"%5i leafs%5i portals%6i/%6i particles%6i/%6i decals %3i%% quality\n"
"%7i lightmap updates (%7i pixels)%8iKB/%8iKB framedata\n"
"%4i lights%4i clears%4i scissored%7i light%7i shadow%7i dynamic\n"
+"%4i/%4i bouncelights%4i updated\n"
"%6i draws%8i vertices%8i triangles bloompixels%8i copied%8i drawn\n"
"updated%5i indexbuffers%8i bytes%5i vertexbuffers%8i bytes\n"
"%s"
, r_refdef.stats.world_leafs, r_refdef.stats.world_portals, r_refdef.stats.particles, cl.num_particles, r_refdef.stats.drawndecals, r_refdef.stats.totaldecals, (int)(100 * r_refdef.view.quality)
, r_refdef.stats.lightmapupdates, r_refdef.stats.lightmapupdatepixels, (r_refdef.stats.framedatacurrent+512) / 1024, (r_refdef.stats.framedatasize+512)/1024
, r_refdef.stats.lights, r_refdef.stats.lights_clears, r_refdef.stats.lights_scissored, r_refdef.stats.lights_lighttriangles, r_refdef.stats.lights_shadowtriangles, r_refdef.stats.lights_dynamicshadowtriangles
+, r_refdef.stats.lights_bouncelightsdrawn, r_refdef.stats.lights_bouncelightscounted, r_refdef.stats.lights_bouncelightsupdated
, r_refdef.stats.draws, r_refdef.stats.draws_vertices, r_refdef.stats.draws_elements / 3, r_refdef.stats.bloom_copypixels, r_refdef.stats.bloom_drawpixels
, r_refdef.stats.indexbufferuploadcount, r_refdef.stats.indexbufferuploadsize, r_refdef.stats.vertexbufferuploadcount, r_refdef.stats.vertexbufferuploadsize
, r_speeds_timestring);
}
beam_t;
+typedef struct rtlight_particle_s
+{
+ float origin[3];
+ float color[3];
+}
+rtlight_particle_t;
+
typedef struct rtlight_s
{
// shadow volumes are done entirely in model space, so there are no matrices for dealing with them... they just use the origin
/// masks of all shadowmap sides that have any potential static receivers or casters
int static_shadowmap_receivers;
int static_shadowmap_casters;
+ /// particle-tracing cache for global illumination
+ int particlecache_numparticles;
+ int particlecache_maxparticles;
+ int particlecache_updateparticle;
+ rtlight_particle_t *particlecache_particles;
}
rtlight_t;
int lights_lighttriangles;
int lights_shadowtriangles;
int lights_dynamicshadowtriangles;
+ int lights_bouncelightscounted;
+ int lights_bouncelightsdrawn;
+ int lights_bouncelightsupdated;
int bloom;
int bloom_copypixels;
int bloom_drawpixels;
+void DPSOFTRAST_VertexShader_DeferredBounceLight(void)
+{
+ DPSOFTRAST_Array_TransformProject(DPSOFTRAST_ARRAY_POSITION, DPSOFTRAST_ARRAY_POSITION, dpsoftrast.uniform4f + 4*DPSOFTRAST_UNIFORM_ModelViewProjectionMatrixM1);
+}
+
+void DPSOFTRAST_PixelShader_DeferredBounceLight(DPSOFTRAST_State_Thread *thread, const DPSOFTRAST_State_Triangle * RESTRICT triangle, const DPSOFTRAST_State_Span * RESTRICT span)
+{
+ // TODO: IMPLEMENT
+ float buffer_z[DPSOFTRAST_DRAW_MAXSPANLENGTH];
+ unsigned char buffer_FragColorbgra8[DPSOFTRAST_DRAW_MAXSPANLENGTH*4];
+ DPSOFTRAST_Draw_Span_Begin(thread, triangle, span, buffer_z);
+ memset(buffer_FragColorbgra8 + span->startx*4, 0, (span->endx - span->startx)*4);
+ DPSOFTRAST_Draw_Span_FinishBGRA8(thread, triangle, span, buffer_FragColorbgra8);
+}
+
+
+
typedef struct DPSOFTRAST_ShaderModeInfo_s
{
int lodarrayindex;
{2, DPSOFTRAST_VertexShader_Water, DPSOFTRAST_PixelShader_Water, {~0}},
{2, DPSOFTRAST_VertexShader_ShowDepth, DPSOFTRAST_PixelShader_ShowDepth, {~0}},
{2, DPSOFTRAST_VertexShader_DeferredGeometry, DPSOFTRAST_PixelShader_DeferredGeometry, {~0}},
- {2, DPSOFTRAST_VertexShader_DeferredLightSource, DPSOFTRAST_PixelShader_DeferredLightSource, {~0}}
+ {2, DPSOFTRAST_VertexShader_DeferredLightSource, DPSOFTRAST_PixelShader_DeferredLightSource, {~0}},
+ {2, DPSOFTRAST_VertexShader_DeferredBounceLight, DPSOFTRAST_PixelShader_DeferredBounceLight, {~0}}
};
void DPSOFTRAST_Draw_ProcessSpans(DPSOFTRAST_State_Thread *thread)
SHADERMODE_SHOWDEPTH, ///< (debugging) renders depth as color
SHADERMODE_DEFERREDGEOMETRY, ///< (deferred) render material properties to screenspace geometry buffers
SHADERMODE_DEFERREDLIGHTSOURCE, ///< (deferred) use directional pixel shading from light source (rtlight) on screenspace geometry buffers
+ SHADERMODE_DEFERREDBOUNCELIGHT, ///< (deferred) simple area light deferred particles using geometry buffers for Global Illumination purposes
SHADERMODE_COUNT
}
shadermode_t;
r_meshbuffer_t *preparevertices_dynamicvertexbuffer;
r_vertexgeneric_t *preparevertices_vertexgeneric;
r_vertexmesh_t *preparevertices_vertexmesh;
+ r_vertexbouncelight_t *preparevertices_vertexbouncelight;
int preparevertices_numvertices;
r_meshbuffer_t *draw_dynamicindexbuffer;
D3DDECL_END()
};
+D3DVERTEXELEMENT9 r_vertexbouncelight_d3d9elements[] =
