--- /dev/null
-#include <client/mutators/events.qc>
+ // generated file; do not modify
++#include <client/mutators/mutator/polytrails.qc>
--- /dev/null
--- /dev/null
++// generated file; do not modify
++#include <client/mutators/events.qc>
--- /dev/null
--- /dev/null
++// generated file; do not modify
--- /dev/null
- ATTRIB(PolyTrail, polytrail_follow, entity, NULL)
- ATTRIB(PolyTrail, polytrail_tex, string, string_null)
+bool autocvar_cl_polytrails = false;
+float autocvar_cl_polytrail_segmentsize = 10;
+float autocvar_cl_polytrail_lifetime = .2;
+float autocvar_cl_polytrail_noise = 10;
+
+CLASS(PolyTrail, Object)
- ATTRIB(PolyTrail, polytrail_lifetime, float, autocvar_cl_polytrail_lifetime)
- ATTRIBARRAY(PolyTrail, polytrail_rgb, vector, 3)
- ATTRIBARRAY(PolyTrail, polytrail_alpha, float, 3)
- ATTRIBARRAY(PolyTrail, polytrail_thickness, float, 3)
++ ATTRIB(PolyTrail, polytrail_follow, entity, NULL);
++ ATTRIB(PolyTrail, polytrail_tex, string, string_null);
+ /** Lifetime per segment */
- ATTRIBARRAY(PolyTrail, polytrail_bufpos, vector, POLYTRAIL_BUFSIZE)
++ ATTRIB(PolyTrail, polytrail_lifetime, float, autocvar_cl_polytrail_lifetime);
++ ATTRIBARRAY(PolyTrail, polytrail_rgb, vector, 3);
++ ATTRIBARRAY(PolyTrail, polytrail_alpha, float, 3);
++ ATTRIBARRAY(PolyTrail, polytrail_thickness, float, 3);
+
+ /**
+ * Increase as necessary if the buffer is overflowing
+ * symptom: tail of trail is wrong
+ * cause: projectiles are too fast for the segment size
+ */
+ const int POLYTRAIL_BUFSIZE = 1 << 7;
+ /** One or more positional points */
- ATTRIBARRAY(PolyTrail, polytrail_bufnoise, vector, POLYTRAIL_BUFSIZE)
++ ATTRIBARRAY(PolyTrail, polytrail_bufpos, vector, POLYTRAIL_BUFSIZE);
+ /** Noise for ending position */
- ATTRIBARRAY(PolyTrail, polytrail_buftime, float, POLYTRAIL_BUFSIZE)
++ ATTRIBARRAY(PolyTrail, polytrail_bufnoise, vector, POLYTRAIL_BUFSIZE);
+ /** Time of input */
- ATTRIB(PolyTrail, polytrail_bufidx, float, -1)
++ ATTRIBARRAY(PolyTrail, polytrail_buftime, float, POLYTRAIL_BUFSIZE);
+ /** Current read index */
- ATTRIB(PolyTrail, polytrail_cnt, float, 0)
++ ATTRIB(PolyTrail, polytrail_bufidx, float, -1);
+ /** Counts positions stored */
- void Trail_draw();
- ATTRIB(PolyTrail, draw, void(), Trail_draw)
- void Trail_draw() {
- PolyTrail this = self;
++ ATTRIB(PolyTrail, polytrail_cnt, float, 0);
+ #define POLYTRAIL_SEEK(_p, _rel) ((POLYTRAIL_BUFSIZE + (_p).polytrail_bufidx + (_rel)) % POLYTRAIL_BUFSIZE)
+
- remove(this);
++ void Trail_draw(entity this);
++ ATTRIB(PolyTrail, draw, void(entity this), Trail_draw);
++ void Trail_draw(entity this) {
+ if (wasfreed(this.polytrail_follow)) this.polytrail_follow = NULL;
+ if (!this.polytrail_follow) {
+ float when = this.polytrail_buftime[this.polytrail_bufidx];
+ if (time - when > this.polytrail_lifetime) {
- PolyTrail t = NEW(PolyTrail, self);
++ delete(this);
+ return;
+ }
+ } else {
+ setorigin(this, this.polytrail_follow.origin);
+ if (this.polytrail_cnt < 0 || vlen(this.origin - this.polytrail_bufpos[this.polytrail_bufidx]) >= autocvar_cl_polytrail_segmentsize) {
+ int i = POLYTRAIL_SEEK(this, 1);
+ this.polytrail_bufpos[i] = this.origin;
+ float f = autocvar_cl_polytrail_noise;
+ this.polytrail_bufnoise[i] = randompos(f * '-1 -1 -1', f * '1 1 1');
