]> git.rm.cloudns.org Git - xonotic/xonotic-data.pk3dir.git/commitdiff
Merge branch 'master' into TimePath/polytrails
authorMario <mario@smbclan.net>
Sat, 10 Dec 2016 11:53:24 +0000 (21:53 +1000)
committerMario <mario@smbclan.net>
Sat, 10 Dec 2016 11:53:24 +0000 (21:53 +1000)
# Conflicts:
# qcsrc/client/progs.src
# qcsrc/common/physics.qc
# qcsrc/lib/Math.qh

1  2 
qcsrc/client/mutators/_mod.inc
qcsrc/client/mutators/mutator/_mod.inc
qcsrc/client/mutators/mutator/_mod.qh
qcsrc/client/mutators/mutator/polytrails.qc
qcsrc/lib/math.qh

index 0000000000000000000000000000000000000000,3dfd4f78974b38371a435762abe7eaa35f611c85..504d8718d17fe372acad4e9eb84d764d15a46f14
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,2 +1,2 @@@
 -#include <client/mutators/events.qc>
+ // generated file; do not modify
++#include <client/mutators/mutator/polytrails.qc>
index 0000000000000000000000000000000000000000,0000000000000000000000000000000000000000..3dfd4f78974b38371a435762abe7eaa35f611c85
new file mode 100644 (file)
--- /dev/null
--- /dev/null
@@@ -1,0 -1,0 +1,2 @@@
++// generated file; do not modify
++#include <client/mutators/events.qc>
index 0000000000000000000000000000000000000000,0000000000000000000000000000000000000000..98fb4815c1ce28cc699a429537ea75c2643b4487
new file mode 100644 (file)
--- /dev/null
--- /dev/null
@@@ -1,0 -1,0 +1,1 @@@
++// generated file; do not modify
index 58092688bf4d755845378891f0f63b20be76fe88,0000000000000000000000000000000000000000..3915201e1bbb80a9493a191e72f4c2e3526d8c0e
mode 100644,000000..100644
--- /dev/null
@@@ -1,115 -1,0 +1,117 @@@
-     ATTRIB(PolyTrail, polytrail_follow, entity, NULL)
-     ATTRIB(PolyTrail, polytrail_tex, string, string_null)
 +bool autocvar_cl_polytrails = false;
 +float autocvar_cl_polytrail_segmentsize = 10;
 +float autocvar_cl_polytrail_lifetime = .2;
 +float autocvar_cl_polytrail_noise = 10;
 +
 +CLASS(PolyTrail, Object)
-     ATTRIB(PolyTrail, polytrail_lifetime, float, autocvar_cl_polytrail_lifetime)
-     ATTRIBARRAY(PolyTrail, polytrail_rgb, vector, 3)
-     ATTRIBARRAY(PolyTrail, polytrail_alpha, float, 3)
-     ATTRIBARRAY(PolyTrail, polytrail_thickness, float, 3)
++    ATTRIB(PolyTrail, polytrail_follow, entity, NULL);
++    ATTRIB(PolyTrail, polytrail_tex, string, string_null);
 +    /** Lifetime per segment */
-     ATTRIBARRAY(PolyTrail, polytrail_bufpos, vector, POLYTRAIL_BUFSIZE)
++    ATTRIB(PolyTrail, polytrail_lifetime, float, autocvar_cl_polytrail_lifetime);
++    ATTRIBARRAY(PolyTrail, polytrail_rgb, vector, 3);
++    ATTRIBARRAY(PolyTrail, polytrail_alpha, float, 3);
++    ATTRIBARRAY(PolyTrail, polytrail_thickness, float, 3);
 +
 +    /**
 +     * Increase as necessary if the buffer is overflowing
 +     * symptom: tail of trail is wrong
 +     * cause: projectiles are too fast for the segment size
 +     */
 +    const int POLYTRAIL_BUFSIZE = 1 << 7;
 +    /** One or more positional points */
-     ATTRIBARRAY(PolyTrail, polytrail_bufnoise, vector, POLYTRAIL_BUFSIZE)
++    ATTRIBARRAY(PolyTrail, polytrail_bufpos, vector, POLYTRAIL_BUFSIZE);
 +    /** Noise for ending position */
-     ATTRIBARRAY(PolyTrail, polytrail_buftime, float, POLYTRAIL_BUFSIZE)