+{
+ {0, (int)((size_t)&((r_vertexmesh_t *)0)->vertex3f ), D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},
+ {0, (int)((size_t)&((r_vertexmesh_t *)0)->color4ub ), D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 0},
+ {0, (int)((size_t)&((r_vertexmesh_t *)0)->texcoord4f ), D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0},
+ D3DDECL_END()
+};
+
IDirect3DVertexDeclaration9 *r_vertex3f_d3d9decl;
IDirect3DVertexDeclaration9 *r_vertexgeneric_d3d9decl;
IDirect3DVertexDeclaration9 *r_vertexmesh_d3d9decl;
+IDirect3DVertexDeclaration9 *r_vertexbouncelight_d3d9decl;
#endif
static void R_Mesh_InitVertexDeclarations(void)
r_vertex3f_d3d9decl = NULL;
r_vertexgeneric_d3d9decl = NULL;
r_vertexmesh_d3d9decl = NULL;
+ r_vertexbouncelight_d3d9decl = NULL;
switch(vid.renderpath)
{
case RENDERPATH_GL20:
IDirect3DDevice9_CreateVertexDeclaration(vid_d3d9dev, r_vertex3f_d3d9elements, &r_vertex3f_d3d9decl);
IDirect3DDevice9_CreateVertexDeclaration(vid_d3d9dev, r_vertexgeneric_d3d9elements, &r_vertexgeneric_d3d9decl);
IDirect3DDevice9_CreateVertexDeclaration(vid_d3d9dev, r_vertexmesh_d3d9elements, &r_vertexmesh_d3d9decl);
+ IDirect3DDevice9_CreateVertexDeclaration(vid_d3d9dev, r_vertexbouncelight_d3d9elements, &r_vertexbouncelight_d3d9decl);
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
if (r_vertexmesh_d3d9decl)
IDirect3DVertexDeclaration9_Release(r_vertexmesh_d3d9decl);
r_vertexmesh_d3d9decl = NULL;
+ if (r_vertexbouncelight_d3d9decl)
+ IDirect3DVertexDeclaration9_Release(r_vertexbouncelight_d3d9decl);
+ r_vertexbouncelight_d3d9decl = NULL;
#endif
}
break;
}
}
+
+
+
+r_vertexbouncelight_t *R_Mesh_PrepareVertices_BounceLight_Lock(int numvertices)
+{
+ size_t size;
+ size = sizeof(r_vertexbouncelight_t) * numvertices;
+ if (gl_state.preparevertices_tempdatamaxsize < size)
+ {
+ gl_state.preparevertices_tempdatamaxsize = size;
+ gl_state.preparevertices_tempdata = Mem_Realloc(r_main_mempool, gl_state.preparevertices_tempdata, gl_state.preparevertices_tempdatamaxsize);
+ }
+ gl_state.preparevertices_vertexbouncelight = (r_vertexbouncelight_t *)gl_state.preparevertices_tempdata;
+ gl_state.preparevertices_numvertices = numvertices;
+ return gl_state.preparevertices_vertexbouncelight;
+}
+
+qboolean R_Mesh_PrepareVertices_BounceLight_Unlock(void)
+{
+ R_Mesh_PrepareVertices_BounceLight(gl_state.preparevertices_numvertices, gl_state.preparevertices_vertexbouncelight, NULL);
+ gl_state.preparevertices_vertexbouncelight = NULL;
+ gl_state.preparevertices_numvertices = 0;
+ return true;
+}
+
+void R_Mesh_PrepareVertices_BounceLight_Arrays(int numvertices, const float *vertex3f, const float *color4f, const float *texcoord4f)
+{
+ int i;
+ r_vertexbouncelight_t *vertex;
+ switch(vid.renderpath)
+ {
+ case RENDERPATH_GL20:
+ case RENDERPATH_GLES2:
+ if (!vid.useinterleavedarrays)
+ {
+ R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, NULL, 0);
+ R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), color4f, NULL, 0);
+ R_Mesh_TexCoordPointer(0, 4, GL_FLOAT, sizeof(float[4]), texcoord4f, NULL, 0);
+ R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ return;
+ }
+ break;
+ case RENDERPATH_GL13:
+ case RENDERPATH_GL11:
+ if (!vid.useinterleavedarrays)
+ {
+ R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, NULL, 0);
+ R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), color4f, NULL, 0);
+ R_Mesh_TexCoordPointer(0, 4, GL_FLOAT, sizeof(float[4]), texcoord4f, NULL, 0);
+ if (vid.texunits >= 2)
+ R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ if (vid.texunits >= 3)
+ R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ return;
+ }
+ break;
+ case RENDERPATH_D3D9:
+ case RENDERPATH_D3D10:
+ case RENDERPATH_D3D11:
+ break;
+ case RENDERPATH_SOFT:
+ DPSOFTRAST_SetVertexPointer(vertex3f, sizeof(float[3]));
+ DPSOFTRAST_SetColorPointer(color4f, sizeof(float[4]));
+ DPSOFTRAST_SetTexCoordPointer(0, 4, sizeof(float[4]), texcoord4f);
+ DPSOFTRAST_SetTexCoordPointer(1, 2, sizeof(float[2]), NULL);
+ DPSOFTRAST_SetTexCoordPointer(2, 2, sizeof(float[2]), NULL);
+ DPSOFTRAST_SetTexCoordPointer(3, 2, sizeof(float[2]), NULL);
+ DPSOFTRAST_SetTexCoordPointer(4, 2, sizeof(float[2]), NULL);
+ return;
+ }
+
+ // no quick path for this case, convert to vertex structs
+ vertex = R_Mesh_PrepareVertices_BounceLight_Lock(numvertices);
+ for (i = 0;i < numvertices;i++)
+ VectorCopy(vertex3f + 3*i, vertex[i].vertex3f);
+ if (color4f)
+ {
+ for (i = 0;i < numvertices;i++)
+ Vector4Scale(color4f + 4*i, 255.0f, vertex[i].color4ub);
+ }
+ else
+ {
+ float tempcolor4f[4];
+ unsigned char tempcolor4ub[4];
