +highly optimized Karatsuba and 3-way Toom multiplication functions for +GMP 3, and contributed the ARM assembly code. + + Torsten Ekedahl of the Mathematical department of Stockholm +University provided significant inspiration during several phases of +the GMP development. His mathematical expertise helped improve several +algorithms. + + Linus Nordberg wrote the new configure system based on autoconf and +implemented the new random functions. + + Kevin Ryde worked on a large number of things: optimized x86 code, +m4 asm macros, parameter tuning, speed measuring, the configure system, +function inlining, divisibility tests, bit scanning, Jacobi symbols, +Fibonacci and Lucas number functions, printf and scanf functions, perl +interface, demo expression parser, the algorithms chapter in the +manual, `gmpasm-mode.el', and various miscellaneous improvements +elsewhere. + + Kent Boortz made the Mac OS 9 port. + + Steve Root helped write the optimized alpha 21264 assembly code. + + Gerardo Ballabio wrote the `gmpxx.h' C++ class interface and the C++ +`istream' input routines. + + Jason Moxham rewrote `mpz_fac_ui'. + + Pedro Gimeno implemented the Mersenne Twister and made other random +number improvements. + + Niels Mo"ller wrote the sub-quadratic GCD and extended GCD code, the +quadratic Hensel division code, and (with Torbjo"rn) the new divide and +conquer division code for GMP 4.3. Niels also helped implement the new +Toom multiply code for GMP 4.3 and implemented helper functions to +simplify Toom evaluations for GMP 5.0. He wrote the original version +of mpn_mulmod_bnm1. + + Alberto Zanoni and Marco Bodrato suggested the unbalanced multiply +strategy, and found the optimal strategies for evaluation and +interpolation in Toom multiplication. + + Marco Bodrato helped implement the new Toom multiply code for GMP +4.3 and implemented most of the new Toom multiply and squaring code for +5.0. He is the main author of the current mpn_mulmod_bnm1 and +mpn_mullo_n. Marco also wrote the functions mpn_invert and +mpn_invertappr. + + David Harvey suggested the internal function `mpn_bdiv_dbm1', +implementing division relevant to Toom multiplication. He also worked +on fast assembly sequences, in particular on a fast AMD64 +`mpn_mul_basecase'. + + Martin Boij wrote `mpn_perfect_power_p'. + + (This list is chronological, not ordered after significance. If you +have contributed to GMP but are not listed above, please tell + about the omission!) + + The development of floating point functions of GNU MP 2, were +supported in part by the ESPRIT-BRA (Basic Research Activities) 6846 +project POSSO (POlynomial System SOlving). + + The development of GMP 2, 3, and 4 was supported in part by the IDA +Center for Computing Sciences. + + Thanks go to Hans Thorsen for donating an SGI system for the GMP +test system environment. + + +File: gmp.info, Node: References, Next: GNU Free Documentation License, Prev: Contributors, Up: Top + +Appendix B References +********************* + +B.1 Books +========= + + * Jonathan M. Borwein and Peter B. Borwein, "Pi and the AGM: A Study + in Analytic Number Theory and Computational Complexity", Wiley, + 1998. + + * Richard Crandall and Carl Pomerance, "Prime Numbers: A + Computational Perspective", 2nd edition, Springer-Verlag, 2005. + `http://math.dartmouth.edu/~carlp/' + + * Henri Cohen, "A Course in Computational Algebraic Number Theory", + Graduate Texts in Mathematics number 138, Springer-Verlag, 1993. + `http://www.math.u-bordeaux.fr/~cohen/' + + * Donald E. Knuth, "The Art of Computer Programming", volume 2, + "Seminumerical Algorithms", 3rd edition, Addison-Wesley, 1998. + `http://www-cs-faculty.stanford.edu/~knuth/taocp.html' + + * John D. Lipson, "Elements of Algebra and Algebraic Computing", The + Benjamin Cummings Publishing Company Inc, 1981. + + * Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, + "Handbook of Applied Cryptography", + `http://www.cacr.math.uwaterloo.ca/hac/' + + * Richard M. Stallman and the GCC Developer Community, "Using the + GNU Compiler Collection", Free Software Foundation, 2008, + available online `http://gcc.gnu.org/onlinedocs/', and in the GCC + package `ftp://ftp.gnu.org/gnu/gcc/' + +B.2 Papers +========== + + * Yves Bertot, Nicolas Magaud and Paul Zimmermann, "A Proof of GMP + Square Root", Journal of Automated Reasoning, volume 29, 2002, pp. + 225-252. Also available online as INRIA Research Report 4475, + June 2001, `http://www.inria.fr/rrrt/rr-4475.html' + + * Christoph Burnikel and Joachim Ziegler, "Fast Recursive Division", + Max-Planck-Institut fuer Informatik Research Report MPI-I-98-1-022, + `http://data.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-022' + + * Torbjo"rn Granlund and Peter L. Montgomery, "Division by Invariant + Integers using Multiplication", in Proceedings of the SIGPLAN + PLDI'94 Conference, June 1994. Also available + `ftp://ftp.cwi.nl/pub/pmontgom/divcnst.psa4.gz' (and .psl.gz). + + * Niels Mo"ller and Torbjo"rn Granlund, "Improved division by + invariant integers", to appear. + + * Torbjo"rn Granlund and Niels Mo"ller, "Division of integers large + and small", to appear. + + * Tudor Jebelean, "An algorithm for exact division", Journal of + Symbolic Computation, volume 15, 1993, pp. 169-180. Research + report version available + `ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-35.ps.gz' + + * Tudor Jebelean, "Exact Division with Karatsuba Complexity - + Extended Abstract", RISC-Linz technical report 96-31, + `ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-31.ps.gz' + + * Tudor Jebelean, "Practical Integer Division with Karatsuba + Complexity", ISSAC 97, pp. 339-341. Technical report available + `ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-29.ps.gz' + + * Tudor Jebelean, "A Generalization of the Binary GCD Algorithm", + ISSAC 93, pp. 111-116. Technical report version available + `ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1993/93-01.ps.gz' + + * Tudor Jebelean, "A Double-Digit Lehmer-Euclid Algorithm for + Finding the GCD of Long Integers", Journal of Symbolic + Computation, volume 19, 1995, pp. 145-157. Technical report + version also available + `ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-69.ps.gz' + + * Werner Krandick and Tudor Jebelean, "Bidirectional Exact Integer + Division", Journal of Symbolic Computation, volume 21, 1996, pp. + 441-455. Early technical report version also available + `ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1994/94-50.ps.gz' + + * Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: A + 623-dimensionally equidistributed uniform pseudorandom number + generator", ACM Transactions on Modelling and Computer Simulation, + volume 8, January 1998, pp. 3-30. Available online + `http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.ps.gz' + (or .pdf) + + * R. Moenck and A. Borodin, "Fast Modular Transforms via Division", + Proceedings of the 13th Annual IEEE Symposium on Switching and + Automata Theory, October 1972, pp. 90-96. Reprinted as "Fast + Modular Transforms", Journal of Computer and System Sciences, + volume 8, number 3, June 1974, pp. 366-386. + + * Niels Mo"ller, "On Scho"nhage's algorithm and subquadratic integer + GCD computation", in Mathematics of Computation, volume 77, + January 2008, pp. 589-607. + + * Peter L. Montgomery, "Modular Multiplication Without Trial + Division", in Mathematics of Computation, volume 44, number 170, + April 1985. + + * Arnold Scho"nhage and Volker Strassen, "Schnelle Multiplikation + grosser Zahlen", Computing 7, 1971, pp. 281-292. + + * Kenneth Weber, "The accelerated integer GCD algorithm", ACM + Transactions on Mathematical Software, volume 21, number 1, March + 1995, pp. 111-122. + + * Paul Zimmermann, "Karatsuba Square Root", INRIA Research Report + 3805, November 1999, `http://www.inria.fr/rrrt/rr-3805.html' + + * Paul Zimmermann, "A Proof of GMP Fast Division and Square Root + Implementations", + `http://www.loria.fr/~zimmerma/papers/proof-div-sqrt.ps.gz' + + * Dan Zuras, "On Squaring and Multiplying Large Integers", ARITH-11: + IEEE Symposium on Computer Arithmetic, 1993, pp. 260 to 271. + Reprinted as "More on Multiplying and Squaring Large Integers", + IEEE Transactions on Computers, volume 43, number 8, August 1994, + pp. 899-908. + + +File: gmp.info, Node: GNU Free Documentation License, Next: Concept Index, Prev: References, Up: Top + +Appendix C GNU Free Documentation License +***************************************** + + Version 1.3, 3 November 2008 + + Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. + `http://fsf.org/' + + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + 0. PREAMBLE + + The purpose of this License is to make a manual, textbook, or other + functional and useful document "free" in the sense of freedom: to + assure everyone the effective freedom to copy and redistribute it, + with or without modifying it, either commercially or + noncommercially. Secondarily, this License preserves for the + author and publisher a way to get credit for their work, while not + being considered responsible for modifications made by others. + + This License is a kind of "copyleft", which means that derivative + works of the document must themselves be free in the same sense. + It complements the GNU General Public License, which is a copyleft + license designed for free software. + + We have designed this License in order to use it for manuals for + free software, because free software needs free documentation: a + free program should come with manuals providing the same freedoms + that the software does. But this License is not limited to + software manuals; it can be used for any textual work, regardless + of subject matter or whether it is published as a printed book. + We recommend this License principally for works whose purpose is + instruction or