++    ATTRIBARRAY(PolyTrail, polytrail_bufnoise, vector, POLYTRAIL_BUFSIZE);
 +    /** Time of input */
-     ATTRIB(PolyTrail, polytrail_bufidx, float, -1)
++    ATTRIBARRAY(PolyTrail, polytrail_buftime, float, POLYTRAIL_BUFSIZE);
 +    /** Current read index */
-     ATTRIB(PolyTrail, polytrail_cnt, float, 0)
++    ATTRIB(PolyTrail, polytrail_bufidx, float, -1);
 +    /** Counts positions stored */
-     void Trail_draw();
-     ATTRIB(PolyTrail, draw, void(), Trail_draw)
-     void Trail_draw() {
-         PolyTrail this = self;
++    ATTRIB(PolyTrail, polytrail_cnt, float, 0);
 +    #define POLYTRAIL_SEEK(_p, _rel) ((POLYTRAIL_BUFSIZE + (_p).polytrail_bufidx + (_rel)) % POLYTRAIL_BUFSIZE)
 +
-                 remove(this);
++    void Trail_draw(entity this);
++    ATTRIB(PolyTrail, draw, void(entity this), Trail_draw);
++    void Trail_draw(entity this) {
 +        if (wasfreed(this.polytrail_follow)) this.polytrail_follow = NULL;
 +        if (!this.polytrail_follow) {
 +            float when = this.polytrail_buftime[this.polytrail_bufidx];
 +            if (time - when > this.polytrail_lifetime) {
-     PolyTrail t = NEW(PolyTrail, self);
++                delete(this);
 +                return;
 +            }
 +        } else {
 +            setorigin(this, this.polytrail_follow.origin);
 +            if (this.polytrail_cnt < 0 || vlen(this.origin - this.polytrail_bufpos[this.polytrail_bufidx]) >= autocvar_cl_polytrail_segmentsize) {
 +                int i = POLYTRAIL_SEEK(this, 1);
 +                this.polytrail_bufpos[i] = this.origin;
 +                float f = autocvar_cl_polytrail_noise;
 +                this.polytrail_bufnoise[i] = randompos(f * '-1 -1 -1', f * '1 1 1');
 +                this.polytrail_buftime[i] = time;
 +                this.polytrail_bufidx = i;
 +                this.polytrail_cnt = bound(this.polytrail_cnt, i + 1, POLYTRAIL_BUFSIZE);
 +            }
 +        }
 +
 +        int count = this.polytrail_cnt;
 +        for (int i = 0; i < count; ++i) {
 +            int idx = POLYTRAIL_SEEK(this, -i);
 +            float when = this.polytrail_buftime[idx];
 +            if (time - when >= this.polytrail_lifetime) {
 +                count = i + 1;
 +                break;
 +            }
 +        }
 +
 +        vector from = this.origin;
 +        for (int i = 0, n = count; i < n; ++i) {
 +            int idx = POLYTRAIL_SEEK(this, -i);
 +            float when = this.polytrail_buftime[idx];
 +            vector to = this.polytrail_bufpos[idx];
 +            // head: 0, tail: 1
 +            float rtime = (time - when) / this.polytrail_lifetime;
 +            noref float rdist = i / n;
 +            to += lerpvratio('0 0 0', this.polytrail_bufnoise[idx], rtime);
 +            vector rgb = lerpv3ratio(this.polytrail_rgb[0], this.polytrail_rgb[1], this.polytrail_rgb[2], rtime);
 +            float a = lerp3ratio(this.polytrail_alpha[0], this.polytrail_thickness[1], this.polytrail_alpha[2], rtime);
 +            int thickness = lerp3ratio(this.polytrail_thickness[0], this.polytrail_thickness[1], this.polytrail_thickness[2], rtime);