+ Vector4Scale(gl_state.color4f, 255.0f, tempcolor4f);
+ tempcolor4ub[0] = (unsigned char)bound(0.0f, tempcolor4f[0], 255.0f);
+ tempcolor4ub[1] = (unsigned char)bound(0.0f, tempcolor4f[1], 255.0f);
+ tempcolor4ub[2] = (unsigned char)bound(0.0f, tempcolor4f[2], 255.0f);
+ tempcolor4ub[3] = (unsigned char)bound(0.0f, tempcolor4f[3], 255.0f);
+ for (i = 0;i < numvertices;i++)
+ Vector4Copy(tempcolor4ub, vertex[i].color4ub);
+ }
+ if (texcoord4f)
+ for (i = 0;i < numvertices;i++)
+ Vector4Copy(texcoord4f + 4*i, vertex[i].texcoord4f);
+ R_Mesh_PrepareVertices_BounceLight_Unlock();
+ R_Mesh_PrepareVertices_BounceLight(numvertices, vertex, NULL);
+}
+
+void R_Mesh_PrepareVertices_BounceLight(int numvertices, const r_vertexbouncelight_t *vertex, const r_meshbuffer_t *vertexbuffer)
+{
+ // upload temporary vertexbuffer for this rendering
+ if (!gl_state.usevbo_staticvertex)
+ vertexbuffer = NULL;
+ if (!vertexbuffer && gl_state.usevbo_dynamicvertex)
+ {
+ if (gl_state.preparevertices_dynamicvertexbuffer)
+ R_Mesh_UpdateMeshBuffer(gl_state.preparevertices_dynamicvertexbuffer, vertex, numvertices * sizeof(*vertex));
+ else
+ gl_state.preparevertices_dynamicvertexbuffer = R_Mesh_CreateMeshBuffer(vertex, numvertices * sizeof(*vertex), "temporary", false, true, false);
+ vertexbuffer = gl_state.preparevertices_dynamicvertexbuffer;
+ }
+ switch(vid.renderpath)
+ {
+ case RENDERPATH_GL20:
+ case RENDERPATH_GLES2:
+ if (vertexbuffer)
+ {
+ R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex));
+ R_Mesh_ColorPointer( 4, GL_UNSIGNED_BYTE, sizeof(*vertex), vertex->color4ub , vertexbuffer, (int)((unsigned char *)vertex->color4ub - (unsigned char *)vertex));
+ R_Mesh_TexCoordPointer(0, 4, GL_FLOAT , sizeof(*vertex), vertex->texcoord4f , vertexbuffer, (int)((unsigned char *)vertex->texcoord4f - (unsigned char *)vertex));
+ R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ }
+ else
+ {
+ R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0);
+ R_Mesh_ColorPointer( 4, GL_UNSIGNED_BYTE, sizeof(*vertex), vertex->color4ub , NULL, 0);
+ R_Mesh_TexCoordPointer(0, 4, GL_FLOAT , sizeof(*vertex), vertex->texcoord4f , NULL, 0);
+ R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ }
+ break;
+ case RENDERPATH_GL13:
+ if (vertexbuffer)
+ {
+ R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex));
+ R_Mesh_ColorPointer( 4, GL_UNSIGNED_BYTE, sizeof(*vertex), vertex->color4ub , vertexbuffer, (int)((unsigned char *)vertex->color4ub - (unsigned char *)vertex));
+ R_Mesh_TexCoordPointer(0, 4, GL_FLOAT , sizeof(*vertex), vertex->texcoord4f , vertexbuffer, (int)((unsigned char *)vertex->texcoord4f - (unsigned char *)vertex));
+ R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ }
+ else
+ {
+ R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0);
+ R_Mesh_ColorPointer( 4, GL_UNSIGNED_BYTE, sizeof(*vertex), vertex->color4ub , NULL, 0);
+ R_Mesh_TexCoordPointer(0, 4, GL_FLOAT , sizeof(*vertex), vertex->texcoord4f , NULL, 0);
+ R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
+ }
+ break;
+ case RENDERPATH_GL11:
+ if (vertexbuffer)
+ {
+ R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex));
+ R_Mesh_ColorPointer( 4, GL_UNSIGNED_BYTE, sizeof(*vertex), vertex->color4ub , vertexbuffer, (int)((unsigned char *)vertex->color4ub - (unsigned char *)vertex));
+ R_Mesh_TexCoordPointer(0, 4, GL_FLOAT , sizeof(*vertex), vertex->texcoord4f , vertexbuffer, (int)((unsigned char *)vertex->texcoord4f - (unsigned char *)vertex));
+ }
+ else
+ {
+ R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0);
+ R_Mesh_ColorPointer( 4, GL_UNSIGNED_BYTE, sizeof(*vertex), vertex->color4ub , NULL, 0);
+ R_Mesh_TexCoordPointer(0, 4, GL_FLOAT , sizeof(*vertex), vertex->texcoord4f , NULL, 0);
+ }
+ break;
+ case RENDERPATH_D3D9:
+#ifdef SUPPORTD3D
+ IDirect3DDevice9_SetVertexDeclaration(vid_d3d9dev, r_vertexbouncelight_d3d9decl);
+ if (vertexbuffer)
+ IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, (IDirect3DVertexBuffer9*)vertexbuffer->devicebuffer, 0, sizeof(*vertex));
+ else
+ IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, NULL, 0, 0);
+ gl_state.d3dvertexbuffer = (void *)vertexbuffer;
+ gl_state.d3dvertexdata = (void *)vertex;
+ gl_state.d3dvertexsize = sizeof(*vertex);
+#endif
+ break;
+ case RENDERPATH_D3D10:
+ Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
+ break;
+ case RENDERPATH_D3D11:
+ Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
+ break;
+ case RENDERPATH_SOFT:
+ DPSOFTRAST_SetVertexPointer(vertex->vertex3f, sizeof(*vertex));
+ DPSOFTRAST_SetColorPointer4ub(vertex->color4ub, sizeof(*vertex));
