((ast_expression*)val)->vtype != TYPE_FUNCTION; /* why not for functions? */
}
-#define isfloat(X) (((ast_expression*)(X))->vtype == TYPE_FLOAT && fold_possible(X))
-#define isvector(X) (((ast_expression*)(X))->vtype == TYPE_VECTOR && fold_possible(X))
-#define isstring(X) (((ast_expression*)(X))->vtype == TYPE_STRING && fold_possible(X))
-#define isfloats(X,Y) (isfloat (X) && isfloat(Y))
-#define isvectors(X,Y) (isvector(X) && isvector(Y))
-#define isstrings(X,Y) (isstring(X) && isstring(Y))
+#define isfloatonly(X) (((ast_expression*)(X))->vtype == TYPE_FLOAT)
+#define isvectoronly(X) (((ast_expression*)(X))->vtype == TYPE_VECTOR)
+#define isstringonly(X) (((ast_expression*)(X))->vtype == TYPE_STRING)
+#define isfloat(X) (isfloatonly (X) && fold_possible(X))
+#define isvector(X) (isvectoronly(X) && fold_possible(X))
+#define isstring(X) (isstringonly(X) && fold_possible(X))
+#define isfloats(X,Y) (isfloat (X) && isfloat (Y))
+#define isvectors(X,Y) (isvector (X) && isvector(Y))
+#define isstrings(X,Y) (isstring (X) && isstring(Y))
/*
* Implementation of basic vector math for vec3_t, for trivial constant
return out;
}
-#if 0
static GMQCC_INLINE qcfloat_t vec3_mulvv(vec3_t a, vec3_t b) {
return (a.x * b.x + a.y * b.y + a.z * b.z);
}
out.z = a.z * b;
return out;
}
-#endif
static GMQCC_INLINE bool vec3_cmp(vec3_t a, vec3_t b) {
return a.x == b.x &&
return (ast_expression*)out;
}
+static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t *vec, ast_value *sel, const char *set) {
+ /*
+ * vector-component constant folding works by matching the component sets
+ * to eliminate expensive operations on whole-vectors (3 components at runtime).
+ * to achive this effect in a clean manner this function generalizes the
+ * values through the use of a set paramater, which is used as an indexing method
+ * for creating the elided ast binary expression.
+ *
+ * Consider 'n 0 0' where y, and z need to be tested for 0, and x is
+ * used as the value in a binary operation generating an INSTR_MUL instruction
+ * to acomplish the indexing of the correct component value we use set[0], set[1], set[2]
+ * as x, y, z, where the values of those operations return 'x', 'y', 'z'. Because
+ * of how ASCII works we can easily deliniate:
+ * vec.z is the same as set[2]-'x' for when set[2] is 'z', 'z'-'x' results in a
+ * literal value of 2, using this 2, we know that taking the address of vec->x (float)
+ * and indxing it with this literal will yeild the immediate address of that component
+ *
+ * Of course more work needs to be done to generate the correct index for the ast_member_new
+ * call, which is no problem: set[0]-'x' suffices that job.
+ */
+ qcfloat_t x = (&vec->x)[set[0]-'x'];
+ qcfloat_t y = (&vec->x)[set[1]-'x'];
+ qcfloat_t z = (&vec->x)[set[2]-'x'];
+
+ if (!y && !z) {
+ ast_expression *out;
+ ++opts_optimizationcount[OPTIM_VECTOR_COMPONENTS];
+ out = (ast_expression*)ast_member_new(fold_ctx(fold), (ast_expression*)sel, set[0]-'x', NULL);
+ out->node.keep = false;
+ ((ast_member*)out)->rvalue = true;
+ if (!x != -1)
+ return (ast_expression*)ast_binary_new(fold_ctx(fold), INSTR_MUL_F, fold_constgen_float(fold, x), out);
+ }
+
+ return NULL;
+}
+
+
+static GMQCC_INLINE ast_expression *fold_op_mul(fold_t *fold, ast_value *a, ast_value *b) {
+ if (isfloatonly(a)) {
+ return (fold_possible(a) && fold_possible(b))
+ ? fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(b), fold_immvalue_float(a))) /* a=float, b=vector */
+ : NULL; /* cannot fold them */
+ } else if (isfloats(a, b)) {
+ return fold_constgen_float(fold, fold_immvalue_float(a) * fold_immvalue_float(b)); /* a=float, b=float */
+ } else if (isvectoronly(a)) {
+ if (isfloat(b) && fold_possible(a))
+ return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), fold_immvalue_float(b))); /* a=vector, b=float */
+ else if (isvector(b)) {
+ /*
+ * if we made it here the two ast values are both vectors. However because vectors are represented as
+ * three float values, constant folding can still occur within reason of the individual const-qualification
+ * of the components the vector is composed of.
+ */
+ if (fold_possible(a) && fold_possible(b))
+ return fold_constgen_float(fold, vec3_mulvv(fold_immvalue_vector(a), fold_immvalue_vector(b)));
+ else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_possible(a)) {
+ vec3_t vec = fold_immvalue_vector(a);
+ ast_expression *out;
+ if ((out = fold_op_mul_vec(fold, &vec, b, "xyz"))) return out;
+ if ((out = fold_op_mul_vec(fold, &vec, b, "yxz"))) return out;
+ if ((out = fold_op_mul_vec(fold, &vec, b, "zxy"))) return out;
+ return NULL;
+ } else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_possible(b)) {
+ vec3_t vec = fold_immvalue_vector(b);
+ ast_expression *out;
+ if ((out = fold_op_mul_vec(fold, &vec, a, "xyz"))) return out;
+ if ((out = fold_op_mul_vec(fold, &vec, a, "yxz"))) return out;
+ if ((out = fold_op_mul_vec(fold, &vec, a, "zxy"))) return out;
+ return NULL;
+ }
+ }
+ }
+ return NULL;
+}
+
ast_expression *fold_op(fold_t *fold, const oper_info *info, ast_expression **opexprs) {
ast_value *a = (ast_value*)opexprs[0];
ast_value *b = (ast_value*)opexprs[1];
return isfloat(a) ? fold_constgen_float (fold, ~(qcint_t)fold_immvalue_float(a))
: NULL;
- case opid1('*'):
- /* TODO: seperate function for this case */
- return NULL;
+ case opid1('*'): return fold_op_mul(fold, a, b);
case opid1('/'):
/* TODO: seperate function for this case */
return NULL;