reference. + + 1. APPLICABILITY AND DEFINITIONS + + This License applies to any manual or other work, in any medium, + that contains a notice placed by the copyright holder saying it + can be distributed under the terms of this License. Such a notice + grants a world-wide, royalty-free license, unlimited in duration, + to use that work under the conditions stated herein. The + "Document", below, refers to any such manual or work. Any member + of the public is a licensee, and is addressed as "you". You + accept the license if you copy, modify or distribute the work in a + way requiring permission under copyright law. + + A "Modified Version" of the Document means any work containing the + Document or a portion of it, either copied verbatim, or with + modifications and/or translated into another language. + + A "Secondary Section" is a named appendix or a front-matter section + of the Document that deals exclusively with the relationship of the + publishers or authors of the Document to the Document's overall + subject (or to related matters) and contains nothing that could + fall directly within that overall subject. (Thus, if the Document + is in part a textbook of mathematics, a Secondary Section may not + explain any mathematics.) The relationship could be a matter of + historical connection with the subject or with related matters, or + of legal, commercial, philosophical, ethical or political position + regarding them. + + The "Invariant Sections" are certain Secondary Sections whose + titles are designated, as being those of Invariant Sections, in + the notice that says that the Document is released under this + License. If a section does not fit the above definition of + Secondary then it is not allowed to be designated as Invariant. + The Document may contain zero Invariant Sections. If the Document + does not identify any Invariant Sections then there are none. + + The "Cover Texts" are certain short passages of text that are + listed, as Front-Cover Texts or Back-Cover Texts, in the notice + that says that the Document is released under this License. A + Front-Cover Text may be at most 5 words, and a Back-Cover Text may + be at most 25 words. + + A "Transparent" copy of the Document means a machine-readable copy, + represented in a format whose specification is available to the + general public, that is suitable for revising the document + straightforwardly with generic text editors or (for images + composed of pixels) generic paint programs or (for drawings) some + widely available drawing editor, and that is suitable for input to + text formatters or for automatic translation to a variety of + formats suitable for input to text formatters. A copy made in an + otherwise Transparent file format whose markup, or absence of + markup, has been arranged to thwart or discourage subsequent + modification by readers is not Transparent. An image format is + not Transparent if used for any substantial amount of text. A + copy that is not "Transparent" is called "Opaque". + + Examples of suitable formats for Transparent copies include plain + ASCII without markup, Texinfo input format, LaTeX input format, + SGML or XML using a publicly available DTD, and + standard-conforming simple HTML, PostScript or PDF designed for + human modification. Examples of transparent image formats include + PNG, XCF and JPG. Opaque formats include proprietary formats that + can be read and edited only by proprietary word processors, SGML or + XML for which the DTD and/or processing tools are not generally + available, and the machine-generated HTML, PostScript or PDF + produced by some word processors for output purposes only. + + The "Title Page" means, for a printed book, the title page itself, + plus such following pages as are needed to hold, legibly, the + material this License requires to appear in the title page. For + works in formats which do not have any title page as such, "Title + Page" means the text near the most prominent appearance of the + work's title, preceding the beginning of the body of the text. + + The "publisher" means any person or entity that distributes copies + of the Document to the public. + + A section "Entitled XYZ" means a named subunit of the Document + whose title either is precisely XYZ or contains XYZ in parentheses + following text that translates XYZ in another language. (Here XYZ + stands for a specific section name mentioned below, such as + "Acknowledgements", "Dedications", "Endorsements", or "History".) + To "Preserve the Title" of such a section when you modify the + Document means that it remains a section "Entitled XYZ" according + to this definition. + + The Document may include Warranty Disclaimers next to the notice + which states that this License applies to the Document. These + Warranty Disclaimers are considered to be included by reference in + this License, but only as regards disclaiming warranties: any other + implication that these Warranty Disclaimers may have is void and + has no effect on the meaning of this License. + + 2. VERBATIM COPYING + + You may copy and distribute the Document in any medium, either + commercially or noncommercially, provided that this License, the + copyright notices, and the license notice saying this License + applies to the Document are reproduced in all copies, and that you + add no other conditions whatsoever to those of this License. You + may not use technical measures to obstruct or control the reading + or further copying of the copies you make or distribute. However, + you may accept compensation in exchange for copies. If you + distribute a large enough number of copies you must also follow + the conditions in section 3. + + You may also lend copies, under the same conditions stated above, + and you may publicly display copies. + + 3. COPYING IN QUANTITY + + If you publish printed copies (or copies in media that commonly + have printed covers) of the Document, numbering more than 100, and + the Document's license notice requires Cover Texts, you must + enclose the copies in covers that carry, clearly and legibly, all + these Cover Texts: Front-Cover Texts on the front cover, and + Back-Cover Texts on the back cover. Both covers must also clearly + and legibly identify you as the publisher of these copies. The + front cover must present the full title with all words of the + title equally prominent and visible. You may add other material + on the covers in addition. Copying with changes limited to the + covers, as long as they preserve the title of the Document and + satisfy these conditions, can be treated as verbatim copying in + other respects. + + If the required texts for either cover are too voluminous to fit + legibly, you should put the first ones listed (as many as fit + reasonably) on the actual cover, and continue the rest onto + adjacent pages. + + If you publish or distribute Opaque copies of the Document + numbering more than 100, you must either include a + machine-readable Transparent copy along with each Opaque copy, or + state in or with each Opaque copy a computer-network location from + which the general network-using public has access to download + using public-standard network protocols a complete Transparent + copy of the Document, free of added material. If you use the + latter option, you must take reasonably prudent steps, when you + begin distribution of Opaque copies in quantity, to ensure that + this Transparent copy will remain thus accessible at the stated + location until at least one year after the last time you + distribute an Opaque copy (directly or through your agents or + retailers) of that edition to the public. + + It is requested, but not required, that you contact the authors of + the Document well before redistributing any large number of + copies, to give them a chance to provide you with an updated + version of the Document. + + 4. MODIFICATIONS + + You may copy and distribute a Modified Version of the Document + under the conditions of sections 2 and 3 above, provided that you + release the Modified Version under precisely this License, with + the Modified Version filling the role of the Document, thus + licensing distribution and modification of the Modified Version to + whoever possesses a copy of it. In addition, you must do these + things in the Modified Version: + + A. Use in the Title Page (and on the covers, if any) a title + distinct from that of the Document, and from those of + previous versions (which should, if there were any, be listed + in the History section of the Document). You may use the + same title as a previous version if the original publisher of + that version gives permission. + + B. List on the Title Page, as authors, one or more persons or + entities responsible for authorship of the modifications in + the Modified Version, together with at least five of the + principal authors of the Document (all of its principal + authors, if it has fewer than five), unless they release you + from this requirement. + + C. State on the Title page the name of the publisher of the + Modified Version, as the publisher. + + D. Preserve all the copyright notices of the Document. + + E. Add an appropriate copyright notice for your modifications + adjacent to the other copyright notices. + + F. Include, immediately after the copyright notices, a license + notice giving the public permission to use the Modified + Version under the terms of this License, in the form shown in + the Addendum below. + + G. Preserve in that license notice the full lists of Invariant + Sections and required Cover Texts given in the Document's + license notice. + + H. Include an unaltered copy of this License. + + I. Preserve the section Entitled "History", Preserve its Title, + and add to it an item stating at least the title, year, new + authors, and publisher of the Modified Version as given