+ DPSOFTRAST_SetTexCoordPointer(0, 4, sizeof(*vertex), vertex->texcoord4f);
+ DPSOFTRAST_SetTexCoordPointer(1, 2, sizeof(*vertex), NULL);
+ DPSOFTRAST_SetTexCoordPointer(2, 2, sizeof(*vertex), NULL);
+ DPSOFTRAST_SetTexCoordPointer(3, 2, sizeof(*vertex), NULL);
+ DPSOFTRAST_SetTexCoordPointer(4, 2, sizeof(*vertex), NULL);
+ break;
+ }
+}
void R_Mesh_PrepareVertices_Mesh_Arrays(int numvertices, const float *vertex3f, const float *svector3f, const float *tvector3f, const float *normal3f, const float *color4f, const float *texcoordtexture2f, const float *texcoordlightmap2f);
void R_Mesh_PrepareVertices_Mesh(int numvertices, const r_vertexmesh_t *vertex, const r_meshbuffer_t *buffer);
+r_vertexbouncelight_t *R_Mesh_PrepareVertices_BounceLight_Lock(int numvertices);
+qboolean R_Mesh_PrepareVertices_BounceLight_Unlock(void);
+void R_Mesh_PrepareVertices_BounceLight_Arrays(int numvertices, const float *vertex3f, const float *color4f, const float *texcoord4f);
+void R_Mesh_PrepareVertices_BounceLight(int numvertices, const r_vertexbouncelight_t *vertex, const r_meshbuffer_t *vertexbuffer);
+
// sets up the requested vertex transform matrix
void R_EntityMatrix(const matrix4x4_t *matrix);
// sets the vertex array pointer
"uniform highp vec3 LightPosition;\n"
"varying highp vec4 ModelViewPosition;\n"
"#endif\n"
+"#ifdef MODE_DEFERREDBOUNCELIGHT\n"
+"varying highp vec4 ModelViewPosition;\n"
+"varying highp vec4 LightOriginInvRadius;\n"
+"varying mediump vec4 LightColor;\n"
+"#endif\n"
"\n"
"#ifdef MODE_LIGHTSOURCE\n"
"uniform highp vec3 LightPosition;\n"
"uniform sampler2D Texture_ScreenDiffuse;\n"
"uniform sampler2D Texture_ScreenSpecular;\n"
"#endif\n"
+"#ifdef MODE_DEFERREDBOUNCELIGHT\n"
+"uniform sampler2D Texture_ScreenDepth;\n"
+"#endif\n"
"\n"
"uniform lowp vec3 Color_Pants;\n"
"uniform lowp vec3 Color_Shirt;\n"
"\n"
"\n"
"\n"
+"#ifdef MODE_DEFERREDBOUNCELIGHT\n"
+"#ifdef VERTEX_SHADER\n"
+"uniform highp mat4 ModelViewMatrix;\n"
+"void main(void)\n"
+"{\n"
+" ModelViewPosition = ModelViewMatrix * Attrib_Position;\n"
+" LightOriginInvRadius.xyz = (ModelViewMatrix * vec4(Attrib_TexCoord0.xyz, 1.0)).xyz;\n"
+" LightOriginInvRadius.w = Attrib_TexCoord0.w;\n"
+" LightColor = Attrib_Color;\n"
+" gl_Position = ModelViewProjectionMatrix * Attrib_Position;\n"
+"}\n"
+"#endif // VERTEX_SHADER\n"
+"\n"
+"#ifdef FRAGMENT_SHADER\n"
+"// ScreenToDepth = vec2(Far / (Far - Near), Far * Near / (Near - Far));\n"
+"uniform highp vec2 ScreenToDepth;\n"
+"uniform myhalf2 PixelToScreenTexCoord;\n"
+"void main(void)\n"
+"{\n"
+" // calculate viewspace pixel position\n"
+" vec2 ScreenTexCoord = gl_FragCoord.xy * PixelToScreenTexCoord;\n"
+" vec3 position;\n"
+" position.z = ScreenToDepth.y / (texture2D(Texture_ScreenDepth, ScreenTexCoord).r + ScreenToDepth.x);\n"
+" position.xy = ModelViewPosition.xy * (position.z / ModelViewPosition.z);\n"
+" vec3 CubeVector = (position - LightOriginInvRadius.xyz) * LightOriginInvRadius.w;\n"
+" gl_FragData[0] = vec4(LightColor.rgb * max(0.0, 1.0 - length(CubeVector)), 1.0);\n"
+"}\n"
+"#endif // FRAGMENT_SHADER\n"
+"#else // !MODE_DEFERREDBOUNCELIGHT\n"
+"\n"
+"\n"
+"\n"
+"\n"
"#ifdef VERTEX_SHADER\n"
"uniform highp mat4 TexMatrix;\n"
"#ifdef USEVERTEXTEXTUREBLEND\n"
"}\n"
"#endif // FRAGMENT_SHADER\n"
"\n"
+"#endif // !MODE_DEFERREDBOUNCELIGHT\n"
"#endif // !MODE_DEFERREDLIGHTSOURCE\n"
"#endif // !MODE_DEFERREDGEOMETRY\n"
"#endif // !MODE_WATER\n"
{"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_SHOWDEPTH\n", " showdepth"},
{"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_DEFERREDGEOMETRY\n", " deferredgeometry"},
{"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_DEFERREDLIGHTSOURCE\n", " deferredlightsource"},
+ {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_DEFERREDBOUNCELIGHT\n", " deferredbouncelight"},
};
shadermodeinfo_t hlslshadermodeinfo[SHADERMODE_COUNT] =
{"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_SHOWDEPTH\n", " showdepth"},
{"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_DEFERREDGEOMETRY\n", " deferredgeometry"},
{"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_DEFERREDLIGHTSOURCE\n", " deferredlightsource"},
+ {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_DEFERREDBOUNCELIGHT\n", " deferredbouncelight"},
};
struct r_glsl_permutation_s;
}
}
+void R_SetupShader_DeferredBounceLight(void)
+{
+ // array of particle lights that contribute only ambient color
+ unsigned int permutation = 0;
+ unsigned int mode = 0;
+ mode = SHADERMODE_DEFERREDBOUNCELIGHT;
+ switch(vid.renderpath)
+ {
+ case RENDERPATH_D3D9:
+#ifdef SUPPORTD3D
+ R_SetupShader_SetPermutationHLSL(mode, permutation);
+ hlslPSSetParameter2f(D3DPSREGISTER_ScreenToDepth, r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
+ hlslPSSetParameter2f(D3DPSREGISTER_PixelToScreenTexCoord, 1.0f/vid.width, 1.0/vid.height);
+
+ R_Mesh_TexBind(GL20TU_SCREENDEPTH , r_shadow_prepassgeometrydepthcolortexture );
+#endif
+ break;
+ case RENDERPATH_D3D10:
+ Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
+ break;
+ case RENDERPATH_D3D11:
+ Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
+ break;
+ case RENDERPATH_GL20:
+ case RENDERPATH_GLES2:
+ R_SetupShader_SetPermutationGLSL(mode, permutation);
+ if (r_glsl_permutation->loc_ScreenToDepth >= 0) qglUniform2f( r_glsl_permutation->loc_ScreenToDepth , r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
+ if (r_glsl_permutation->loc_PixelToScreenTexCoord >= 0) qglUniform2f( r_glsl_permutation->loc_PixelToScreenTexCoord , 1.0f/vid.width, 1.0f/vid.height);
+
+ if (r_glsl_permutation->tex_Texture_ScreenDepth >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenDepth , r_shadow_prepassgeometrydepthtexture );
+ break;
+ case RENDERPATH_GL13:
+ case RENDERPATH_GL11:
+ break;
+ case RENDERPATH_SOFT:
+ R_SetupShader_SetPermutationGLSL(mode, permutation);
+ DPSOFTRAST_Uniform2f( DPSOFTRAST_UNIFORM_ScreenToDepth , r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
+ DPSOFTRAST_Uniform2f(DPSOFTRAST_UNIFORM_PixelToScreenTexCoord, 1.0f/vid.width, 1.0f/vid.height);
+
+ R_Mesh_TexBind(GL20TU_SCREENDEPTH , r_shadow_prepassgeometrydepthtexture );
+ break;
+ }
+}
+
#define SKINFRAME_HASH 1024
typedef struct
}
#endif
+#define lhcheeserand() (seed = (seed * 987211u) ^ (seed >> 13u) ^ 914867)
+#define lhcheeserandom(MIN,MAX) ((double)(lhcheeserand() + 0.5) / ((double)4096.0*1024.0*1024.0) * ((MAX)-(MIN)) + (MIN))
+#define VectorCheeseRandom(v) do{(v)[0] = lhcheeserandom(-1, 1);(v)[1] = lhcheeserandom(-1, 1);(v)[2] = lhcheeserandom(-1, 1);}while(DotProduct(v, v) > 1)
+
/*
// LordHavoc: quaternion math, untested, don't know if these are correct,
// need to add conversion to/from matrices
}
r_vertexmesh_t;
+typedef struct r_vertexbouncelight_s
+{
+ // 32 bytes
+ float vertex3f[3];
+ unsigned char color4ub[4];
+ float texcoord4f[4];
+}
+r_vertexbouncelight_t;
+
typedef struct r_meshbuffer_s
{
int bufferobject; // OpenGL
int r_shadow_shadowmaplod; // changes for each light based on distance
GLuint r_shadow_prepassgeometryfbo;
-GLuint r_shadow_prepasslightingfbo;
+GLuint r_shadow_prepasslightingdiffusespecularfbo;
+GLuint r_shadow_prepasslightingdiffusefbo;
int r_shadow_prepass_width;
int r_shadow_prepass_height;
rtexture_t *r_shadow_prepassgeometrydepthtexture;
cvar_t r_shadow_polygonfactor = {0, "r_shadow_polygonfactor", "0", "how much to enlarge shadow volume polygons when rendering (should be 0!)"};
cvar_t r_shadow_polygonoffset = {0, "r_shadow_polygonoffset", "1", "how much to push shadow volumes into the distance when rendering, to reduce chances of zfighting artifacts (should not be less than 0)"};
cvar_t r_shadow_texture3d = {0, "r_shadow_texture3d", "1", "use 3D voxel textures for spherical attenuation rather than cylindrical (does not affect OpenGL 2.0 render path)"};
+cvar_t r_shadow_particletrace = {CVAR_SAVE, "r_shadow_particletrace", "0", "perform particle tracing for indirect lighting (Global Illumination / radiosity), requires r_shadow_deferred 1, requires r_shadow_realtime_world 1, EXTREMELY SLOW"};
+cvar_t r_shadow_particletrace_intensity = {CVAR_SAVE, "r_shadow_particletrace_intensity", "128", "overall brightness of particle traced radiosity"};
+cvar_t r_shadow_particletrace_size = {CVAR_SAVE, "r_shadow_particletrace_size", "32", "particles produce bounce lights of this radius"};
+cvar_t r_shadow_particletrace_radiusscale = {CVAR_SAVE, "r_shadow_particletrace_radiusscale", "1", "particles stop at this fraction of light radius"};
+cvar_t r_shadow_particletrace_maxbounce = {CVAR_SAVE, "r_shadow_particletrace_maxbounce", "1", "maximum number of bounces for a particle (minimum is 1)"};
+cvar_t r_shadow_particletrace_bounceintensity = {CVAR_SAVE, "r_shadow_particletrace_bounceintensity", "1", "amount of energy carried over after each bounce"};
+cvar_t r_shadow_particletrace_particlespacing = {CVAR_SAVE, "r_shadow_particletrace_particlespacing", "0.25", "overlap setting in terms of particle size, this affects how many particles are used"};
+cvar_t r_shadow_particletrace_updatepercentage = {CVAR_SAVE, "r_shadow_particletrace_updatepercentage", "0.01", "update this fraction of the particles of a light each frame (0 = best performance)"};