 +            vector thickdir = normalize(cross(normalize(to - from), view_origin - from)) * (thickness / 2);
 +            vector A = from + thickdir;
 +            vector B = from - thickdir;
 +            vector C = to + thickdir;
 +            vector D = to - thickdir;
 +            R_BeginPolygon(this.polytrail_tex, DRAWFLAG_SCREEN);
 +            R_PolygonVertex(B, '0 0 0', rgb, a);
 +            R_PolygonVertex(A, '0 1 0', rgb, a);
 +            R_PolygonVertex(C, '1 1 0', rgb, a);
 +            R_PolygonVertex(D, '1 0 0', rgb, a);
 +            R_EndPolygon();
 +            from = to;
 +        }
 +    }
 +    CONSTRUCTOR(PolyTrail, entity _follow) {
 +        CONSTRUCT(PolyTrail);
 +        this.polytrail_follow = _follow;
 +    }
 +ENDCLASS(PolyTrail)
 +
 +REGISTER_MUTATOR(polytrails, true);
 +
 +MUTATOR_HOOKFUNCTION(polytrails, EditProjectile) {
 +    return = false;
 +    if (!autocvar_cl_polytrails) return;
++    entity proj = M_ARGV(0, entity);
++    PolyTrail t = NEW(PolyTrail, proj);
 +    t.polytrail_tex = "gfx/trails/plain.tga";
 +    t.polytrail_rgb[0] = '1 0 0';
 +    t.polytrail_rgb[1] = '0 1 0';
 +    t.polytrail_rgb[2] = '0 0 1';
 +    t.polytrail_alpha[0] = 1;
 +    t.polytrail_alpha[1] = 0.5;
 +    t.polytrail_alpha[2] = 0;
 +    t.polytrail_thickness[0] = 10;
 +    t.polytrail_thickness[1] = 5;
 +    t.polytrail_thickness[2] = 0;
++
++    IL_PUSH(g_drawables, t);
 +}
index 0000000000000000000000000000000000000000,92d45bf142573663919fcfe5b6f93f09dc2a8f16..5ed328227aa9293f34f07ced18eccb84ac05eb5a
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,300 +1,318 @@@
+ #pragma once
+ void mean_accumulate(entity e, .float a, .float c, float mean, float value, float weight)
+ {
+       if (weight == 0) return;
+       if (mean == 0) e.(a) *= pow(value, weight);
+       else e.(a) += pow(value, mean) * weight;
+       e.(c) += weight;
+ }
+ float mean_evaluate(entity e, .float a, .float c, float mean)
+ {
+       if (e.(c) == 0) return 0;
+       if (mean == 0) return pow(e.(a), 1.0 / e.(c));
+       else return pow(e.(a) / e.(c), 1.0 / mean);
+ }
+ #define MEAN_ACCUMULATE(s, prefix, v, w) mean_accumulate(s, prefix##_accumulator, prefix##_count, prefix##_mean, v, w)
+ #define MEAN_EVALUATE(s, prefix) mean_evaluate(s, prefix##_accumulator, prefix##_count, prefix##_mean)
+ #define MEAN_DECLARE(prefix, m) float prefix##_mean = m; .float prefix##_count, prefix##_accumulator
+ /** Returns a random number between -1.0 and 1.0 */
+ #define crandom() (2 * (random() - 0.5))
+ /*
+ ==================
+ Angc used for animations
+ ==================
+ */
+ float angc(float a1, float a2)
+ {
+       while (a1 > 180)
+               a1 -= 360;
+       while (a1 < -179)
+               a1 += 360;
+       while (a2 > 180)
+               a2 -= 360;
+       while (a2 < -179)
+               a2 += 360;
+       float a = a1 - a2;
+       while (a > 180)
+               a -= 360;
+       while (a < -179)
+               a += 360;
+       return a;
+ }
+ float fsnap(float val, float fsize)
+ {
+       return rint(val / fsize) * fsize;
+ }
+ vector vsnap(vector point, float fsize)
