float edge0[3], edge1[3], edge2[3], normal[3], dist, bestdist;
colpointf_t *p, *p2;
+ // FIXME: these probably don't actually need to be normalized if the collision code does not care
if (brush->numpoints == 3)
{
// optimized triangle case
colbrushf_t *brush;
if (brushforbox_brush[0].numpoints == 0)
Collision_InitBrushForBox();
+ // FIXME: these probably don't actually need to be normalized if the collision code does not care
if (VectorCompare(mins, maxs))
{
// point brush
void Collision_TraceLineTriangleFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, const float *point0, const float *point1, const float *point2)
{
+#if 1
+ // more optimized
+ float d1, d2, d, f, impact[3], edgenormal[3], faceplanenormal[3], faceplanedist, faceplanenormallength2, edge01[3], edge21[3], edge02[3];
+
+ // this function executes:
+ // 32 ops when line starts behind triangle
+ // 38 ops when line ends infront of triangle
+ // 43 ops when line fraction is already closer than this triangle
+ // 72 ops when line is outside edge 01
+ // 92 ops when line is outside edge 21
+ // 115 ops when line is outside edge 02
+ // 123 ops when line impacts triangle and updates trace results
+
+ // this code is designed for clockwise triangles, conversion to
+ // counterclockwise would require swapping some things around...
+ // it is easier to simply swap the point0 and point2 parameters to this
+ // function when calling it than it is to rewire the internals.
+
+ // calculate the faceplanenormal of the triangle, this represents the front side
+ // 15 ops
+ VectorSubtract(point0, point1, edge01);
+ VectorSubtract(point2, point1, edge21);
+ CrossProduct(edge01, edge21, faceplanenormal);
+ // there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out)
+ // 6 ops
+ faceplanenormallength2 = DotProduct(faceplanenormal, faceplanenormal);
+ if (faceplanenormallength2 < 0.0001f)
+ return;
+ // calculate the distance
+ // 5 ops
+ faceplanedist = DotProduct(point0, faceplanenormal);
+
+ // if start point is on the back side there is no collision
+ // (we don't care about traces going through the triangle the wrong way)
+
+ // calculate the start distance
+ // 6 ops
+ d1 = DotProduct(faceplanenormal, linestart);
+ if (d1 <= faceplanedist)
+ return;
+
+ // calculate the end distance
+ // 6 ops
+ d2 = DotProduct(faceplanenormal, lineend);
+ // if both are in front, there is no collision
+ if (d2 >= faceplanedist)
+ return;
+
+ // from here on we know d1 is >= 0 and d2 is < 0
+ // this means the line starts infront and ends behind, passing through it
+
+ // calculate the recipricol of the distance delta,
+ // so we can use it multiple times cheaply (instead of division)
+ // 2 ops
+ d = 1.0f / (d1 - d2);
+ // calculate the impact fraction by taking the start distance (> 0)
+ // and subtracting the face plane distance (this is the distance of the
+ // triangle along that same normal)
+ // then multiply by the recipricol distance delta
+ // 2 ops
+ f = (d1 - faceplanedist) * d;
+ // skip out if this impact is further away than previous ones
+ // 1 ops
+ if (f > trace->realfraction)
+ return;
+ // calculate the perfect impact point for classification of insidedness
+ // 9 ops
+ impact[0] = linestart[0] + f * (lineend[0] - linestart[0]);
+ impact[1] = linestart[1] + f * (lineend[1] - linestart[1]);
+ impact[2] = linestart[2] + f * (lineend[2] - linestart[2]);
+
+ // calculate the edge normal and reject if impact is outside triangle
+ // (an edge normal faces away from the triangle, to get the desired normal
+ // a crossproduct with the faceplanenormal is used, and because of the way
+ // the insidedness comparison is written it does not need to be normalized)
+
+ // first use the two edges from the triangle plane math
+ // the other edge only gets calculated if the point survives that long
+
+ // 20 ops
+ CrossProduct(edge01, faceplanenormal, edgenormal);
+ if (DotProduct(impact, edgenormal) > DotProduct(point1, edgenormal))
+ return;
+
+ // 20 ops
+ CrossProduct(faceplanenormal, edge21, edgenormal);
+ if (DotProduct(impact, edgenormal) > DotProduct(point2, edgenormal))
+ return;
+
+ // 23 ops
+ VectorSubtract(point0, point2, edge02);
+ CrossProduct(faceplanenormal, edge02, edgenormal);
+ if (DotProduct(impact, edgenormal) > DotProduct(point0, edgenormal))
+ return;
+
+ // 8 ops (rare)
+
+ // store the new trace fraction
+ trace->realfraction = f;
+
+ // calculate a nudged fraction to keep it out of the surface
+ // (the main fraction remains perfect)
+ trace->fraction = f - collision_impactnudge.value * d;
+
+ // store the new trace plane (because collisions only happen from
+ // the front this is always simply the triangle normal, never flipped)
+ d = 1.0 / sqrt(faceplanenormallength2);
+ VectorScale(faceplanenormal, d, trace->plane.normal);
+ trace->plane.dist = faceplanedist * d;
+#else
float d1, d2, d, f, fnudged, impact[3], edgenormal[3], faceplanenormal[3], faceplanedist, edge[3];
// this code is designed for clockwise triangles, conversion to
d1 = DotProduct(faceplanenormal, linestart) - faceplanedist;
// if start point is on the back side there is no collision
// (we don't care about traces going through the triangle the wrong way)
- if (d1 < 0)
+ if (d1 <= 0)
return;
// calculate the unnormalized end distance
// (an edge normal faces away from the triangle, to get the desired normal
// a crossproduct with the faceplanenormal is used, and because of the way
// the insidedness comparison is written it does not need to be normalized)
-
+
VectorSubtract(point2, point0, edge);
CrossProduct(edge, faceplanenormal, edgenormal);
if (DotProduct(impact, edgenormal) > DotProduct(point0, edgenormal))
//trace->endpos[0] = linestart[0] + fnudged * (lineend[0] - linestart[0]);
//trace->endpos[1] = linestart[1] + fnudged * (lineend[1] - linestart[1]);
//trace->endpos[2] = linestart[2] + fnudged * (lineend[2] - linestart[2]);
+#endif
}
typedef struct colbspnode_s