on + the Title Page. If there is no section Entitled "History" in + the Document, create one stating the title, year, authors, + and publisher of the Document as given on its Title Page, + then add an item describing the Modified Version as stated in + the previous sentence. + + J. Preserve the network location, if any, given in the Document + for public access to a Transparent copy of the Document, and + likewise the network locations given in the Document for + previous versions it was based on. These may be placed in + the "History" section. You may omit a network location for a + work that was published at least four years before the + Document itself, or if the original publisher of the version + it refers to gives permission. + + K. For any section Entitled "Acknowledgements" or "Dedications", + Preserve the Title of the section, and preserve in the + section all the substance and tone of each of the contributor + acknowledgements and/or dedications given therein. + + L. Preserve all the Invariant Sections of the Document, + unaltered in their text and in their titles. Section numbers + or the equivalent are not considered part of the section + titles. + + M. Delete any section Entitled "Endorsements". Such a section + may not be included in the Modified Version. + + N. Do not retitle any existing section to be Entitled + "Endorsements" or to conflict in title with any Invariant + Section. + + O. Preserve any Warranty Disclaimers. + + If the Modified Version includes new front-matter sections or + appendices that qualify as Secondary Sections and contain no + material copied from the Document, you may at your option + designate some or all of these sections as invariant. To do this, + add their titles to the list of Invariant Sections in the Modified + Version's license notice. These titles must be distinct from any + other section titles. + + You may add a section Entitled "Endorsements", provided it contains + nothing but endorsements of your Modified Version by various + parties--for example, statements of peer review or that the text + has been approved by an organization as the authoritative + definition of a standard. + + You may add a passage of up to five words as a Front-Cover Text, + and a passage of up to 25 words as a Back-Cover Text, to the end + of the list of Cover Texts in the Modified Version. Only one + passage of Front-Cover Text and one of Back-Cover Text may be + added by (or through arrangements made by) any one entity. If the + Document already includes a cover text for the same cover, + previously added by you or by arrangement made by the same entity + you are acting on behalf of, you may not add another; but you may + replace the old one, on explicit permission from the previous + publisher that added the old one. + + The author(s) and publisher(s) of the Document do not by this + License give permission to use their names for publicity for or to + assert or imply endorsement of any Modified Version. + + 5. COMBINING DOCUMENTS + + You may combine the Document with other documents released under + this License, under the terms defined in section 4 above for + modified versions, provided that you include in the combination + all of the Invariant Sections of all of the original documents, + unmodified, and list them all as Invariant Sections of your + combined work in its license notice, and that you preserve all + their Warranty Disclaimers. + + The combined work need only contain one copy of this License, and + multiple identical Invariant Sections may be replaced with a single + copy. If there are multiple Invariant Sections with the same name + but different contents, make the title of each such section unique + by adding at the end of it, in parentheses, the name of the + original author or publisher of that section if known, or else a + unique number. Make the same adjustment to the section titles in + the list of Invariant Sections in the license notice of the + combined work. + + In the combination, you must combine any sections Entitled + "History" in the various original documents, forming one section + Entitled "History"; likewise combine any sections Entitled + "Acknowledgements", and any sections Entitled "Dedications". You + must delete all sections Entitled "Endorsements." + + 6. COLLECTIONS OF DOCUMENTS + + You may make a collection consisting of the Document and other + documents released under this License, and replace the individual + copies of this License in the various documents with a single copy + that is included in the collection, provided that you follow the + rules of this License for verbatim copying of each of the + documents in all other respects. + + You may extract a single document from such a collection, and + distribute it individually under this License, provided you insert + a copy of this License into the extracted document, and follow + this License in all other respects regarding verbatim copying of + that document. + + 7. AGGREGATION WITH INDEPENDENT WORKS + + A compilation of the Document or its derivatives with other + separate and independent documents or works, in or on a volume of + a storage or distribution medium, is called an "aggregate" if the + copyright resulting from the compilation is not used to limit the + legal rights of the compilation's users beyond what the individual + works permit. When the Document is included in an aggregate, this + License does not apply to the other works in the aggregate which + are not themselves derivative works of the Document. + + If the Cover Text requirement of section 3 is applicable to these + copies of the Document, then if the Document is less than one half + of the entire aggregate, the Document's Cover Texts may be placed + on covers that bracket the Document within the aggregate, or the + electronic equivalent of covers if the Document is in electronic + form. Otherwise they must appear on printed covers that bracket + the whole aggregate. + + 8. TRANSLATION + + Translation is considered a kind of modification, so you may + distribute translations of the Document under the terms of section + 4. Replacing Invariant Sections with translations requires special + permission from their copyright holders, but you may include + translations of some or all Invariant Sections in addition to the + original versions of these Invariant Sections. You may include a + translation of this License, and all the license notices in the + Document, and any Warranty Disclaimers, provided that you also + include the original English version of this License and the + original versions of those notices and disclaimers. In case of a + disagreement between the translation and the original version of + this License or a notice or disclaimer, the original version will + prevail. + + If a section in the Document is Entitled "Acknowledgements", + "Dedications", or "History", the requirement (section 4) to + Preserve its Title (section 1) will typically require changing the + actual title. + + 9. TERMINATION + + You may not copy, modify, sublicense, or distribute the Document + except as expressly provided under this License. Any attempt + otherwise to copy, modify, sublicense, or distribute it is void, + and will automatically terminate your rights under this License. + + However, if you cease all violation of this License, then your + license from a particular copyright holder is reinstated (a) + provisionally, unless and until the copyright holder explicitly + and finally terminates your license, and (b) permanently, if the + copyright holder fails to notify you of the violation by some + reasonable means prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is + reinstated permanently if the copyright holder notifies you of the + violation by some reasonable means, this is the first time you have + received notice of violation of this License (for any work) from + that copyright holder, and you cure the violation prior to 30 days + after your receipt of the notice. + + Termination of your rights under this section does not terminate + the licenses of parties who have received copies or rights from + you under this License. If your rights have been terminated and + not permanently reinstated, receipt of a copy of some or all of + the same material does not give you any rights to use it. + + 10. FUTURE REVISIONS OF THIS LICENSE + + The Free Software Foundation may publish new, revised versions of + the GNU Free Documentation License from time to time. Such new + versions will be similar in spirit to the present version, but may + differ in detail to address new problems or concerns. See + `http://www.gnu.org/copyleft/'. + + Each version of the License is given a distinguishing version + number. If the Document specifies that a particular numbered + version of this License "or any later version" applies to it, you + have the option of following the terms and conditions either of + that specified version or of any later version that has been + published (not as a draft) by the Free Software Foundation. If + the Document does not specify a version number of this License, + you may choose any version ever published (not as a draft) by the + Free Software Foundation. If the Document specifies that a proxy + can decide which future versions of this License can be used, that + proxy's public statement of acceptance of a version permanently + authorizes you to choose that version for the Document. + + 11. RELICENSING + + "Massive Multiauthor Collaboration Site" (or "MMC Site") means any + World Wide Web server that publishes copyrightable works and also + provides prominent facilities for anybody to edit those works. A + public wiki that anybody can edit is an example of such a server. + A "Massive Multiauthor Collaboration" (or "MMC") contained in the + site means any set of copyrightable works thus