* Implement the predef subsystem now. We can do this safely with the
* help of lexer contexts.
*/
-static int ftepp_predef_countval = 0;
-static int ftepp_predef_randval = 0;
+static uint32_t ftepp_predef_countval = 0;
+static uint32_t ftepp_predef_randval = 0;
/* __LINE__ */
char *ftepp_predef_line(lex_file *context) {
/* __COUNTER_LAST__ */
char *ftepp_predef_counterlast(lex_file *context) {
char *value = (char*)mem_a(128);
- sprintf(value, "%d", ftepp_predef_countval);
+ sprintf(value, "%u", ftepp_predef_countval);
(void)context;
return value;
char *ftepp_predef_counter(lex_file *context) {
char *value = (char*)mem_a(128);
ftepp_predef_countval ++;
- sprintf(value, "%d", ftepp_predef_countval);
+ sprintf(value, "%u", ftepp_predef_countval);
(void)context;
return value;
/* __RANDOM__ */
char *ftepp_predef_random(lex_file *context) {
char *value = (char*)mem_a(128);
- ftepp_predef_randval = rand() % 0xFFFF; /* short int */
- sprintf(value, "%d", ftepp_predef_randval);
+ ftepp_predef_randval = (util_rand() % 0xFF) + 1;
+ sprintf(value, "%u", ftepp_predef_randval);
(void)context;
return value;
/* __RANDOM_LAST__ */
char *ftepp_predef_randomlast(lex_file *context) {
char *value = (char*)mem_a(128);
- sprintf(value, "%d", ftepp_predef_randval);
+ sprintf(value, "%u", ftepp_predef_randval);
(void)context;
return value;
mem_d(ht->table);
mem_d(ht);
}
+
+/*
+ * Implementation of the Mersenne twister PRNG (pseudo random numer
+ * generator). Implementation of MT19937. Has a period of 2^19937-1
+ * which is a Mersenne Prime (hence the name).
+ *
+ * Implemented from specification and original paper:
+ * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf
+ *
+ * This code is placed in the public domain by me personally
+ * (Dale Weiler, a.k.a graphitemaster).
+ */
+
+#define MT_SIZE 624
+#define MT_PERIOD 397
+#define MT_SPACE (MT_SIZE - MT_PERIOD)
+
+static uint32_t mt_state[MT_SIZE];
+static size_t mt_index = 0;
+
+static GMQCC_INLINE void mt_generate() {
+ /*
+ * The loop has been unrolled here: the original paper and implemenation
+ * Called for the following code:
+ * for (register unsigned i = 0; i < MT_SIZE; ++i) {
+ * register uint32_t load;
+ * load = (0x80000000 & mt_state[i]) // most significant 32nd bit
+ * load |= (0x7FFFFFFF & mt_state[(i + 1) % MT_SIZE]) // least significant 31nd bit
+ *
+ * mt_state[i] = mt_state[(i + MT_PERIOD) % MT_SIZE] ^ (load >> 1);
+ *
+ * if (load & 1) mt_state[i] ^= 0x9908B0DF;
+ * }
+ *
+ * This essentially is a waste: we have two modulus operations, and
+ * a branch that is executed every iteration from [0, MT_SIZE).
+ *
+ * Please see: http://www.quadibloc.com/crypto/co4814.htm for more
+ * information on how this clever trick works.
+ */
+ static const uint32_t matrix[2] = {
+ 0x00000000,
+ 0x9908B0Df
+ };
+ /*
+ * This register gives up a little more speed by instructing the compiler
+ * to force these into CPU registers (they're counters for indexing mt_state
+ * which we can force the compiler to generate prefetch instructions for)
+ */
+ register uint32_t y;
+ register uint32_t i;
+
+ /*
+ * Said loop has been unrolled for MT_SPACE (226 iterations), opposed
+ * to [0, MT_SIZE) (634 iterations).
+ */
+ for (i = 0; i < MT_SPACE; ++i) {
+ y = (0x800000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1];
+
+ i ++; /* loop unroll */
+
+ y = (0x800000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1];
+ }
+
+ /*
+ * collapsing the walls unrolled (evenly dividing 396 [632-227 = 396
+ * = 2*2*3*3*11])
+ */
+ i = MT_SPACE;
+ while (i < MT_SIZE - 1) {
+ /*
+ * We expand this 11 times .. manually, no macros are required
+ * here. This all fits in the CPU cache.
+ */
+ y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
+ ++i;
+ y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
+ ++i;
+ y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
+ ++i;
+ y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
+ ++i;
+ y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
+ ++i;
+ y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
+ ++i;
+ y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
+ ++i;
+ y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
+ ++i;
+ y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
+ ++i;
+ y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
+ ++i;
+ y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
+ mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
+ ++i;
+ }
+
+ /* i = mt_state[623] */
+ y = (0x80000000 & mt_state[MT_SIZE - 1]) | (0x7FFFFFFF & mt_state[MT_SIZE - 1]);
+ mt_state[MT_SIZE - 1] = mt_state[MT_PERIOD - 1] ^ (y >> 1) ^ matrix[y & 1];
+}
+
+void util_seed(uint32_t value) {
+ /*
+ * We seed the mt_state with a LCG (linear congruential generator)
+ * We're operating exactly on exactly m=32, so there is no need to
+ * use modulus.
+ *
+ * The multipler of choice is 0x6C07865, also knows as the Borosh-
+ * Niederreiter multipler used for modulus 2^32. More can be read
+ * about this in Knuth's TAOCP Volume 2, page 106.
+ *
+ * If you don't own TAOCP something is wrong with you :-) .. so I
+ * also provided a link to the original paper by Borosh and
+ * Niederreiter. It's called "Optional Multipliers for PRNG by The
+ * Linear Congruential Method" (1983).
+ * http://en.wikipedia.org/wiki/Linear_congruential_generator
+ *
+ * From said page, it says the following:
+ * "A common Mersenne twister implementation, interestingly enough
+ * used an LCG to generate seed data."
+ *
+ * Remarks:
+ * The data we're operating on is 32-bits for the mt_state array, so
+ * there is no masking required with 0xFFFFFFFF
+ */
+ register size_t i;
+
+ mt_state[0] = value;
+ for (i = 1; i < MT_SIZE; ++i)
+ mt_state[i] = 0x6C078965 * (mt_state[i - 1] ^ mt_state[i - 1] >> 30) + i;
+}
+
+uint32_t util_rand() {
+ register uint32_t y;
+
+ /*
+ * This is inlined with any sane compiler (I checked)
+ * for some reason though, SubC seems to be generating invalid
+ * code when it inlines this.
+ */
+ if (!mt_index)
+ mt_generate();
+
+ y = mt_state[mt_index];
+
+ /* Standard tempering */
+ y ^= y >> 11; /* +7 */
+ y ^= y << 7 & 0x9D2C5680; /* +4 */
+ y ^= y << 15 & 0xEFC60000; /* -4 */
+ y ^= y >> 18; /* -7 */
+
+ if(++mt_index == MT_SIZE)
+ mt_index = 0;
+
+ return y;
+}