cvar_t r_coronas = {CVAR_SAVE, "r_coronas", "1", "brightness of corona flare effects around certain lights, 0 disables corona effects"};
cvar_t r_coronas_occlusionsizescale = {CVAR_SAVE, "r_coronas_occlusionsizescale", "0.1", "size of light source for corona occlusion checksum the proportion of hidden pixels controls corona intensity"};
cvar_t r_coronas_occlusionquery = {CVAR_SAVE, "r_coronas_occlusionquery", "1", "use GL_ARB_occlusion_query extension if supported (fades coronas according to visibility)"};
Cvar_RegisterVariable(&r_shadow_polygonfactor);
Cvar_RegisterVariable(&r_shadow_polygonoffset);
Cvar_RegisterVariable(&r_shadow_texture3d);
+ Cvar_RegisterVariable(&r_shadow_particletrace);
+ Cvar_RegisterVariable(&r_shadow_particletrace_intensity);
+ Cvar_RegisterVariable(&r_shadow_particletrace_size);
+ Cvar_RegisterVariable(&r_shadow_particletrace_radiusscale);
+ Cvar_RegisterVariable(&r_shadow_particletrace_maxbounce);
+ Cvar_RegisterVariable(&r_shadow_particletrace_bounceintensity);
+ Cvar_RegisterVariable(&r_shadow_particletrace_particlespacing);
+ Cvar_RegisterVariable(&r_shadow_particletrace_updatepercentage);
Cvar_RegisterVariable(&r_coronas);
Cvar_RegisterVariable(&r_coronas_occlusionsizescale);
Cvar_RegisterVariable(&r_coronas_occlusionquery);
// only draw light where this geometry was already rendered AND the
// stencil is 128 (values other than this mean shadow)
R_SetStencil(stenciltest, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
- R_Mesh_SetRenderTargets(r_shadow_prepasslightingfbo, r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
+ R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusespecularfbo, r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
r_shadow_usingshadowmap2d = shadowmapping;
R_Mesh_Draw(0, 8, 0, 12, NULL, NULL, 0, bboxelements, NULL, 0);
}
+#define MAXPARTICLESPERLIGHT 262144
+#define MAXLIGHTSPERDRAW 1024
+
+static void R_Shadow_RenderParticlesForLight(rtlight_t *rtlight)
+{
+ int batchcount;
+ int i;
+ int j;
+ int bouncecount;
+ int hitsupercontentsmask;
+ int n;
+ int shotparticles;
+ int shootparticles = 0;
+ int bouncelimit;
+ int maxbounce;
+ unsigned int seed = 0;
+ static unsigned short bouncelight_elements[MAXLIGHTSPERDRAW*36];
+ static float vertex3f[MAXLIGHTSPERDRAW*24];
+ static float lightorigin4f[MAXLIGHTSPERDRAW*32];
+ static float color4f[MAXLIGHTSPERDRAW*32];
+ float scaledpoints[8][3];
+ float *v3f;
+ float *lo4f;
+ float *c4f;
+ rtlight_particle_t *p;
+ vec_t wantparticles = 0;
+ vec_t s;
+ vec_t radius;
+ vec_t particlesize;
+ vec_t iparticlesize;
+// vec3_t offset;
+// vec3_t right;
+// vec3_t up;
+ vec4_t org;
+ vec4_t color;
+ vec3_t currentcolor;
+ vec3_t clipstart;
+ vec3_t clipend;
+ vec3_t shotcolor;
+ trace_t cliptrace;
+ if (!rtlight->draw || !rtlight->isstatic || !r_shadow_usingdeferredprepass)
+ return;
+ if (r_shadow_particletrace.integer)
+ {
+ radius = rtlight->radius * bound(0.0001f, r_shadow_particletrace_radiusscale.value, 1.0f) - r_shadow_particletrace_size.value;
+ s = rtlight->radius / bound(1.0f, r_shadow_particletrace_particlespacing.value * r_shadow_particletrace_size.value, 1048576.0f);
+ wantparticles = s*s;
+ n = (int)bound(0, wantparticles, MAXPARTICLESPERLIGHT);
+ }
+ else
+ n = 0;
+ shootparticles = (int)(n * r_shadow_particletrace_updatepercentage.value);
+ if ((n && !rtlight->particlecache_particles) || rtlight->particlecache_maxparticles != n)
+ {
+ if (rtlight->particlecache_particles)
+ Mem_Free(rtlight->particlecache_particles);
+ rtlight->particlecache_particles = NULL;
+ rtlight->particlecache_numparticles = 0;
+ rtlight->particlecache_maxparticles = n;
+ rtlight->particlecache_updateparticle = 0;
+ if (rtlight->particlecache_maxparticles)
+ rtlight->particlecache_particles = Mem_Alloc(r_main_mempool, rtlight->particlecache_maxparticles * sizeof(*rtlight->particlecache_particles));
+ shootparticles = n * 16;
+ }
+
+ if (!rtlight->particlecache_maxparticles)
+ return;
+
+// if (rtlight->particlecache_numparticles < rtlight->particlecache_maxparticles)
+// shootparticles = rtlight->particlecache_maxparticles;
+
+// if (rtlight->particlecache_numparticles >= rtlight->particlecache_maxparticles)
+// shootparticles = 0;
+
+ maxbounce = bound(1, r_shadow_particletrace_maxbounce.integer, 16);
+ r_refdef.stats.lights_bouncelightsupdated += shootparticles;
+ for (shotparticles = 0;shotparticles < shootparticles;shotparticles++)
+ {
+ seed = rtlight->particlecache_updateparticle;
+ VectorSet(shotcolor, 1.0f, 1.0f, 1.0f);
+ VectorCopy(rtlight->shadoworigin, clipstart);