+ this.polytrail_buftime[i] = time;
+ this.polytrail_bufidx = i;
+ this.polytrail_cnt = bound(this.polytrail_cnt, i + 1, POLYTRAIL_BUFSIZE);
+ }
+ }
+
+ int count = this.polytrail_cnt;
+ for (int i = 0; i < count; ++i) {
+ int idx = POLYTRAIL_SEEK(this, -i);
+ float when = this.polytrail_buftime[idx];
+ if (time - when >= this.polytrail_lifetime) {
+ count = i + 1;
+ break;
+ }
+ }
+
+ vector from = this.origin;
+ for (int i = 0, n = count; i < n; ++i) {
+ int idx = POLYTRAIL_SEEK(this, -i);
+ float when = this.polytrail_buftime[idx];
+ vector to = this.polytrail_bufpos[idx];
+ // head: 0, tail: 1
+ float rtime = (time - when) / this.polytrail_lifetime;
+ noref float rdist = i / n;
+ to += lerpvratio('0 0 0', this.polytrail_bufnoise[idx], rtime);
+ vector rgb = lerpv3ratio(this.polytrail_rgb[0], this.polytrail_rgb[1], this.polytrail_rgb[2], rtime);
+ float a = lerp3ratio(this.polytrail_alpha[0], this.polytrail_thickness[1], this.polytrail_alpha[2], rtime);
+ int thickness = lerp3ratio(this.polytrail_thickness[0], this.polytrail_thickness[1], this.polytrail_thickness[2], rtime);
+ vector thickdir = normalize(cross(normalize(to - from), view_origin - from)) * (thickness / 2);
+ vector A = from + thickdir;
+ vector B = from - thickdir;
+ vector C = to + thickdir;
+ vector D = to - thickdir;
+ R_BeginPolygon(this.polytrail_tex, DRAWFLAG_SCREEN);
+ R_PolygonVertex(B, '0 0 0', rgb, a);
+ R_PolygonVertex(A, '0 1 0', rgb, a);
+ R_PolygonVertex(C, '1 1 0', rgb, a);
+ R_PolygonVertex(D, '1 0 0', rgb, a);
+ R_EndPolygon();
+ from = to;
+ }
+ }
+ CONSTRUCTOR(PolyTrail, entity _follow) {
+ CONSTRUCT(PolyTrail);
+ this.polytrail_follow = _follow;
+ }
+ENDCLASS(PolyTrail)
+
+REGISTER_MUTATOR(polytrails, true);
+
+MUTATOR_HOOKFUNCTION(polytrails, EditProjectile) {
+ return = false;
+ if (!autocvar_cl_polytrails) return;
++ entity proj = M_ARGV(0, entity);
++ PolyTrail t = NEW(PolyTrail, proj);
+ t.polytrail_tex = "gfx/trails/plain.tga";
+ t.polytrail_rgb[0] = '1 0 0';
+ t.polytrail_rgb[1] = '0 1 0';
+ t.polytrail_rgb[2] = '0 0 1';
+ t.polytrail_alpha[0] = 1;
+ t.polytrail_alpha[1] = 0.5;
+ t.polytrail_alpha[2] = 0;
+ t.polytrail_thickness[0] = 10;
+ t.polytrail_thickness[1] = 5;
+ t.polytrail_thickness[2] = 0;
++
++ IL_PUSH(g_drawables, t);
+}
--- /dev/null
+ #pragma once
+
+ void mean_accumulate(entity e, .float a, .float c, float mean, float value, float weight)
+ {
+ if (weight == 0) return;
+ if (mean == 0) e.(a) *= pow(value, weight);
+ else e.(a) += pow(value, mean) * weight;
+ e.(c) += weight;
+ }
+
+ float mean_evaluate(entity e, .float a, .float c, float mean)
+ {
+ if (e.(c) == 0) return 0;
+ if (mean == 0) return pow(e.(a), 1.0 / e.(c));
+ else return pow(e.(a) / e.(c), 1.0 / mean);
+ }
+
+ #define MEAN_ACCUMULATE(s, prefix, v, w) mean_accumulate(s, prefix##_accumulator, prefix##_count, prefix##_mean, v, w)
+ #define MEAN_EVALUATE(s, prefix) mean_evaluate(s, prefix##_accumulator, prefix##_count, prefix##_mean)
+ #define MEAN_DECLARE(prefix, m) float prefix##_mean = m; .float prefix##_count, prefix##_accumulator
+
+ /** Returns a random number between -1.0 and 1.0 */
+ #define crandom() (2 * (random() - 0.5))
+
+
+ /*
+ ==================