published on the MMC + site. + + "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 + license published by Creative Commons Corporation, a not-for-profit + corporation with a principal place of business in San Francisco, + California, as well as future copyleft versions of that license + published by that same organization. + + "Incorporate" means to publish or republish a Document, in whole or + in part, as part of another Document. + + An MMC is "eligible for relicensing" if it is licensed under this + License, and if all works that were first published under this + License somewhere other than this MMC, and subsequently + incorporated in whole or in part into the MMC, (1) had no cover + texts or invariant sections, and (2) were thus incorporated prior + to November 1, 2008. + + The operator of an MMC Site may republish an MMC contained in the + site under CC-BY-SA on the same site at any time before August 1, + 2009, provided the MMC is eligible for relicensing. + + +ADDENDUM: How to use this License for your documents +==================================================== + +To use this License in a document you have written, include a copy of +the License in the document and put the following copyright and license +notices just after the title page: + + Copyright (C) YEAR YOUR NAME. + Permission is granted to copy, distribute and/or modify this document + under the terms of the GNU Free Documentation License, Version 1.3 + or any later version published by the Free Software Foundation; + with no Invariant Sections, no Front-Cover Texts, and no Back-Cover + Texts. A copy of the license is included in the section entitled ``GNU + Free Documentation License''. + + If you have Invariant Sections, Front-Cover Texts and Back-Cover +Texts, replace the "with...Texts." line with this: + + with the Invariant Sections being LIST THEIR TITLES, with + the Front-Cover Texts being LIST, and with the Back-Cover Texts + being LIST. + + If you have Invariant Sections without Cover Texts, or some other +combination of the three, merge those two alternatives to suit the +situation. + + If your document contains nontrivial examples of program code, we +recommend releasing these examples in parallel under your choice of +free software license, such as the GNU General Public License, to +permit their use in free software. + + +File: gmp.info, Node: Concept Index, Next: Function Index, Prev: GNU Free Documentation License, Up: Top + +Concept Index +************* + +[index] +* Menu: + +* #include: Headers and Libraries. + (line 6) +* --build: Build Options. (line 52) +* --disable-fft: Build Options. (line 317) +* --disable-shared: Build Options. (line 45) +* --disable-static: Build Options. (line 45) +* --enable-alloca: Build Options. (line 278) +* --enable-assert: Build Options. (line 327) +* --enable-cxx: Build Options. (line 230) +* --enable-fat: Build Options. (line 164) +* --enable-mpbsd: Build Options. (line 322) +* --enable-profiling <1>: Profiling. (line 6) +* --enable-profiling: Build Options. (line 331) +* --exec-prefix: Build Options. (line 32) +* --host: Build Options. (line 66) +* --prefix: Build Options. (line 32) +* -finstrument-functions: Profiling. (line 66) +* 2exp functions: Efficiency. (line 43) +* 68000: Notes for Particular Systems. + (line 80) +* 80x86: Notes for Particular Systems. + (line 126) +* ABI <1>: Build Options. (line 171) +* ABI: ABI and ISA. (line 6) +* About this manual: Introduction to GMP. (line 58) +* AC_CHECK_LIB: Autoconf. (line 11) +* AIX <1>: ABI and ISA. (line 184) +* AIX <2>: Notes for Particular Systems. + (line 7) +* AIX: ABI and ISA. (line 169) +* Algorithms: Algorithms. (line 6) +* alloca: Build Options. (line 278) +* Allocation of memory: Custom Allocation. (line 6) +* AMD64: ABI and ISA. (line 44) +* Anonymous FTP of latest version: Introduction to GMP. (line 38) +* Application Binary Interface: ABI and ISA. (line 6) +* Arithmetic functions <1>: Float Arithmetic. (line 6) +* Arithmetic functions <2>: Integer Arithmetic. (line 6) +* Arithmetic functions: Rational Arithmetic. (line 6) +* ARM: Notes for Particular Systems. + (line 20) +* Assembly cache handling: Assembly Cache Handling. + (line 6) +* Assembly carry propagation: Assembly Carry Propagation. + (line 6) +* Assembly code organisation: Assembly Code Organisation. + (line 6) +* Assembly coding: Assembly Coding. (line 6) +* Assembly floating Point: Assembly Floating Point. + (line 6) +* Assembly loop unrolling: Assembly Loop Unrolling. + (line 6) +* Assembly SIMD: Assembly SIMD Instructions. + (line 6) +* Assembly software pipelining: Assembly Software Pipelining. + (line 6) +* Assembly writing guide: Assembly Writing Guide. + (line 6) +* Assertion checking <1>: Debugging. (line 79) +* Assertion checking: Build Options. (line 327) +* Assignment functions <1>: Assigning Floats. (line 6) +* Assignment functions <2>: Initializing Rationals. + (line 6) +* Assignment functions <3>: Simultaneous Integer Init & Assign. + (line 6) +* Assignment functions <4>: Simultaneous Float Init & Assign. + (line 6) +* Assignment functions: Assigning Integers. (line 6) +* Autoconf: Autoconf. (line 6) +* Basics: GMP Basics. (line 6) +* Berkeley MP compatible functions <1>: Build Options. (line 322) +* Berkeley MP compatible functions: BSD Compatible Functions. + (line 6) +* Binomial coefficient algorithm: Binomial Coefficients Algorithm. + (line 6) +* Binomial coefficient functions: Number Theoretic Functions. + (line 100) +* Binutils strip: Known Build Problems. + (line 28) +* Bit manipulation functions: Integer Logic and Bit Fiddling. + (line 6) +* Bit scanning functions: Integer Logic and Bit Fiddling. + (line 38) +* Bit shift left: Integer Arithmetic. (line 35) +* Bit shift right: Integer Division. (line 53) +* Bits per limb: Useful Macros and Constants. + (line 7) +* BSD MP compatible functions <1>: Build Options. (line 322) +* BSD MP compatible functions: BSD Compatible Functions. + (line 6) +* Bug reporting: Reporting Bugs. (line 6) +* Build directory: Build Options. (line 19) +* Build notes for binary packaging: Notes for Package Builds. + (line 6) +* Build notes for particular systems: Notes for Particular Systems. + (line 6) +* Build options: Build Options. (line 6) +* Build problems known: Known Build Problems. + (line 6) +* Build system: Build Options. (line 52) +* Building GMP: Installing GMP. (line 6) +* Bus error: Debugging. (line 7) +* C compiler: Build Options. (line 182) +* C++ compiler: Build Options. (line 254) +* C++ interface: C++ Class Interface. (line 6) +* C++ interface internals: C++ Interface Internals. + (line 6) +* C++ istream input: C++ Formatted Input. (line 6) +* C++ ostream output: C++ Formatted Output. + (line 6) +* C++ support: Build Options. (line 230) +* CC: Build Options. (line 182) +* CC_FOR_BUILD: Build Options. (line 217) +* CFLAGS: Build Options. (line 182) +* Checker: Debugging. (line 115) +* checkergcc: Debugging. (line 122) +* Code organisation: Assembly Code Organisation. + (line 6) +* Compaq C++: Notes for Particular Systems. + (line 25) +* Comparison functions <1>: Integer Comparisons. (line 6) +* Comparison functions <2>: Comparing Rationals. (line 6) +* Comparison functions: Float Comparison. (line 6) +* Compatibility with older versions: Compatibility with older versions. + (line 6) +* Conditions for copying GNU MP: Copying. (line 6) +* Configuring GMP: Installing GMP. (line 6) +* Congruence algorithm: Exact Remainder. (line 29) +* Congruence functions: Integer Division. (line 124) +* Constants: Useful Macros and Constants. + (line 6) +* Contributors: Contributors. (line 6) +* Conventions for parameters: Parameter Conventions. + (line 6) +* Conventions for variables: Variable Conventions. + (line 6) +* Conversion functions <1>: Converting Integers. (line 6) +* Conversion functions <2>: Converting Floats. (line 6) +* Conversion functions: Rational Conversions. + (line 6) +* Copying conditions: Copying. (line 6) +* CPPFLAGS: Build Options. (line 208) +* CPU types <1>: Introduction to GMP. (line 24) +* CPU types: Build Options. (line 108) +* Cross compiling: Build Options. (line 66) +* Custom allocation: Custom Allocation. (line 6) +* CXX: Build Options. (line 254) +* CXXFLAGS: Build Options. (line 254) +* Cygwin: Notes for Particular Systems. + (line 43) +* Darwin: Known Build Problems. + (line 51) +* Debugging: Debugging. (line 6) +* Demonstration programs: Demonstration Programs. + (line 6) +* Digits in an integer: Miscellaneous Integer Functions. + (line 23) +* Divisibility algorithm: Exact Remainder. (line 29) +* Divisibility functions: Integer Division. (line 124) +* Divisibility testing: Efficiency. (line 91) +* Division algorithms: Division Algorithms. (line 6) +* Division functions <1>: Rational Arithmetic. (line 22) +* Division functions <2>: Integer Division. (line 6) +* Division functions: Float Arithmetic. (line 33) +* DJGPP <1>: Notes for Particular Systems. + (line 43) +* DJGPP: Known Build Problems. + (line 18) +* DLLs: Notes for Particular Systems. + (line 56) +* DocBook: Build Options. (line 354) +* Documentation formats: Build Options. (line 347) +* Documentation license: GNU Free Documentation License. + (line 6) +* DVI: Build Options. (line 350) +* Efficiency: Efficiency. (line 6) +* Emacs: Emacs. (line 6) +* Exact division functions: Integer Division. (line 102) +* Exact remainder: Exact Remainder. (line 6) +* Example programs: Demonstration Programs. + (line 6) +* Exec prefix: Build Options. (line 32) +* Execution profiling <1>: Profiling. (line 6) +* Execution profiling: Build Options. (line 331) +* Exponentiation functions <1>: Integer Exponentiation. + (line 6) +* Exponentiation functions: Float Arithmetic. (line 41) +* Export: Integer Import and Export. + (line 45) +* Expression parsing demo: Demonstration Programs. + (line 18) +* Extended GCD: Number