+ VectorRandom(clipend);
+ VectorMA(clipstart, radius, clipend, clipend);
+ hitsupercontentsmask = SUPERCONTENTS_SOLID | SUPERCONTENTS_LIQUIDSMASK;
+ bouncelimit = 1 + (rtlight->particlecache_updateparticle % maxbounce);
+ for (bouncecount = 0;;bouncecount++)
+ {
+ cliptrace = CL_TraceLine(clipstart, clipend, MOVE_NOMONSTERS, NULL, hitsupercontentsmask, true, false, NULL, true);
+ //Collision_ClipLineToWorld(&cliptrace, cl.worldmodel, clipstart, clipend, hitsupercontentsmask);
+ if (cliptrace.fraction >= 1.0f)
+ break;
+ if (VectorLength2(shotcolor) < (1.0f / 262144.0f))
+ break;
+ if (bouncecount >= bouncelimit)
+ {
+ VectorCopy(cliptrace.endpos, rtlight->particlecache_particles[rtlight->particlecache_updateparticle].origin);
+ VectorCopy(shotcolor, rtlight->particlecache_particles[rtlight->particlecache_updateparticle].color);
+ rtlight->particlecache_updateparticle++;
+ if (rtlight->particlecache_numparticles < rtlight->particlecache_updateparticle)
+ rtlight->particlecache_numparticles = rtlight->particlecache_updateparticle;
+ if (rtlight->particlecache_updateparticle >= rtlight->particlecache_maxparticles)
+ {
+ rtlight->particlecache_updateparticle = 0;
+ shotparticles = shootparticles;
+ }
+ break;
+ }
+ // scale down shot color by bounce intensity and texture color
+ VectorScale(shotcolor, r_shadow_particletrace_bounceintensity.value, shotcolor);
+ if (cliptrace.hittexture && cliptrace.hittexture->currentskinframe)
+ VectorMultiply(shotcolor, rsurface.texture->currentskinframe->avgcolor, shotcolor);
+ // reflect the remaining portion of the line across plane normal
+ //VectorSubtract(clipend, cliptrace.endpos, clipdiff);
+ //VectorReflect(clipdiff, 1.0, cliptrace.plane.normal, clipend);
+ // random direction, primarily along plane normal
+ s = VectorDistance(cliptrace.endpos, clipend);
+ VectorRandom(clipend);
+ VectorMA(cliptrace.plane.normal, 0.95f, clipend, clipend);
+ VectorNormalize(clipend);
+ VectorScale(clipend, s, clipend);
+ // calculate the new line start and end
+ VectorCopy(cliptrace.endpos, clipstart);
+ VectorAdd(clipstart, clipend, clipend);
+ }
+ }
+
+ if (!rtlight->particlecache_numparticles)
+ return;
+
+ // render the particles as deferred lights
+// do global setup needed for the chosen lighting mode
+ R_Shadow_RenderMode_Reset();
+ r_shadow_rendermode = r_shadow_lightingrendermode;
+ r_shadow_usingshadowmap2d = false;
+ R_EntityMatrix(&identitymatrix);
+ GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
+ // only draw light where this geometry was already rendered AND the
+ // stencil is 128 (values other than this mean shadow)
+ R_SetStencil(false, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
+ R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusefbo, r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, NULL, NULL, NULL);
+ R_SetupShader_DeferredBounceLight();
+ GL_ColorMask(1,1,1,1);
+ GL_DepthMask(false);
+ GL_DepthRange(0, 1);
+ GL_PolygonOffset(0, 0);
+ GL_DepthTest(true);
+ GL_DepthFunc(GL_GREATER);
+ GL_CullFace(r_refdef.view.cullface_back);
+ s = r_shadow_particletrace_intensity.value / (float)rtlight->particlecache_numparticles;
+ VectorScale(rtlight->currentcolor, s, currentcolor);
+ particlesize = bound(0.0001f, r_shadow_particletrace_size.value, 1024.0f);
+ iparticlesize = 1.0f / particlesize;
+// VectorScale(r_refdef.view.forward, particlesize, offset);
+// VectorScale(r_refdef.view.left, -particlesize, right);
+// VectorScale(r_refdef.view.up, particlesize, up);
+ org[3] = iparticlesize;
+ color[3] = 1.0f;
+ v3f = vertex3f;
+ lo4f = lightorigin4f;
+ c4f = color4f;
+ batchcount = 0;
+ if (!bouncelight_elements[1])
+ for (i = 0;i < MAXLIGHTSPERDRAW;i++)
+ for (j = 0;j < 36;j++)
+ bouncelight_elements[i*36+j] = i*8+bboxelements[j];
+ for (j = 0;j < 8;j++)
+ VectorScale(bboxpoints[j], particlesize, scaledpoints[j]);
+ r_refdef.stats.lights_bouncelightscounted += rtlight->particlecache_numparticles;
+ for (j = 0, p = rtlight->particlecache_particles, n = rtlight->particlecache_numparticles;j < n;j++, p++)
+ {
+ VectorCopy(p->origin, org);
+ // org[3] is set above
+ VectorMultiply(p->color, currentcolor, color);
+ // color[3] is set above
+ VectorAdd(scaledpoints[0], org, v3f + 0);
+ VectorAdd(scaledpoints[1], org, v3f + 3);
+ VectorAdd(scaledpoints[2], org, v3f + 6);
+ VectorAdd(scaledpoints[3], org, v3f + 9);
+ VectorAdd(scaledpoints[4], org, v3f + 12);
+ VectorAdd(scaledpoints[5], org, v3f + 15);
+ VectorAdd(scaledpoints[6], org, v3f + 18);
+ VectorAdd(scaledpoints[7], org, v3f + 21);
+ Vector4Copy(org, lo4f + 0);