+ Angc used for animations
+ ==================
+ */
+
+
+ float angc(float a1, float a2)
+ {
+ while (a1 > 180)
+ a1 -= 360;
+ while (a1 < -179)
+ a1 += 360;
+ while (a2 > 180)
+ a2 -= 360;
+ while (a2 < -179)
+ a2 += 360;
+ float a = a1 - a2;
+ while (a > 180)
+ a -= 360;
+ while (a < -179)
+ a += 360;
+ return a;
+ }
+
+ float fsnap(float val, float fsize)
+ {
+ return rint(val / fsize) * fsize;
+ }
+
+ vector vsnap(vector point, float fsize)
+ {
+ vector vret;
+
+ vret.x = rint(point.x / fsize) * fsize;
+ vret.y = rint(point.y / fsize) * fsize;
+ vret.z = ceil(point.z / fsize) * fsize;
+
+ return vret;
+ }
+
++float lerpratio(float f0, float f1, float ratio) { return f0 * (1 - ratio) + f1 * ratio; }
++
++float lerp(float t0, float f0, float t1, float f1, float t) { return lerpratio(f0, f1, (t - t0) / (t1 - t0)); }
++
++float lerp3ratio(float f0, float f1, float f2, float ratio)
++{
++ int mid = 0.5;
++ return ratio < mid ? lerpratio(f0, f1, ratio / mid) : ratio > mid ? lerpratio(f1, f2, (ratio - mid) / mid) : f1;
++}
++
++vector lerpvratio(vector f0, vector f1, float ratio) { return f0 * (1 - ratio) + f1 * ratio; }
++
++vector lerpv3ratio(vector f0, vector f1, vector f2, float ratio)
++{
++ int mid = 0.5;
++ return ratio < mid ? lerpvratio(f0, f1, ratio / mid) : ratio > mid ? lerpvratio(f1, f2, (ratio - mid) / mid) : f1;
++}
++
+ vector lerpv(float t0, vector v0, float t1, vector v1, float t)
+ {
+ return v0 + (v1 - v0) * ((t - t0) / (t1 - t0));
+ }
+
+ vector bezier_quadratic_getpoint(vector a, vector b, vector c, float t)
+ {
+ return (c - 2 * b + a) * (t * t)
+ + (b - a) * (2 * t)
+ + a;
+ }
+
+ vector bezier_quadratic_getderivative(vector a, vector b, vector c, float t)
+ {
+ return (c - 2 * b + a) * (2 * t)
+ + (b - a) * 2;
+ }
+
+ float cubic_speedfunc(float startspeedfactor, float endspeedfactor, float spd)
+ {
+ return (((startspeedfactor + endspeedfactor - 2
+ ) * spd - 2 * startspeedfactor - endspeedfactor + 3
+ ) * spd + startspeedfactor
+ ) * spd;
+ }
+
+ bool cubic_speedfunc_is_sane(float startspeedfactor, float endspeedfactor)
+ {
+ if (startspeedfactor < 0 || endspeedfactor < 0) return false;
+
+ /*
+ // if this is the case, the possible zeros of the first derivative are outside
+ // 0..1
+ We can calculate this condition as condition
+ if(se <= 3)
+ return true;
+ */
+
+ // better, see below:
+ if (startspeedfactor <= 3 && endspeedfactor <= 3) return true;
+
+ // if this is the case, the first derivative has no zeros at all
+ float se = startspeedfactor + endspeedfactor;
+ float s_e = startspeedfactor - endspeedfactor;
+ if (3 * (se - 4) * (se - 4) + s_e * s_e <= 12) // an ellipse
+ return true;
+
+ // Now let s <= 3, s <= 3, s+e >= 3 (triangle) then we get se <= 6 (top right corner).
+ // we also get s_e <= 6 - se
+ // 3 * (se - 4)^2 + (6 - se)^2
+ // is quadratic, has value 12 at 3 and 6, and value < 12 in between.
+ // Therefore, above "better" check works!
+
+ return false;
+
+ // known good cases:
+ // (0, [0..3])
+ // (0.5, [0..3.8])
+ // (1, [0..4])
+ // (1.5, [0..3.9])
+ // (2, [0..3.7])
+ // (2.5, [0..3.4])
+ // (3, [0..3])
+ // (3.5, [0.2..2.3])
+ // (4, 1)
+
+ /*
+ On another note:
+ inflection point is always at (2s + e - 3) / (3s + 3e - 6).