+ {
+       vector vret;
+       vret.x = rint(point.x / fsize) * fsize;
+       vret.y = rint(point.y / fsize) * fsize;
+       vret.z = ceil(point.z / fsize) * fsize;
+       return vret;
+ }
++float lerpratio(float f0, float f1, float ratio) { return f0 * (1 - ratio) + f1 * ratio; }
++
++float lerp(float t0, float f0, float t1, float f1, float t) { return lerpratio(f0, f1, (t - t0) / (t1 - t0)); }
++
++float lerp3ratio(float f0, float f1, float f2, float ratio)
++{
++      int mid = 0.5;
++      return ratio < mid ? lerpratio(f0, f1, ratio / mid) : ratio > mid ? lerpratio(f1, f2, (ratio - mid) / mid) : f1;
++}
++
++vector lerpvratio(vector f0, vector f1, float ratio) { return f0 * (1 - ratio) + f1 * ratio; }
++
++vector lerpv3ratio(vector f0, vector f1, vector f2, float ratio)
++{
++      int mid = 0.5;
++      return ratio < mid ? lerpvratio(f0, f1, ratio / mid) : ratio > mid ? lerpvratio(f1, f2, (ratio - mid) / mid) : f1;
++}
++
+ vector lerpv(float t0, vector v0, float t1, vector v1, float t)
+ {
+       return v0 + (v1 - v0) * ((t - t0) / (t1 - t0));
+ }
+ vector bezier_quadratic_getpoint(vector a, vector b, vector c, float t)
+ {
+       return (c - 2 * b + a) * (t * t)
+              + (b - a) * (2 * t)
+              + a;
+ }
+ vector bezier_quadratic_getderivative(vector a, vector b, vector c, float t)
+ {
+       return (c - 2 * b + a) * (2 * t)
+              + (b - a) * 2;
+ }
+ float cubic_speedfunc(float startspeedfactor, float endspeedfactor, float spd)
+ {
+       return (((startspeedfactor + endspeedfactor - 2
+                ) * spd - 2 * startspeedfactor - endspeedfactor + 3
+               ) * spd + startspeedfactor
+              ) * spd;
+ }
+ bool cubic_speedfunc_is_sane(float startspeedfactor, float endspeedfactor)
+ {
+       if (startspeedfactor < 0 || endspeedfactor < 0) return false;
+       /*
+       // if this is the case, the possible zeros of the first derivative are outside
+       // 0..1
+       We can calculate this condition as condition
+       if(se <= 3)
+           return true;
+       */
+       // better, see below:
+       if (startspeedfactor <= 3 && endspeedfactor <= 3) return true;
+       // if this is the case, the first derivative has no zeros at all
+       float se = startspeedfactor + endspeedfactor;
+       float s_e = startspeedfactor - endspeedfactor;
+       if (3 * (se - 4) * (se - 4) + s_e * s_e <= 12)  // an ellipse
+               return true;
+       // Now let s <= 3, s <= 3, s+e >= 3 (triangle) then we get se <= 6 (top right corner).
+       // we also get s_e <= 6 - se
+       // 3 * (se - 4)^2 + (6 - se)^2
+       // is quadratic, has value 12 at 3 and 6, and value < 12 in between.
+       // Therefore, above "better" check works!
+       return false;
+       // known good cases:
+       // (0, [0..3])
+       // (0.5, [0..3.8])
+       // (1, [0..4])
+       // (1.5, [0..3.9])
+       // (2, [0..3.7])
+       // (2.5, [0..3.4])
+       // (3, [0..3])
+       // (3.5, [0.2..2.3])
+       // (4, 1)
+       /*
+          On another note:
+          inflection point is always at (2s + e - 3) / (3s + 3e - 6).