Theoretic Functions. + (line 45) +* Factor removal functions: Number Theoretic Functions. + (line 90) +* Factorial algorithm: Factorial Algorithm. (line 6) +* Factorial functions: Number Theoretic Functions. + (line 95) +* Factorization demo: Demonstration Programs. + (line 25) +* Fast Fourier Transform: FFT Multiplication. (line 6) +* Fat binary: Build Options. (line 164) +* FFT multiplication <1>: FFT Multiplication. (line 6) +* FFT multiplication: Build Options. (line 317) +* Fibonacci number algorithm: Fibonacci Numbers Algorithm. + (line 6) +* Fibonacci sequence functions: Number Theoretic Functions. + (line 108) +* Float arithmetic functions: Float Arithmetic. (line 6) +* Float assignment functions <1>: Simultaneous Float Init & Assign. + (line 6) +* Float assignment functions: Assigning Floats. (line 6) +* Float comparison functions: Float Comparison. (line 6) +* Float conversion functions: Converting Floats. (line 6) +* Float functions: Floating-point Functions. + (line 6) +* Float initialization functions <1>: Simultaneous Float Init & Assign. + (line 6) +* Float initialization functions: Initializing Floats. (line 6) +* Float input and output functions: I/O of Floats. (line 6) +* Float internals: Float Internals. (line 6) +* Float miscellaneous functions: Miscellaneous Float Functions. + (line 6) +* Float random number functions: Miscellaneous Float Functions. + (line 27) +* Float rounding functions: Miscellaneous Float Functions. + (line 9) +* Float sign tests: Float Comparison. (line 33) +* Floating point mode: Notes for Particular Systems. + (line 34) +* Floating-point functions: Floating-point Functions. + (line 6) +* Floating-point number: Nomenclature and Types. + (line 21) +* fnccheck: Profiling. (line 77) +* Formatted input: Formatted Input. (line 6) +* Formatted output: Formatted Output. (line 6) +* Free Documentation License: GNU Free Documentation License. + (line 6) +* frexp <1>: Converting Floats. (line 23) +* frexp: Converting Integers. (line 42) +* FTP of latest version: Introduction to GMP. (line 38) +* Function classes: Function Classes. (line 6) +* FunctionCheck: Profiling. (line 77) +* GCC Checker: Debugging. (line 115) +* GCD algorithms: Greatest Common Divisor Algorithms. + (line 6) +* GCD extended: Number Theoretic Functions. + (line 45) +* GCD functions: Number Theoretic Functions. + (line 30) +* GDB: Debugging. (line 58) +* Generic C: Build Options. (line 153) +* GMP Perl module: Demonstration Programs. + (line 35) +* GMP version number: Useful Macros and Constants. + (line 12) +* gmp.h: Headers and Libraries. + (line 6) +* gmpxx.h: C++ Interface General. + (line 8) +* GNU Debugger: Debugging. (line 58) +* GNU Free Documentation License: GNU Free Documentation License. + (line 6) +* GNU strip: Known Build Problems. + (line 28) +* gprof: Profiling. (line 41) +* Greatest common divisor algorithms: Greatest Common Divisor Algorithms. + (line 6) +* Greatest common divisor functions: Number Theoretic Functions. + (line 30) +* Hardware floating point mode: Notes for Particular Systems. + (line 34) +* Headers: Headers and Libraries. + (line 6) +* Heap problems: Debugging. (line 24) +* Home page: Introduction to GMP. (line 34) +* Host system: Build Options. (line 66) +* HP-UX: ABI and ISA. (line 107) +* HPPA: ABI and ISA. (line 68) +* I/O functions <1>: I/O of Integers. (line 6) +* I/O functions <2>: I/O of Rationals. (line 6) +* I/O functions: I/O of Floats. (line 6) +* i386: Notes for Particular Systems. + (line 126) +* IA-64: ABI and ISA. (line 107) +* Import: Integer Import and Export. + (line 11) +* In-place operations: Efficiency. (line 57) +* Include files: Headers and Libraries. + (line 6) +* info-lookup-symbol: Emacs. (line 6) +* Initialization functions <1>: Initializing Integers. + (line 6) +* Initialization functions <2>: Initializing Rationals. + (line 6) +* Initialization functions <3>: Random State Initialization. + (line 6) +* Initialization functions <4>: Simultaneous Float Init & Assign. + (line 6) +* Initialization functions <5>: Simultaneous Integer Init & Assign. + (line 6) +* Initialization functions: Initializing Floats. (line 6) +* Initializing and clearing: Efficiency. (line 21) +* Input functions <1>: I/O of Integers. (line 6) +* Input functions <2>: I/O of Rationals. (line 6) +* Input functions <3>: I/O of Floats. (line 6) +* Input functions: Formatted Input Functions. + (line 6) +* Install prefix: Build Options. (line 32) +* Installing GMP: Installing GMP. (line 6) +* Instruction Set Architecture: ABI and ISA. (line 6) +* instrument-functions: Profiling. (line 66) +* Integer: Nomenclature and Types. + (line 6) +* Integer arithmetic functions: Integer Arithmetic. (line 6) +* Integer assignment functions <1>: Simultaneous Integer Init & Assign. + (line 6) +* Integer assignment functions: Assigning Integers. (line 6) +* Integer bit manipulation functions: Integer Logic and Bit Fiddling. + (line 6) +* Integer comparison functions: Integer Comparisons. (line 6) +* Integer conversion functions: Converting Integers. (line 6) +* Integer division functions: Integer Division. (line 6) +* Integer exponentiation functions: Integer Exponentiation. + (line 6) +* Integer export: Integer Import and Export. + (line 45) +* Integer functions: Integer Functions. (line 6) +* Integer import: Integer Import and Export. + (line 11) +* Integer initialization functions <1>: Simultaneous Integer Init & Assign. + (line 6) +* Integer initialization functions: Initializing Integers. + (line 6) +* Integer input and output functions: I/O of Integers. (line 6) +* Integer internals: Integer Internals. (line 6) +* Integer logical functions: Integer Logic and Bit Fiddling. + (line 6) +* Integer miscellaneous functions: Miscellaneous Integer Functions. + (line 6) +* Integer random number functions: Integer Random Numbers. + (line 6) +* Integer root functions: Integer Roots. (line 6) +* Integer sign tests: Integer Comparisons. (line 28) +* Integer special functions: Integer Special Functions. + (line 6) +* Interix: Notes for Particular Systems. + (line 51) +* Internals: Internals. (line 6) +* Introduction: Introduction to GMP. (line 6) +* Inverse modulo functions: Number Theoretic Functions. + (line 60) +* IRIX <1>: Known Build Problems. + (line 38) +* IRIX: ABI and ISA. (line 132) +* ISA: ABI and ISA. (line 6) +* istream input: C++ Formatted Input. (line 6) +* Jacobi symbol algorithm: Jacobi Symbol. (line 6) +* Jacobi symbol functions: Number Theoretic Functions. + (line 66) +* Karatsuba multiplication: Karatsuba Multiplication. + (line 6) +* Karatsuba square root algorithm: Square Root Algorithm. + (line 6) +* Kronecker symbol functions: Number Theoretic Functions. + (line 78) +* Language bindings: Language Bindings. (line 6) +* Latest version of GMP: Introduction to GMP. (line 38) +* LCM functions: Number Theoretic Functions. + (line 55) +* Least common multiple functions: Number Theoretic Functions. + (line 55) +* Legendre symbol functions: Number Theoretic Functions. + (line 69) +* libgmp: Headers and Libraries. + (line 22) +* libgmpxx: Headers and Libraries. + (line 27) +* Libraries: Headers and Libraries. + (line 22) +* Libtool: Headers and Libraries. + (line 33) +* Libtool versioning: Notes for Package Builds. + (line 9) +* License conditions: Copying. (line 6) +* Limb: Nomenclature and Types. + (line 31) +* Limb size: Useful Macros and Constants. + (line 7) +* Linear congruential algorithm: Random Number Algorithms. + (line 25) +* Linear congruential random numbers: Random State Initialization. + (line 32) +* Linking: Headers and Libraries. + (line 22) +* Logical functions: Integer Logic and Bit Fiddling. + (line 6) +* Low-level functions: Low-level Functions. (line 6) +* Lucas number algorithm: Lucas Numbers Algorithm. + (line 6) +* Lucas number functions: Number Theoretic Functions. + (line 119) +* MacOS X: Known Build Problems. + (line 51) +* Mailing lists: Introduction to GMP. (line 45) +* Malloc debugger: Debugging. (line 30) +* Malloc problems: Debugging. (line 24) +* Memory allocation: Custom Allocation. (line 6) +* Memory management: Memory Management. (line 6) +* Mersenne twister algorithm: Random Number Algorithms. + (line 17) +* Mersenne twister random numbers: Random State Initialization. + (line 13) +* MINGW: Notes for Particular Systems. + (line 43) +* MIPS: ABI and ISA. (line 132) +* Miscellaneous float functions: Miscellaneous Float Functions. + (line 6) +* Miscellaneous integer functions: Miscellaneous Integer Functions. + (line 6) +* MMX: Notes for Particular Systems. + (line 132) +* Modular inverse functions: Number Theoretic Functions. + (line 60) +* Most significant bit: Miscellaneous Integer Functions. + (line 34) +* mp.h: BSD Compatible Functions. + (line 21) +* MPN_PATH: Build Options. (line 335) +* MS Windows: Notes for Particular Systems. + (line 56) +* MS-DOS: Notes for Particular Systems. + (line 43) +* Multi-threading: Reentrancy. (line 6) +* Multiplication algorithms: Multiplication Algorithms. + (line 6) +* Nails: Low-level Functions. (line 478) +* Native compilation: Build Options. (line 52) +* NeXT: Known Build Problems. + (line 57) +* Next prime function: Number Theoretic Functions. + (line 23) +* Nomenclature: Nomenclature and Types. + (line 6) +* Non-Unix systems: Build Options. (line 11) +* Nth root algorithm: Nth Root Algorithm. (line 6) +* Number sequences: Efficiency. (line 147) +* Number theoretic functions: Number Theoretic Functions. + (line 6) +* Numerator and denominator: Applying Integer Functions. + (line 6) +* obstack output: Formatted Output Functions. + (line 81) +* OpenBSD: Notes for Particular Systems. + (line 86) +* Optimizing performance: Performance optimization. + (line 6) +* ostream output: C++ Formatted Output. + (line 6) +* Other languages: Language Bindings. (line 6) +* Output functions <1>: I/O of Floats. (line 