+
+ s + e - 2 == 0: no inflection
+
+ s + e > 2:
+ 0 < inflection < 1 if:
+ 0 < 2s + e - 3 < 3s + 3e - 6
+ 2s + e > 3 and 2e + s > 3
+
+ s + e < 2:
+ 0 < inflection < 1 if:
+ 0 > 2s + e - 3 > 3s + 3e - 6
+ 2s + e < 3 and 2e + s < 3
+
+ Therefore: there is an inflection point iff:
+ e outside (3 - s)/2 .. 3 - s*2
+
+ in other words, if (s,e) in triangle (1,1)(0,3)(0,1.5) or in triangle (1,1)(3,0)(1.5,0)
+ */
+ }
+
+ /** continuous function mapping all reals into -1..1 */
+ float float2range11(float f)
+ {
+ return f / (fabs(f) + 1);
+ }
+
+ /** continuous function mapping all reals into 0..1 */
+ float float2range01(float f)
+ {
+ return 0.5 + 0.5 * float2range11(f);
+ }
+
+ float median(float a, float b, float c)
+ {
+ return (a < c) ? bound(a, b, c) : bound(c, b, a);
+ }
+
+ float almost_equals(float a, float b)
+ {
+ float eps = (max(a, -a) + max(b, -b)) * 0.001;
+ return a - b < eps && b - a < eps;
+ }
+
+ float almost_in_bounds(float a, float b, float c)
+ {
+ float eps = (max(a, -a) + max(c, -c)) * 0.001;
+ if (a > c) eps = -eps;
+ return b == median(a - eps, b, c + eps);
+ }
+
+ float ExponentialFalloff(float mindist, float maxdist, float halflifedist, float d)
+ {
+ if (halflifedist > 0) return pow(0.5, (bound(mindist, d, maxdist) - mindist) / halflifedist);
+ else if (halflifedist < 0) return pow(0.5, (bound(mindist, d, maxdist) - maxdist) / halflifedist);
+ else return 1;
+ }
+
+ float power2of(float e)
+ {
+ return pow(2, e);
+ }
+
+ float log2of(float e)
+ {
+ // NOTE: generated code
+ if (e > 2048)
+ if (e > 131072)
+ if (e > 1048576)
+ if (e > 4194304) return 23;
+ else
+ if (e > 2097152) return 22;
+ else return 21;
+ else
+ if (e > 524288) return 20;
+ else
+ if (e > 262144) return 19;
+ else return 18;
+ else
+ if (e > 16384)
+ if (e > 65536) return 17;
+ else
+ if (e > 32768) return 16;
+ else return 15;
+ else
+ if (e > 8192) return 14;
+ else
+ if (e > 4096) return 13;
+ else return 12;
+ else
+ if (e > 32)
+ if (e > 256)
+ if (e > 1024) return 11;
+ else
+ if (e > 512) return 10;
+ else return 9;
+ else
+ if (e > 128) return 8;
+ else
+ if (e > 64) return 7;
+ else return 6;
+ else
+ if (e > 4)
+ if (e > 16) return 5;
+ else
+ if (e > 8) return 4;
+ else return 3;
+ else
+ if (e > 2) return 2;
+ else
+ if (e > 1) return 1;
+ else return 0;
+ }
+
+ /** ax^2 + bx + c = 0 */
+ vector solve_quadratic(float a, float b, float c)
+ {
+ vector v;
+ float D;
+ v = '0 0 0';
+ if (a == 0)
+ {
+ if (b != 0)
+ {
+ v.x = v.y = -c / b;
+ v.z = 1;
+ }
+ else
+ {
+ if (c == 0)
+ {
+ // actually, every number solves the equation!
+ v.z = 1;
+ }
+ }
+ }
+ else
+ {
+ D = b * b - 4 * a * c;
+ if (D >= 0)
+ {
+ D = sqrt(D);
+ if (a > 0) // put the smaller solution first
+ {
+ v.x = ((-b) - D) / (2 * a);
+ v.y = ((-b) + D) / (2 * a);
+ }
+ else
+ {
+ v.x = (-b + D) / (2 * a);
+ v.y = (-b - D) / (2 * a);
+ }
+ v.z = 1;
+ }
+ else
+ {
+ // complex solutions!
+ D = sqrt(-D);
+ v.x = -b / (2 * a);
+ if (a > 0) v.y = D / (2 * a);
+ else v.y = -D / (2 * a);
+ v.z = 0;
+ }
+ }
+ return v;
+ }