+          s + e - 2 == 0: no inflection
+          s + e > 2:
+          0 < inflection < 1 if:
+          0 < 2s + e - 3 < 3s + 3e - 6
+          2s + e > 3 and 2e + s > 3
+          s + e < 2:
+          0 < inflection < 1 if:
+          0 > 2s + e - 3 > 3s + 3e - 6
+          2s + e < 3 and 2e + s < 3
+          Therefore: there is an inflection point iff:
+          e outside (3 - s)/2 .. 3 - s*2
+          in other words, if (s,e) in triangle (1,1)(0,3)(0,1.5) or in triangle (1,1)(3,0)(1.5,0)
+       */
+ }
+ /** continuous function mapping all reals into -1..1 */
+ float float2range11(float f)
+ {
+       return f / (fabs(f) + 1);
+ }
+ /** continuous function mapping all reals into 0..1 */
+ float float2range01(float f)
+ {
+       return 0.5 + 0.5 * float2range11(f);
+ }
+ float median(float a, float b, float c)
+ {
+       return (a < c) ? bound(a, b, c) : bound(c, b, a);
+ }
+ float almost_equals(float a, float b)
+ {
+       float eps = (max(a, -a) + max(b, -b)) * 0.001;
+       return a - b < eps && b - a < eps;
+ }
+ float almost_in_bounds(float a, float b, float c)
+ {
+       float eps = (max(a, -a) + max(c, -c)) * 0.001;
+       if (a > c) eps = -eps;
+       return b == median(a - eps, b, c + eps);
+ }
+ float ExponentialFalloff(float mindist, float maxdist, float halflifedist, float d)
+ {
+       if (halflifedist > 0) return pow(0.5, (bound(mindist, d, maxdist) - mindist) / halflifedist);
+       else if (halflifedist < 0) return pow(0.5, (bound(mindist, d, maxdist) - maxdist) / halflifedist);
+       else return 1;
+ }
+ float power2of(float e)
+ {
+       return pow(2, e);
+ }
+ float log2of(float e)
+ {
+       // NOTE: generated code
+       if (e > 2048)
+               if (e > 131072)
+                       if (e > 1048576)
+                               if (e > 4194304) return 23;
+                               else
+                                       if (e > 2097152) return 22;
+                                       else return 21;
+                       else
+                               if (e > 524288) return 20;
+                               else
+                                       if (e > 262144) return 19;
+                                       else return 18;
+               else
+                       if (e > 16384)
+                               if (e > 65536) return 17;
+                               else
+                                       if (e > 32768) return 16;
+                                       else return 15;
+                       else
+                               if (e > 8192) return 14;
+                               else
+                                       if (e > 4096) return 13;
+                                       else return 12;
+       else
+               if (e > 32)
+                       if (e > 256)
+                               if (e > 1024) return 11;
+                               else
+                                       if (e > 512) return 10;
+                                       else return 9;
+                       else
+                               if (e > 128) return 8;
+                               else
+                                       if (e > 64) return 7;
+                                       else return 6;
+               else
+                       if (e > 4)
+                               if (e > 16) return 5;
+                               else
+                                       if (e > 8) return 4;
+                                       else return 3;
+                       else
+                               if (e > 2) return 2;
+                               else
+                                       if (e > 1) return 1;
+                                       else return 0;
+ }
+ /** ax^2 + bx + c = 0 */
+ vector solve_quadratic(float a, float b, float c)
+ {
+       vector v;
+       float D;
+       v = '0 0 0';
+       if (a == 0)
+       {
+               if (b != 0)
+               {
+                       v.x = v.y = -c / b;
+                       v.z = 1;
+               }
+               else
+               {
+                       if (c == 0)
+                       {
+                               // actually, every number solves the equation!
+                               v.z = 1;
+                       }
+               }
+       }
+       else
+       {
+               D = b * b - 4 * a * c;
+               if (D >= 0)
+               {
+                       D = sqrt(D);
+                       if (a > 0)  // put the smaller solution first
+                       {
+                               v.x = ((-b) - D) / (2 * a);
+                               v.y = ((-b) + D) / (2 * a);
+                       }
+                       else
+                       {
+                               v.x = (-b + D) / (2 * a);
+                               v.y = (-b - D) / (2 * a);
+                       }
+                       v.z = 1;
+               }
+               else
+               {
+                       // complex solutions!
+                       D = sqrt(-D);
+                       v.x = -b / (2 * a);
+                       if (a > 0) v.y =  D / (2 * a);
+                       else v.y = -D / (2 * a);
+                       v.z = 0;
+               }
+       }
+       return v;
+ }