#include "texturelib.h"
#include "math/matrix.h"
#include "math/plane.h"
+#include "math/aabb.h"
#include "winding.h"
#include "preferences.h"
}
}
-void Texdef_FitTexture(texdef_t& td, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat)
+template<typename Element>
+inline BasicVector3<Element> vector3_inverse(const BasicVector3<Element>& self)
{
- float temp;
- float rot_width, rot_height;
- float cosv,sinv;
- float min_t, min_s, max_t, max_s;
- float s,t;
- Vector3 vecs[2];
- Vector3 coords[4];
-
- Vector3 mins, maxs;
-
- if(s_repeat == 0)
- s_repeat = 1;
- if(t_repeat == 0)
- t_repeat = 1;
-
- {
- ClearBounds(mins, maxs);
- for(Winding::const_iterator i = w.begin(); i != w.end(); ++i)
- {
- AddPointToBounds((*i).vertex, mins, maxs);
- }
- }
-
- //
- // get the current angle
- //
- {
- double ang = degrees_to_radians(td.rotate);
- sinv = static_cast<float>(sin(ang));
- cosv = static_cast<float>(cos(ang));
- }
-
- // get natural texture axis
- TextureAxisFromNormal(normal, vecs[0], vecs[1]);
-
- min_s = static_cast<float>(vector3_dot(mins, vecs[0]));
- min_t = static_cast<float>(vector3_dot(mins, vecs[1]));
- max_s = static_cast<float>(vector3_dot(maxs, vecs[0]));
- max_t = static_cast<float>(vector3_dot(maxs, vecs[1]));
- coords[0][0] = min_s;
- coords[0][1] = min_t;
- coords[1][0] = max_s;
- coords[1][1] = min_t;
- coords[2][0] = min_s;
- coords[2][1] = max_t;
- coords[3][0] = max_s;
- coords[3][1] = max_t;
- min_s = min_t = 99999;
- max_s = max_t = -99999;
- for (int i=0; i<4; i++)
- {
- s = cosv * coords[i][0] - sinv * coords[i][1];
- t = sinv * coords[i][0] + cosv * coords[i][1];
- if (i&1)
- {
- if (s > max_s)
- {
- max_s = s;
- }
- }
- else
- {
- if (s < min_s)
- {
- min_s = s;
- }
- if (i<2)
- {
- if (t < min_t)
- {
- min_t = t;
- }
- }
- else
- {
- if (t > max_t)
- {
- max_t = t;
- }
- }
- }
- }
- rot_width = (max_s - min_s);
- rot_height = (max_t - min_t);
- td.scale[0] = -(rot_width/(static_cast<float>(width) * s_repeat));
- td.scale[1] = -(rot_height/(static_cast<float>(height) * t_repeat));
-
- td.shift[0] = min_s/td.scale[0];
- temp = static_cast<float>(float_to_integer(td.shift[0] / (static_cast<float>(width) * s_repeat)));
- temp = (temp+1)*static_cast<float>(width) * s_repeat;
- td.shift[0] = static_cast<float>(float_to_integer(temp - td.shift[0]) % static_cast<int>(static_cast<float>(width) * s_repeat));
-
- td.shift[1] = min_t/td.scale[1];
- temp = static_cast<float>(float_to_integer(td.shift[1] / (static_cast<float>(height) * t_repeat)));
- temp = (temp+1)*(static_cast<float>(height) * t_repeat);
- td.shift[1] = static_cast<float>(float_to_integer(temp - td.shift[1]) % static_cast<int>(static_cast<float>(height) * t_repeat));
+ return BasicVector3<Element>(
+ Element(1.0 / self.x()),
+ Element(1.0 / self.y()),
+ Element(1.0 / self.z())
+ );
}
-
// low level functions .. put in mathlib?
#define BPMatCopy(a,b) {b[0][0] = a[0][0]; b[0][1] = a[0][1]; b[0][2] = a[0][2]; b[1][0] = a[1][0]; b[1][1] = a[1][1]; b[1][2] = a[1][2];}
// apply a scale transformation to the BP matrix
ConvertTexMatWithDimensions(bp_td.coords, 2, 2, bp_td.coords, width, height);
}
-//++timo FIXME quick'n dirty hack, doesn't care about current texture settings (angle)
-// can be improved .. bug #107311
-void BPTexdef_FitTexture(brushprimit_texdef_t& bp_td, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat)
-{
- Vector3 BBoxSTMin, BBoxSTMax;
- Vector3 M[3],D[2];
-// Vector3 N[2],Mf[2];
- brushprimit_texdef_t N;
- Vector3 Mf[2];
-
- //qtexture_t texture;
- //texture.width = width;
- //texture.height = height;
-
-
- // we'll be working on a standardized texture size
-// ConvertTexMatWithQTexture( &bp_td, &texture, &bp_td, 0 );
- // compute the BBox in ST coords
- {
- Winding tmp(w);
- Texdef_EmitTextureCoordinates(TextureProjection(texdef_t(), bp_td, Vector3(0, 0, 0), Vector3(0, 0, 0)), width, height, tmp, normal, g_matrix4_identity);
-
- ClearBounds( BBoxSTMin, BBoxSTMax );
- for(Winding::const_iterator i = tmp.begin(); i != tmp.end(); ++i)
- {
- // AddPointToBounds in 2D on (S,T) coordinates
- for(int j=0 ; j<2 ; j++)
- {
- float val = (*i).texcoord[j];
- if (val < BBoxSTMin[j])