6) +* Output functions <2>: I/O of Rationals. (line 6) +* Output functions <3>: Formatted Output Functions. + (line 6) +* Output functions: I/O of Integers. (line 6) +* Packaged builds: Notes for Package Builds. + (line 6) +* Parameter conventions: Parameter Conventions. + (line 6) +* Parsing expressions demo: Demonstration Programs. + (line 21) +* Particular systems: Notes for Particular Systems. + (line 6) +* Past GMP versions: Compatibility with older versions. + (line 6) +* PDF: Build Options. (line 350) +* Perfect power algorithm: Perfect Power Algorithm. + (line 6) +* Perfect power functions: Integer Roots. (line 27) +* Perfect square algorithm: Perfect Square Algorithm. + (line 6) +* Perfect square functions: Integer Roots. (line 36) +* perl: Demonstration Programs. + (line 35) +* Perl module: Demonstration Programs. + (line 35) +* Postscript: Build Options. (line 350) +* Power/PowerPC <1>: Known Build Problems. + (line 63) +* Power/PowerPC: Notes for Particular Systems. + (line 92) +* Powering algorithms: Powering Algorithms. (line 6) +* Powering functions <1>: Float Arithmetic. (line 41) +* Powering functions: Integer Exponentiation. + (line 6) +* PowerPC: ABI and ISA. (line 167) +* Precision of floats: Floating-point Functions. + (line 6) +* Precision of hardware floating point: Notes for Particular Systems. + (line 34) +* Prefix: Build Options. (line 32) +* Prime testing algorithms: Prime Testing Algorithm. + (line 6) +* Prime testing functions: Number Theoretic Functions. + (line 7) +* printf formatted output: Formatted Output. (line 6) +* Probable prime testing functions: Number Theoretic Functions. + (line 7) +* prof: Profiling. (line 24) +* Profiling: Profiling. (line 6) +* Radix conversion algorithms: Radix Conversion Algorithms. + (line 6) +* Random number algorithms: Random Number Algorithms. + (line 6) +* Random number functions <1>: Integer Random Numbers. + (line 6) +* Random number functions <2>: Miscellaneous Float Functions. + (line 27) +* Random number functions: Random Number Functions. + (line 6) +* Random number seeding: Random State Seeding. + (line 6) +* Random number state: Random State Initialization. + (line 6) +* Random state: Nomenclature and Types. + (line 46) +* Rational arithmetic: Efficiency. (line 113) +* Rational arithmetic functions: Rational Arithmetic. (line 6) +* Rational assignment functions: Initializing Rationals. + (line 6) +* Rational comparison functions: Comparing Rationals. (line 6) +* Rational conversion functions: Rational Conversions. + (line 6) +* Rational initialization functions: Initializing Rationals. + (line 6) +* Rational input and output functions: I/O of Rationals. (line 6) +* Rational internals: Rational Internals. (line 6) +* Rational number: Nomenclature and Types. + (line 16) +* Rational number functions: Rational Number Functions. + (line 6) +* Rational numerator and denominator: Applying Integer Functions. + (line 6) +* Rational sign tests: Comparing Rationals. (line 27) +* Raw output internals: Raw Output Internals. + (line 6) +* Reallocations: Efficiency. (line 30) +* Reentrancy: Reentrancy. (line 6) +* References: References. (line 6) +* Remove factor functions: Number Theoretic Functions. + (line 90) +* Reporting bugs: Reporting Bugs. (line 6) +* Root extraction algorithm: Nth Root Algorithm. (line 6) +* Root extraction algorithms: Root Extraction Algorithms. + (line 6) +* Root extraction functions <1>: Float Arithmetic. (line 37) +* Root extraction functions: Integer Roots. (line 6) +* Root testing functions: Integer Roots. (line 36) +* Rounding functions: Miscellaneous Float Functions. + (line 9) +* Sample programs: Demonstration Programs. + (line 6) +* Scan bit functions: Integer Logic and Bit Fiddling. + (line 38) +* scanf formatted input: Formatted Input. (line 6) +* SCO: Known Build Problems. + (line 38) +* Seeding random numbers: Random State Seeding. + (line 6) +* Segmentation violation: Debugging. (line 7) +* Sequent Symmetry: Known Build Problems. + (line 68) +* Services for Unix: Notes for Particular Systems. + (line 51) +* Shared library versioning: Notes for Package Builds. + (line 9) +* Sign tests <1>: Float Comparison. (line 33) +* Sign tests <2>: Integer Comparisons. (line 28) +* Sign tests: Comparing Rationals. (line 27) +* Size in digits: Miscellaneous Integer Functions. + (line 23) +* Small operands: Efficiency. (line 7) +* Solaris <1>: ABI and ISA. (line 201) +* Solaris: Known Build Problems. + (line 78) +* Sparc: Notes for Particular Systems. + (line 108) +* Sparc V9: ABI and ISA. (line 201) +* Special integer functions: Integer Special Functions. + (line 6) +* Square root algorithm: Square Root Algorithm. + (line 6) +* SSE2: Notes for Particular Systems. + (line 132) +* Stack backtrace: Debugging. (line 50) +* Stack overflow <1>: Debugging. (line 7) +* Stack overflow: Build Options. (line 278) +* Static linking: Efficiency. (line 14) +* stdarg.h: Headers and Libraries. + (line 17) +* stdio.h: Headers and Libraries. + (line 11) +* Stripped libraries: Known Build Problems. + (line 28) +* Sun: ABI and ISA. (line 201) +* SunOS: Notes for Particular Systems. + (line 120) +* Systems: Notes for Particular Systems. + (line 6) +* Temporary memory: Build Options. (line 278) +* Texinfo: Build Options. (line 347) +* Text input/output: Efficiency. (line 153) +* Thread safety: Reentrancy. (line 6) +* Toom multiplication <1>: Other Multiplication. + (line 6) +* Toom multiplication <2>: Toom 4-Way Multiplication. + (line 6) +* Toom multiplication: Toom 3-Way Multiplication. + (line 6) +* Types: Nomenclature and Types. + (line 6) +* ui and si functions: Efficiency. (line 50) +* Unbalanced multiplication: Unbalanced Multiplication. + (line 6) +* Upward compatibility: Compatibility with older versions. + (line 6) +* Useful macros and constants: Useful Macros and Constants. + (line 6) +* User-defined precision: Floating-point Functions. + (line 6) +* Valgrind: Debugging. (line 130) +* Variable conventions: Variable Conventions. + (line 6) +* Version number: Useful Macros and Constants. + (line 12) +* Web page: Introduction to GMP. (line 34) +* Windows: Notes for Particular Systems. + (line 56) +* x86: Notes for Particular Systems. + (line 126) +* x87: Notes for Particular Systems. + (line 34) +* XML: Build Options. (line 354) + + +File: gmp.info, Node: Function Index, Prev: Concept Index, Up: Top + +Function and Type Index +*********************** + +[index] +* Menu: + +* __GMP_CC: Useful Macros and Constants. + (line 23) +* __GMP_CFLAGS: Useful Macros and Constants. + (line 24) +* __GNU_MP_VERSION: Useful Macros and Constants. + (line 10) +* __GNU_MP_VERSION_MINOR: Useful Macros and Constants. + (line 11) +* __GNU_MP_VERSION_PATCHLEVEL: Useful Macros and Constants. + (line 12) +* _mpz_realloc: Integer Special Functions. + (line 51) +* abs <1>: C++ Interface Rationals. + (line 43) +* abs <2>: C++ Interface Integers. + (line 42) +* abs: C++ Interface Floats. + (line 70) +* ceil: C++ Interface Floats. + (line 71) +* cmp <1>: C++ Interface Floats. + (line 72) +* cmp <2>: C++ Interface Rationals. + (line 44) +* cmp <3>: C++ Interface Integers. + (line 44) +* cmp: C++ Interface Rationals. + (line 45) +* floor: C++ Interface Floats. + (line 80) +* gcd: BSD Compatible Functions. + (line 82) +* gmp_asprintf: Formatted Output Functions. + (line 65) +* gmp_errno: Random State Initialization. + (line 55) +* GMP_ERROR_INVALID_ARGUMENT: Random State Initialization. + (line 55) +* GMP_ERROR_UNSUPPORTED_ARGUMENT: Random State Initialization. + (line 55) +* gmp_fprintf: Formatted Output Functions. + (line 29) +* gmp_fscanf: Formatted Input Functions. + (line 25) +* GMP_LIMB_BITS: Low-level Functions. (line 508) +* GMP_NAIL_BITS: Low-level Functions. (line 506) +* GMP_NAIL_MASK: Low-level Functions. (line 516) +* GMP_NUMB_BITS: Low-level Functions. (line 507) +* GMP_NUMB_MASK: Low-level Functions. (line 517) +* GMP_NUMB_MAX: Low-level Functions. (line 525) +* gmp_obstack_printf: Formatted Output Functions. + (line 79) +* gmp_obstack_vprintf: Formatted Output Functions. + (line 81) +* gmp_printf: Formatted Output Functions. + (line 24) +* GMP_RAND_ALG_DEFAULT: Random State Initialization. + (line 49) +* GMP_RAND_ALG_LC: Random State Initialization. + (line 49) +* gmp_randclass: C++ Interface Random Numbers. + (line 7) +* gmp_randclass::get_f: C++ Interface Random Numbers. + (line 45) +* gmp_randclass::get_z_bits: C++ Interface Random Numbers. + (line 39) +* gmp_randclass::get_z_range: C++ Interface Random Numbers. + (line 42) +* gmp_randclass::gmp_randclass: C++ Interface Random Numbers. + (line 13) +* gmp_randclass::seed: C++ Interface Random Numbers. + (line 33) +* gmp_randclear: Random State Initialization. + (line 62) +* gmp_randinit: Random State Initialization. + (line 47) +* gmp_randinit_default: Random State Initialization. + (line 7) +* gmp_randinit_lc_2exp: Random State Initialization. + (line 18) +* gmp_randinit_lc_2exp_size: Random State Initialization. + (line 32) +* gmp_randinit_mt: Random State Initialization. + (line 13) +* gmp_randinit_set: Random State Initialization. + (line 43) +* gmp_randseed: Random State Seeding. + (line 7) +* gmp_randseed_ui: Random State Seeding. + (line 9) +* gmp_randstate_t: Nomenclature and Types. + (line 46) +* gmp_scanf: Formatted Input Functions. + (line 21) +* gmp_snprintf: Formatted Output Functions. + (line 46) +* gmp_sprintf: Formatted Output Functions. + (line 34) +* gmp_sscanf: Formatted Input Functions. + (line 29) +* gmp_urandomb_ui: Random State Miscellaneous. + (line 8) +* gmp_urandomm_ui: Random State Miscellaneous. + (line 14) +* gmp_vasprintf: Formatted Output Functions. + (line 66) +* gmp_version: Useful Macros and Constants. + (line 18) +* gmp_vfprintf: Formatted Output Functions. + (line 30) +* gmp_vfscanf: Formatted Input Functions. + (line 26) +* gmp_vprintf: Formatted