+ Vector4Copy(org, lo4f + 4);
+ Vector4Copy(org, lo4f + 8);
+ Vector4Copy(org, lo4f + 12);
+ Vector4Copy(org, lo4f + 16);
+ Vector4Copy(org, lo4f + 20);
+ Vector4Copy(org, lo4f + 24);
+ Vector4Copy(org, lo4f + 28);
+ Vector4Copy(color, c4f + 0);
+ Vector4Copy(color, c4f + 4);
+ Vector4Copy(color, c4f + 8);
+ Vector4Copy(color, c4f + 12);
+ Vector4Copy(color, c4f + 16);
+ Vector4Copy(color, c4f + 20);
+ Vector4Copy(color, c4f + 24);
+ Vector4Copy(color, c4f + 28);
+ v3f += 24;
+ lo4f += 32;
+ c4f += 32;
+ batchcount++;
+ if (batchcount >= MAXLIGHTSPERDRAW)
+ {
+ r_refdef.stats.lights_bouncelightsdrawn += batchcount;
+ R_Mesh_PrepareVertices_BounceLight_Arrays(batchcount*8, vertex3f, color4f, lightorigin4f);
+ R_Mesh_Draw(0, batchcount*8, 0, batchcount*12, NULL, NULL, 0, bouncelight_elements, NULL, 0);
+ v3f = vertex3f;
+ lo4f = lightorigin4f;
+ c4f = color4f;
+ batchcount = 0;
+ }
+ }
+ if (batchcount)
+ {
+ r_refdef.stats.lights_bouncelightsdrawn += batchcount;
+ R_Mesh_PrepareVertices_BounceLight_Arrays(batchcount*8, vertex3f, color4f, lightorigin4f);
+ R_Mesh_Draw(0, batchcount*8, 0, batchcount*12, NULL, NULL, 0, bouncelight_elements, NULL, 0);
+ v3f = vertex3f;
+ lo4f = lightorigin4f;
+ c4f = color4f;
+ batchcount = 0;
+ }
+}
+
void R_Shadow_RenderMode_VisibleShadowVolumes(void)
{
R_Shadow_RenderMode_Reset();
else
R_Shadow_RenderMode_DrawDeferredLight(false, false);
}
+
+ if (r_shadow_particletrace.integer)
+ R_Shadow_RenderParticlesForLight(rtlight);
}
static void R_Shadow_FreeDeferred(void)
R_Mesh_DestroyFramebufferObject(r_shadow_prepassgeometryfbo);
r_shadow_prepassgeometryfbo = 0;
- R_Mesh_DestroyFramebufferObject(r_shadow_prepasslightingfbo);
- r_shadow_prepasslightingfbo = 0;
+ R_Mesh_DestroyFramebufferObject(r_shadow_prepasslightingdiffusespecularfbo);
+ r_shadow_prepasslightingdiffusespecularfbo = 0;
+
+ R_Mesh_DestroyFramebufferObject(r_shadow_prepasslightingdiffusefbo);
+ r_shadow_prepasslightingdiffusefbo = 0;
if (r_shadow_prepassgeometrydepthtexture)
R_FreeTexture(r_shadow_prepassgeometrydepthtexture);
GL_ColorMask(1,1,1,1);
GL_Color(1,1,1,1);
GL_DepthTest(true);
- R_Mesh_SetRenderTargets(r_shadow_prepasslightingfbo, r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
+ R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusespecularfbo, r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
Vector4Set(clearcolor, 0, 0, 0, 0);
GL_Clear(GL_COLOR_BUFFER_BIT, clearcolor, 1.0f, 0);
if (r_timereport_active)
}
// set up the lighting pass fbo (diffuse + specular)
- r_shadow_prepasslightingfbo = R_Mesh_CreateFramebufferObject(r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
- R_Mesh_SetRenderTargets(r_shadow_prepasslightingfbo, r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
+ r_shadow_prepasslightingdiffusespecularfbo = R_Mesh_CreateFramebufferObject(r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
+ R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusespecularfbo, r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
// render diffuse into one texture and specular into another,
// with depth and normalmap bound as textures,
// with depth bound as attachment as well
r_shadow_usingdeferredprepass = false;
}
}
+
+ // set up the lighting pass fbo (diffuse)
+ r_shadow_prepasslightingdiffusefbo = R_Mesh_CreateFramebufferObject(r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, NULL, NULL, NULL);
+ R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusefbo, r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, NULL, NULL, NULL);
+ // render diffuse into one texture,
+ // with depth and normalmap bound as textures,
+ // with depth bound as attachment as well
+ if (qglDrawBuffersARB)
+ {
+ qglDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);CHECKGLERROR
+ qglReadBuffer(GL_NONE);CHECKGLERROR
+ status = qglCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);CHECKGLERROR
+ if (status != GL_FRAMEBUFFER_COMPLETE_EXT)
+ {
+ Con_Printf("R_PrepareRTLights: glCheckFramebufferStatusEXT returned %i\n", status);
+ Cvar_SetValueQuick(&r_shadow_deferred, 0);
+ r_shadow_usingdeferredprepass = false;
+ }
+ }
}
break;
case RENDERPATH_GL13:
void R_SetupShader_ShowDepth(void);
void R_SetupShader_Surface(const vec3_t lightcolorbase, qboolean modellighting, float ambientscale, float diffusescale, float specularscale, rsurfacepass_t rsurfacepass, int texturenumsurfaces, const msurface_t **texturesurfacelist, void *waterplane);
void R_SetupShader_DeferredLight(const rtlight_t *rtlight);
+void R_SetupShader_DeferredBounceLight(void);
typedef struct r_waterstate_waterplane_s
{