- BBoxSTMin[j] = val;
- if (val > BBoxSTMax[j])
- BBoxSTMax[j] = val;
- }
- }
- }
- // we have the three points of the BBox (BBoxSTMin[0].BBoxSTMin[1]) (BBoxSTMax[0],BBoxSTMin[1]) (BBoxSTMin[0],BBoxSTMax[1]) in ST space
- // the BP matrix we are looking for gives (0,0) (nwidth,0) (0,t_repeat) coordinates in (Sfit,Tfit) space to these three points
- // we have A(Sfit,Tfit) = (0,0) = Mf * A(TexS,TexT) = N * M * A(TexS,TexT) = N * A(S,T)
- // so we solve the system for N and then Mf = N * M
- M[0][0] = BBoxSTMin[0]; M[0][1] = BBoxSTMax[0]; M[0][2] = BBoxSTMin[0];
- M[1][0] = BBoxSTMin[1]; M[1][1] = BBoxSTMin[1]; M[1][2] = BBoxSTMax[1];
- D[0][0] = 0.0f; D[0][1] = s_repeat; D[0][2] = 0.0f;
- D[1][0] = 0.0f; D[1][1] = 0.0f; D[1][2] = t_repeat;
- MatrixForPoints( M, D, &N );
-
-#if 0
- // FIT operation gives coordinates of three points of the bounding box in (S',T'), our target axis base
- // A(S',T')=(0,0) B(S',T')=(s_repeat,0) C(S',T')=(0,t_repeat)
- // and we have them in (S,T) axis base: A(S,T)=(BBoxSTMin[0],BBoxSTMin[1]) B(S,T)=(BBoxSTMax[0],BBoxSTMin[1]) C(S,T)=(BBoxSTMin[0],BBoxSTMax[1])
- // we compute the N transformation so that: A(S',T') = N * A(S,T)
- VectorSet( N[0], (BBoxSTMax[0]-BBoxSTMin[0])/s_repeat, 0.0f, BBoxSTMin[0] );
- VectorSet( N[1], 0.0f, (BBoxSTMax[1]-BBoxSTMin[1])/t_repeat, BBoxSTMin[1] );
-#endif
-
- // the final matrix is the product (Mf stands for Mfit)
- Mf[0][0] = N.coords[0][0] * bp_td.coords[0][0] + N.coords[0][1] * bp_td.coords[1][0];
- Mf[0][1] = N.coords[0][0] * bp_td.coords[0][1] + N.coords[0][1] * bp_td.coords[1][1];
- Mf[0][2] = N.coords[0][0] * bp_td.coords[0][2] + N.coords[0][1] * bp_td.coords[1][2] + N.coords[0][2];
- Mf[1][0] = N.coords[1][0] * bp_td.coords[0][0] + N.coords[1][1] * bp_td.coords[1][0];
- Mf[1][1] = N.coords[1][0] * bp_td.coords[0][1] + N.coords[1][1] * bp_td.coords[1][1];
- Mf[1][2] = N.coords[1][0] * bp_td.coords[0][2] + N.coords[1][1] * bp_td.coords[1][2] + N.coords[1][2];
- // copy back
- bp_td.coords[0][0] = Mf[0][0];
- bp_td.coords[0][1] = Mf[0][1];
- bp_td.coords[0][2] = Mf[0][2];
- bp_td.coords[1][0] = Mf[1][0];
- bp_td.coords[1][1] = Mf[1][1];
- bp_td.coords[1][2] = Mf[1][2];
- // handle the texture size
-// ConvertTexMatWithQTexture( &bp_td, 0, &bp_td, &texture );
-}
-
-
-
void Texdef_Assign(TextureProjection& projection, const TextureProjection& other)
{
if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
void Texdef_FitTexture(TextureProjection& projection, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat)
{
- if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
+ if(w.numpoints < 3)
+ {
+ return;
+ }
+
+ Matrix4 st2tex;
+ Texdef_toTransform(projection, (float)width, (float)height, st2tex);
+
+ // the current texture transform
+ Matrix4 local2tex = st2tex;
{
- BPTexdef_FitTexture(projection.m_brushprimit_texdef, width, height, normal, w, s_repeat, t_repeat);
+ Matrix4 xyz2st;
+ Texdef_basisForNormal(projection, normal, xyz2st);
+ matrix4_multiply_by_matrix4(local2tex, xyz2st);
}
- else
+
+ // the bounds of the current texture transform
+ AABB bounds;
+ for(Winding::const_iterator i = w.begin(); i != w.end(); ++i)
{
- Texdef_FitTexture(projection.m_texdef, width, height, normal, w, s_repeat, t_repeat);
+ Vector3 texcoord = matrix4_transformed_point(local2tex, (*i).vertex);
+ aabb_extend_by_point_safe(bounds, texcoord);
}
+ bounds.origin.z() = 0;
+ bounds.extents.z() = 1;
+
+ // the bounds of a perfectly fitted texture transform
+ AABB perfect(Vector3(s_repeat * 0.5, t_repeat * 0.5, 0), Vector3(s_repeat * 0.5, t_repeat * 0.5, 1));
+
+ // the difference between the current texture transform and the perfectly fitted transform
+ Matrix4 matrix(matrix4_translation_for_vec3(bounds.origin - perfect.origin));
+ matrix4_pivoted_scale_by_vec3(matrix, bounds.extents / perfect.extents, perfect.origin);
+ matrix4_affine_invert(matrix);
+
+ // apply the difference to the current texture transform
+ matrix4_premultiply_by_matrix4(st2tex, matrix);
+
+ Texdef_fromTransform(projection, (float)width, (float)height, st2tex);
+ Texdef_normalise(projection, (float)width, (float)height);
}
float Texdef_getDefaultTextureScale()