Output Functions. + (line 25) +* gmp_vscanf: Formatted Input Functions. + (line 22) +* gmp_vsnprintf: Formatted Output Functions. + (line 48) +* gmp_vsprintf: Formatted Output Functions. + (line 35) +* gmp_vsscanf: Formatted Input Functions. + (line 31) +* hypot: C++ Interface Floats. + (line 81) +* itom: BSD Compatible Functions. + (line 29) +* madd: BSD Compatible Functions. + (line 43) +* mcmp: BSD Compatible Functions. + (line 85) +* mdiv: BSD Compatible Functions. + (line 53) +* mfree: BSD Compatible Functions. + (line 105) +* min: BSD Compatible Functions. + (line 89) +* MINT: BSD Compatible Functions. + (line 21) +* mout: BSD Compatible Functions. + (line 94) +* move: BSD Compatible Functions. + (line 39) +* mp_bitcnt_t: Nomenclature and Types. + (line 42) +* mp_bits_per_limb: Useful Macros and Constants. + (line 7) +* mp_exp_t: Nomenclature and Types. + (line 27) +* mp_get_memory_functions: Custom Allocation. (line 93) +* mp_limb_t: Nomenclature and Types. + (line 31) +* mp_set_memory_functions: Custom Allocation. (line 21) +* mp_size_t: Nomenclature and Types. + (line 37) +* mpf_abs: Float Arithmetic. (line 47) +* mpf_add: Float Arithmetic. (line 7) +* mpf_add_ui: Float Arithmetic. (line 9) +* mpf_ceil: Miscellaneous Float Functions. + (line 7) +* mpf_class: C++ Interface General. + (line 20) +* mpf_class::fits_sint_p: C++ Interface Floats. + (line 74) +* mpf_class::fits_slong_p: C++ Interface Floats. + (line 75) +* mpf_class::fits_sshort_p: C++ Interface Floats. + (line 76) +* mpf_class::fits_uint_p: C++ Interface Floats. + (line 77) +* mpf_class::fits_ulong_p: C++ Interface Floats. + (line 78) +* mpf_class::fits_ushort_p: C++ Interface Floats. + (line 79) +* mpf_class::get_d: C++ Interface Floats. + (line 82) +* mpf_class::get_mpf_t: C++ Interface General. + (line 66) +* mpf_class::get_prec: C++ Interface Floats. + (line 100) +* mpf_class::get_si: C++ Interface Floats. + (line 83) +* mpf_class::get_str: C++ Interface Floats. + (line 85) +* mpf_class::get_ui: C++ Interface Floats. + (line 86) +* mpf_class::mpf_class: C++ Interface Floats. + (line 38) +* mpf_class::operator=: C++ Interface Floats. + (line 47) +* mpf_class::set_prec: C++ Interface Floats. + (line 101) +* mpf_class::set_prec_raw: C++ Interface Floats. + (line 102) +* mpf_class::set_str: C++ Interface Floats. + (line 88) +* mpf_clear: Initializing Floats. (line 37) +* mpf_clears: Initializing Floats. (line 41) +* mpf_cmp: Float Comparison. (line 7) +* mpf_cmp_d: Float Comparison. (line 8) +* mpf_cmp_si: Float Comparison. (line 10) +* mpf_cmp_ui: Float Comparison. (line 9) +* mpf_div: Float Arithmetic. (line 29) +* mpf_div_2exp: Float Arithmetic. (line 53) +* mpf_div_ui: Float Arithmetic. (line 33) +* mpf_eq: Float Comparison. (line 17) +* mpf_fits_sint_p: Miscellaneous Float Functions. + (line 20) +* mpf_fits_slong_p: Miscellaneous Float Functions. + (line 18) +* mpf_fits_sshort_p: Miscellaneous Float Functions. + (line 22) +* mpf_fits_uint_p: Miscellaneous Float Functions. + (line 19) +* mpf_fits_ulong_p: Miscellaneous Float Functions. + (line 17) +* mpf_fits_ushort_p: Miscellaneous Float Functions. + (line 21) +* mpf_floor: Miscellaneous Float Functions. + (line 8) +* mpf_get_d: Converting Floats. (line 7) +* mpf_get_d_2exp: Converting Floats. (line 16) +* mpf_get_default_prec: Initializing Floats. (line 12) +* mpf_get_prec: Initializing Floats. (line 62) +* mpf_get_si: Converting Floats. (line 27) +* mpf_get_str: Converting Floats. (line 37) +* mpf_get_ui: Converting Floats. (line 28) +* mpf_init: Initializing Floats. (line 19) +* mpf_init2: Initializing Floats. (line 26) +* mpf_init_set: Simultaneous Float Init & Assign. + (line 16) +* mpf_init_set_d: Simultaneous Float Init & Assign. + (line 19) +* mpf_init_set_si: Simultaneous Float Init & Assign. + (line 18) +* mpf_init_set_str: Simultaneous Float Init & Assign. + (line 25) +* mpf_init_set_ui: Simultaneous Float Init & Assign. + (line 17) +* mpf_inits: Initializing Floats. (line 31) +* mpf_inp_str: I/O of Floats. (line 37) +* mpf_integer_p: Miscellaneous Float Functions. + (line 14) +* mpf_mul: Float Arithmetic. (line 19) +* mpf_mul_2exp: Float Arithmetic. (line 50) +* mpf_mul_ui: Float Arithmetic. (line 21) +* mpf_neg: Float Arithmetic. (line 44) +* mpf_out_str: I/O of Floats. (line 17) +* mpf_pow_ui: Float Arithmetic. (line 41) +* mpf_random2: Miscellaneous Float Functions. + (line 36) +* mpf_reldiff: Float Comparison. (line 29) +* mpf_set: Assigning Floats. (line 10) +* mpf_set_d: Assigning Floats. (line 13) +* mpf_set_default_prec: Initializing Floats. (line 7) +* mpf_set_prec: Initializing Floats. (line 65) +* mpf_set_prec_raw: Initializing Floats. (line 72) +* mpf_set_q: Assigning Floats. (line 15) +* mpf_set_si: Assigning Floats. (line 12) +* mpf_set_str: Assigning Floats. (line 18) +* mpf_set_ui: Assigning Floats. (line 11) +* mpf_set_z: Assigning Floats. (line 14) +* mpf_sgn: Float Comparison. (line 33) +* mpf_sqrt: Float Arithmetic. (line 36) +* mpf_sqrt_ui: Float Arithmetic. (line 37) +* mpf_sub: Float Arithmetic. (line 12) +* mpf_sub_ui: Float Arithmetic. (line 16) +* mpf_swap: Assigning Floats. (line 52) +* mpf_t: Nomenclature and Types. + (line 21) +* mpf_trunc: Miscellaneous Float Functions. + (line 9) +* mpf_ui_div: Float Arithmetic. (line 31) +* mpf_ui_sub: Float Arithmetic. (line 14) +* mpf_urandomb: Miscellaneous Float Functions. + (line 27) +* mpn_add: Low-level Functions. (line 69) +* mpn_add_1: Low-level Functions. (line 64) +* mpn_add_n: Low-level Functions. (line 54) +* mpn_addmul_1: Low-level Functions. (line 148) +* mpn_and_n: Low-level Functions. (line 420) +* mpn_andn_n: Low-level Functions. (line 435) +* mpn_cmp: Low-level Functions. (line 284) +* mpn_com: Low-level Functions. (line 460) +* mpn_copyd: Low-level Functions. (line 469) +* mpn_copyi: Low-level Functions. (line 465) +* mpn_divexact_by3: Low-level Functions. (line 229) +* mpn_divexact_by3c: Low-level Functions. (line 231) +* mpn_divmod: Low-level Functions. (line 224) +* mpn_divmod_1: Low-level Functions. (line 208) +* mpn_divrem: Low-level Functions. (line 182) +* mpn_divrem_1: Low-level Functions. (line 206) +* mpn_gcd: Low-level Functions. (line 289) +* mpn_gcd_1: Low-level Functions. (line 299) +* mpn_gcdext: Low-level Functions. (line 305) +* mpn_get_str: Low-level Functions. (line 346) +* mpn_hamdist: Low-level Functions. (line 410) +* mpn_ior_n: Low-level Functions. (line 425) +* mpn_iorn_n: Low-level Functions. (line 440) +* mpn_lshift: Low-level Functions. (line 260) +* mpn_mod_1: Low-level Functions. (line 255) +* mpn_mul: Low-level Functions. (line 114) +* mpn_mul_1: Low-level Functions. (line 133) +* mpn_mul_n: Low-level Functions. (line 103) +* mpn_nand_n: Low-level Functions. (line 445) +* mpn_neg: Low-level Functions. (line 98) +* mpn_nior_n: Low-level Functions. (line 450) +* mpn_perfect_square_p: Low-level Functions. (line 416) +* mpn_popcount: Low-level Functions. (line 406) +* mpn_random: Low-level Functions. (line 395) +* mpn_random2: Low-level Functions. (line 396) +* mpn_rshift: Low-level Functions. (line 272) +* mpn_scan0: Low-level Functions. (line 380) +* mpn_scan1: Low-level Functions. (line 388) +* mpn_set_str: Low-level Functions. (line 361) +* mpn_sqr: Low-level Functions. (line 125) +* mpn_sqrtrem: Low-level Functions. (line 328) +* mpn_sub: Low-level Functions. (line 90) +* mpn_sub_1: Low-level Functions. (line 85) +* mpn_sub_n: Low-level Functions. (line 76) +* mpn_submul_1: Low-level Functions. (line 159) +* mpn_tdiv_qr: Low-level Functions. (line 171) +* mpn_xnor_n: Low-level Functions. (line 455) +* mpn_xor_n: Low-level Functions. (line 430) +* mpn_zero: Low-level Functions. (line 472) +* mpq_abs: Rational Arithmetic. (line 31) +* mpq_add: Rational Arithmetic. (line 7) +* mpq_canonicalize: Rational Number Functions. + (line 22) +* mpq_class: C++ Interface General. + (line 19) +* mpq_class::canonicalize: C++ Interface Rationals. + (line 37) +* mpq_class::get_d: C++ Interface Rationals. + (line 46) +* mpq_class::get_den: C++ Interface Rationals. + (line 58) +* mpq_class::get_den_mpz_t: C++ Interface Rationals. + (line 68) +* mpq_class::get_mpq_t: C++ Interface General. + (line 65) +* mpq_class::get_num: C++ Interface Rationals. + (line 57) +* mpq_class::get_num_mpz_t: C++ Interface Rationals. + (line 67) +* mpq_class::get_str: C++ Interface Rationals. + (line 47) +* mpq_class::mpq_class: C++ Interface Rationals. + (line 22) +* mpq_class::set_str: C++ Interface Rationals. + (line 49) +* mpq_clear: Initializing Rationals. + (line 16) +* mpq_clears: Initializing Rationals. + (line 20) +* mpq_cmp: Comparing Rationals. (line 7) +* mpq_cmp_si: Comparing Rationals. (line 17) +* mpq_cmp_ui: Comparing Rationals. (line 15) +* mpq_denref: Applying Integer Functions. + (line 18) +* mpq_div: Rational Arithmetic. (line 22) +* mpq_div_2exp: Rational Arithmetic. (line 25) +* mpq_equal: Comparing Rationals. (line 33) +* mpq_get_d: Rational Conversions. + (line 7) +* mpq_get_den: Applying Integer Functions. + (line 24) +* mpq_get_num: Applying Integer Functions. + (line 23) +* mpq_get_str: Rational Conversions. + (line 22) +* mpq_init: Initializing Rationals. + (line 7) +* mpq_inits: Initializing Rationals. + (line 12) +* mpq_inp_str: I/O of Rationals. (line 23) +* mpq_inv: Rational Arithmetic. (line 34) +* mpq_mul: Rational Arithmetic. (line 15) +* mpq_mul_2exp: Rational Arithmetic. (line 18) +* mpq_neg: Rational Arithmetic. (line 28) +* mpq_numref: Applying Integer Functions. + (line 17) +* mpq_out_str: I/O of Rationals. (line 15) +* mpq_set: Initializing Rationals. + (line 24) +* mpq_set_d: Rational Conversions. + (line 17) +* mpq_set_den: Applying Integer Functions. + (line 26) +* mpq_set_f: Rational Conversions. + (line 18) +* mpq_set_num: Applying Integer Functions. + (line 25) +* mpq_set_si: Initializing Rationals. + (line 31) +* mpq_set_str: Initializing Rationals. + (line 36) +* mpq_set_ui: Initializing Rationals. + (line 29) +* mpq_set_z: Initializing Rationals. + (line 25) +* mpq_sgn: Comparing Rationals. (line 27) +* mpq_sub: Rational Arithmetic. (line 11) +* mpq_swap: Initializing Rationals. + (line 56) +* mpq_t: Nomenclature and Types. + (line 16) +* mpz_abs: Integer Arithmetic. (line 42) +* mpz_add: Integer Arithmetic. (line 7) +* mpz_add_ui: Integer Arithmetic. (line 9) +* mpz_addmul: Integer Arithmetic. (line 25) +* mpz_addmul_ui: Integer Arithmetic. (line 27) +* mpz_and: Integer Logic and Bit Fiddling. + (line 11) +* mpz_array_init: Integer Special Functions. + (line 11) +* mpz_bin_ui: Number Theoretic Functions. + (line 98) +* mpz_bin_uiui: Number Theoretic Functions. + (line 100) +* mpz_cdiv_q: Integer Division. (line 13) +* mpz_cdiv_q_2exp: Integer Division. (line 24) +* mpz_cdiv_q_ui: Integer Division. (line 17) +* mpz_cdiv_qr: Integer Division. (line 15) +* mpz_cdiv_qr_ui: Integer Division. (line 21) +* mpz_cdiv_r: Integer Division. (line 14) +* mpz_cdiv_r_2exp: Integer Division. (line 25) +* mpz_cdiv_r_ui: Integer Division. (line 19) +* mpz_cdiv_ui: Integer Division. (line 23) +* mpz_class: C++ Interface General. + (line 18) +* mpz_class::fits_sint_p: C++ Interface Integers. + (line 45) +* mpz_class::fits_slong_p: C++ Interface Integers. + (line 46) +* mpz_class::fits_sshort_p: C++ Interface Integers. + (line 47) +* mpz_class::fits_uint_p: C++ Interface Integers. + (line 48) +* mpz_class::fits_ulong_p: C++ Interface Integers. + (line 49) +* mpz_class::fits_ushort_p: C++ Interface Integers. + (line 50) +* mpz_class::get_d: C++ Interface Integers. + (line 51) +* mpz_class::get_mpz_t: C++ Interface General. + (line 64) +* mpz_class::get_si: C++ Interface Integers. + (line 52) +* mpz_class::get_str: C++ Interface Integers. + (line 53) +* mpz_class::get_ui: C++ Interface Integers. + (line 54) +* mpz_class::mpz_class: C++ Interface Integers. + (line 7) +* mpz_class::set_str: C++ Interface Integers. + (line 56) +* mpz_clear: Initializing Integers. + (line 44) +* mpz_clears: Initializing Integers. + (line 48) +* mpz_clrbit: Integer Logic and Bit Fiddling. + (line 54) +* mpz_cmp: Integer Comparisons. (line 7) +* mpz_cmp_d: Integer Comparisons. (line 8) +* mpz_cmp_si: Integer Comparisons. (line 9) +* mpz_cmp_ui: Integer Comparisons. (line 10) +* mpz_cmpabs: Integer Comparisons. (line 18) +* mpz_cmpabs_d: Integer Comparisons. (line 19) +* mpz_cmpabs_ui: Integer Comparisons. (line 20) +* mpz_com: Integer Logic and Bit Fiddling. + (line 20) +* mpz_combit: Integer Logic and Bit Fiddling. + (line 57) +* mpz_congruent_2exp_p: Integer Division. (line 124) +* mpz_congruent_p: Integer Division. (line 121) +* mpz_congruent_ui_p: Integer Division. (line 123) +* mpz_divexact: Integer Division. (line 101) +* mpz_divexact_ui: Integer Division. (line 102) +* mpz_divisible_2exp_p: Integer Division. (line 112) +* mpz_divisible_p: Integer Division. (line 110) +* mpz_divisible_ui_p: Integer Division. (line 111) +* mpz_even_p: Miscellaneous Integer Functions. + (line 18) +* mpz_export: Integer Import and Export. + (line 45) +* mpz_fac_ui: Number Theoretic Functions. + (line 95) +* mpz_fdiv_q: Integer Division. (line 27) +* mpz_fdiv_q_2exp: Integer Division. (line 38) +* mpz_fdiv_q_ui: Integer Division. (line 31) +* mpz_fdiv_qr: Integer Division. (line 29) +* mpz_fdiv_qr_ui: Integer Division. (line 35) +* mpz_fdiv_r: Integer Division. (line 28) +* mpz_fdiv_r_2exp: Integer Division. (line 39) +* mpz_fdiv_r_ui: Integer Division. (line 33) +* mpz_fdiv_ui: Integer Division. (line 37) +* mpz_fib2_ui: Number Theoretic Functions. + (line 108) +* mpz_fib_ui: Number Theoretic Functions. + (line 106) +* mpz_fits_sint_p: Miscellaneous Integer Functions. + (line 10) +* mpz_fits_slong_p: Miscellaneous Integer Functions. + (line 8) +* mpz_fits_sshort_p: Miscellaneous Integer Functions. + (line 12) +* mpz_fits_uint_p: Miscellaneous Integer Functions. + (line 9) +* mpz_fits_ulong_p: Miscellaneous Integer Functions. + (line 7) +* mpz_fits_ushort_p: Miscellaneous Integer Functions. + (line 11) +* mpz_gcd: Number Theoretic Functions. + (line 30) +* mpz_gcd_ui: Number Theoretic Functions. + (line 35) +* mpz_gcdext: Number Theoretic Functions. + (line 45) +* mpz_get_d: Converting Integers. (line 27) +* mpz_get_d_2exp: Converting Integers. (line 35) +* mpz_get_si: Converting Integers. (line 18) +* mpz_get_str: Converting Integers. (line 46) +* mpz_get_ui: Converting Integers. (line 11) +* mpz_getlimbn: Integer Special Functions. + (line 60) +* mpz_hamdist: Integer Logic and Bit Fiddling. + (line 29) +* mpz_import: Integer Import and Export. + (line 11) +* mpz_init: Initializing Integers. + (line 26) +* mpz_init2: Initializing Integers. + (line 33) +* mpz_init_set: Simultaneous Integer Init & Assign. + (line 27) +* mpz_init_set_d: Simultaneous Integer Init & Assign. + (line 30) +* mpz_init_set_si: Simultaneous Integer Init & Assign. + (line 29) +* mpz_init_set_str: Simultaneous Integer Init & Assign. + (line 34) +* mpz_init_set_ui: Simultaneous Integer Init & Assign. + (line 28) +* mpz_inits: Initializing Integers. + (line 29) +* mpz_inp_raw: I/O of Integers. (line 59) +* mpz_inp_str: I/O of Integers. (line 28) +* mpz_invert: Number Theoretic Functions. + (line 60) +* mpz_ior: Integer Logic and Bit Fiddling. + (line 14) +* mpz_jacobi: Number Theoretic Functions. + (line 66) +* mpz_kronecker: Number Theoretic Functions. + (line 74) +* mpz_kronecker_si: Number Theoretic Functions. + (line 75) +* mpz_kronecker_ui: Number Theoretic Functions. + (line 76) +* mpz_lcm: Number Theoretic Functions. + (line 54) +* mpz_lcm_ui: Number Theoretic Functions. + (line 55) +* mpz_legendre: Number Theoretic Functions. + (line 69) +* mpz_lucnum2_ui: Number Theoretic Functions. + (line 119) +* mpz_lucnum_ui: Number Theoretic Functions. + (line 117) +* mpz_mod: Integer Division. (line 91) +* mpz_mod_ui: Integer Division. (line 93) +* mpz_mul: Integer Arithmetic. (line 19) +* mpz_mul_2exp: Integer Arithmetic. (line 35) +* mpz_mul_si: Integer Arithmetic. (line 20) +* mpz_mul_ui: Integer Arithmetic. (line 22) +* mpz_neg: Integer Arithmetic. (line 39) +* mpz_nextprime: Number Theoretic Functions. + (line 23) +* mpz_odd_p: Miscellaneous Integer Functions. + (line 17) +* mpz_out_raw: I/O of Integers. (line 43) +* mpz_out_str: I/O of Integers. (line 16) +* mpz_perfect_power_p: Integer Roots. (line 27) +* mpz_perfect_square_p: Integer Roots. (line 36) +* mpz_popcount: Integer Logic and Bit Fiddling. + (line 23) +* mpz_pow_ui: Integer Exponentiation. + (line 31) +* mpz_powm: Integer Exponentiation. + (line 8) +* mpz_powm_sec: Integer Exponentiation. + (line 18) +* mpz_powm_ui: Integer Exponentiation. + (line 10) +* mpz_probab_prime_p: Number Theoretic Functions. + (line 7) +* mpz_random: Integer Random Numbers. + (line 42) +* mpz_random2: Integer Random Numbers. + (line 51) +* mpz_realloc2: Initializing Integers. + (line 52) +* mpz_remove: Number Theoretic Functions. + (line 90) +* mpz_root: Integer Roots. (line 7) +* mpz_rootrem: Integer Roots. (line 13) +* mpz_rrandomb: Integer Random Numbers. + (line 31) +* mpz_scan0: Integer Logic and Bit Fiddling. + (line 37) +* mpz_scan1: Integer Logic and Bit Fiddling. + (line 38) +* mpz_set: Assigning Integers. (line 10) +* mpz_set_d: Assigning Integers. (line 13) +* mpz_set_f: Assigning Integers. (line 15) +* mpz_set_q: Assigning Integers. (line 14) +* mpz_set_si: Assigning Integers. (line 12) +* mpz_set_str: Assigning Integers. (line 21) +* mpz_set_ui: Assigning Integers. (line 11) +* mpz_setbit: Integer Logic and Bit Fiddling. + (line 51) +* mpz_sgn: Integer Comparisons. (line 28) +* mpz_si_kronecker: Number Theoretic Functions. + (line 77) +* mpz_size: Integer Special Functions. + (line 68) +* mpz_sizeinbase: Miscellaneous Integer Functions. + (line 23) +* mpz_sqrt: Integer Roots. (line 17) +* mpz_sqrtrem: Integer Roots. (line 20) +* mpz_sub: Integer Arithmetic. (line 12) +* mpz_sub_ui: Integer Arithmetic. (line 14) +* mpz_submul: Integer Arithmetic. (line 30) +* mpz_submul_ui: Integer Arithmetic. (line 32) +* mpz_swap: Assigning Integers. (line 37) +* mpz_t: Nomenclature and Types. + (line 6) +* mpz_tdiv_q: Integer Division. (line 41) +* mpz_tdiv_q_2exp: Integer Division. (line 52) +* mpz_tdiv_q_ui: Integer Division. (line 45) +* mpz_tdiv_qr: Integer Division. (line 43) +* mpz_tdiv_qr_ui: Integer Division. (line 49) +* mpz_tdiv_r: Integer Division. (line 42) +* mpz_tdiv_r_2exp: Integer Division. (line 53) +* mpz_tdiv_r_ui: Integer Division. (line 47) +* mpz_tdiv_ui: Integer Division. (line 51) +* mpz_tstbit: Integer Logic and Bit Fiddling. + (line 60) +* mpz_ui_kronecker: Number Theoretic Functions. + (line 78) +* mpz_ui_pow_ui: Integer Exponentiation. + (line 33) +* mpz_ui_sub: Integer Arithmetic. (line 16) +* mpz_urandomb: Integer Random Numbers. + (line 14) +* mpz_urandomm: Integer Random Numbers. + (line 23) +* mpz_xor: Integer Logic and Bit Fiddling. + (line 17) +* msqrt: BSD Compatible Functions. + (line 63) +* msub: BSD Compatible Functions. + (line 46) +* mtox: BSD Compatible Functions. + (line 98) +* mult: BSD Compatible Functions. + (line 49) +* operator%: C++ Interface Integers. + (line 30) +* operator/: C++ Interface Integers. + (line 29) +* operator<<: C++ Formatted Output. + (line 20) +* operator>> <1>: C++ Formatted Input. (line 11) +* operator>>: C++ Interface Rationals. + (line 77) +* pow: BSD Compatible Functions. + (line 71) +* rpow: BSD Compatible Functions. + (line 79) +* sdiv: BSD Compatible Functions. + (line 55) +* sgn <1>: C++ Interface Rationals. + (line 50) +* sgn <2>: C++ Interface Integers. + (line 57) +* sgn: C++ Interface Floats. + (line 89) +* sqrt <1>: C++ Interface Integers. + (line 58) +* sqrt: C++ Interface Floats. + (line 90) +* trunc: C++ Interface Floats. + (line 91) +* xtom: BSD Compatible Functions. + (line 34) + +